The Prouhet–Tarry–Escott problem, indecomposability of polynomials and Diophantine equations

In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal Jg. 58; H. 4; S. 1075 - 1093
Hauptverfasser: Hajdu, L., Papp, Á., Tijdeman, R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2022
Springer Nature B.V
Schlagworte:
ISSN:1382-4090, 1572-9303
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show how the subjects mentioned in the title are related. First we study the structure of partitions of A ⊆ { 1 , ⋯ , n } in k -sets such that the first k - 1 symmetric polynomials of the elements of the k -sets coincide. Then we apply this result to derive a decomposability result for the polynomial f A ( x ) : = ∏ x ∈ A ( x - a ) . Finally we prove two theorems on the structure of the solutions ( x ,  y ) of the Diophantine equation f A ( x ) = P ( y ) where P ( y ) ∈ Q [ y ] and on shifted power values of f A ( x ) .
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-022-00555-7