The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations

In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Ramanujan journal Ročník 58; číslo 4; s. 1075 - 1093
Hlavní autori: Hajdu, L., Papp, Á., Tijdeman, R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2022
Springer Nature B.V
Predmet:
ISSN:1382-4090, 1572-9303
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation f A ( x ) = P ( y ) where P ( y ) ∈ Q [ y ] and on shifted power values of f A ( x ) .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-022-00555-7