On symbolic computation of C.P. Okeke functional equations using Python programming language

This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following func...

Full description

Saved in:
Bibliographic Details
Published in:Aequationes mathematicae Vol. 98; no. 2; pp. 483 - 502
Main Authors: Okeke, Chisom Prince, Ogala, Wisdom I., Nadhomi, Timothy
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.04.2024
Springer Nature B.V
Subjects:
ISSN:0001-9054, 1420-8903
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, 0.1 ∑ i = 1 n γ i F ( a i x + b i y ) = ∑ j = 1 m ( α j x + β j y ) f ( c j x + d j y ) , for all x , y ∈ R , γ i , α j , β j ∈ R , and a i , b i , c j , d j ∈ Q , and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered.
AbstractList This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, 0.1 ∑ i = 1 n γ i F ( a i x + b i y ) = ∑ j = 1 m ( α j x + β j y ) f ( c j x + d j y ) , for all x , y ∈ R , γ i , α j , β j ∈ R , and a i , b i , c j , d j ∈ Q , and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered.
This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, 0.1∑i=1nγiF(aix+biy)=∑j=1m(αjx+βjy)f(cjx+djy),for all x,y∈R, γi,αj,βj∈R, and ai,bi,cj,dj∈Q, and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered.
This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, $$\begin{aligned} \textstyle \sum \limits _{i=1}^n \gamma _i F(a_i x + b_i y)=\textstyle \sum \limits _{j=1}^m(\alpha _j x + \beta _j y) f(c_j x + d_j y), \end{aligned}$$ ∑ i = 1 n γ i F ( a i x + b i y ) = ∑ j = 1 m ( α j x + β j y ) f ( c j x + d j y ) , for all $$x,y\in \mathbb {R}$$ x , y ∈ R , $$\gamma _i,\alpha _j,\beta _j \in \mathbb {R},$$ γ i , α j , β j ∈ R , and $$a_i,b_i,c_j,d_j \in \mathbb {Q},$$ a i , b i , c j , d j ∈ Q , and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered.
Author Ogala, Wisdom I.
Okeke, Chisom Prince
Nadhomi, Timothy
Author_xml – sequence: 1
  givenname: Chisom Prince
  orcidid: 0000-0002-9034-408X
  surname: Okeke
  fullname: Okeke, Chisom Prince
  email: chisom.okeke@us.edu.pl
  organization: Institute of Mathematics, University of Silesia
– sequence: 2
  givenname: Wisdom I.
  surname: Ogala
  fullname: Ogala, Wisdom I.
  organization: Department of Mathematics, University of Central Florida
– sequence: 3
  givenname: Timothy
  surname: Nadhomi
  fullname: Nadhomi, Timothy
  organization: Institute of Mathematics, University of Silesia
BookMark eNp9kMtqwzAQRUVJoUnaH-hK0LXT0cOxvSyhLwgki3ZXELIsuU5sK5HsRf6-clwodJHNDDO6Z7i6MzRpbasRuiewIADJowcAAhFQFoUOaUSv0JRwClGaAZug6fAeZRDzGzTzfhcmmiRsir42LfanJrd1pbCyzaHvZFfZFluDV4vtAm_2eq-x6Vs1rGWN9bE_KzzufdWWeHvqvoP-4GzpZNMMq1q2ZS9LfYuujay9vvvtc_T58vyxeovWm9f31dM6UmzJuihRaZExAyrTtIiLUGNJZQY0ZTyneVwkRFNu4qXJ6VLzQsVSK5qnkpEkoSZjc_Qw3g0mjr32ndjZ3gWzXjAgMed0CTyo0lGlnPXeaSNUNX62c7KqBQExZCnGLEXIUpyzFDSg9B96cFUj3ekyxEbIB3Fbavfn6gL1Az7AiP8
CitedBy_id crossref_primary_10_1007_s00010_025_01184_3
crossref_primary_10_1007_s10998_025_00632_6
Cites_doi 10.1016/j.camwa.2009.03.107
10.1007/s00010-003-2703-9
10.1007/s00010-021-00781-2
10.1142/3857
10.1142/1406
10.5486/PMD.2012.4970
10.1007/s00025-022-01664-x
10.1007/s00010-020-00736-z
10.2307/2370484
10.1007/s00010-007-2898-2
10.1007/BF01840007
10.1007/s00022-006-0035-3
10.2478/v10127-009-0045-2
10.1515/GMJ.2009.725
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00010-023-01008-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-8903
EndPage 502
ExternalDocumentID 10_1007_s00010_023_01008_2
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DARCH
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-7c8d93f0c9e2d5d9e25a2a902834b2b5d71e24f56fb26e4dc5aec2b8a31772f93
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087985500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-9054
IngestDate Fri Jul 25 19:33:50 EDT 2025
Tue Nov 18 22:12:02 EST 2025
Sat Nov 29 02:57:01 EST 2025
Fri Feb 21 02:43:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Polynomial functions
Functional equations
Secondary: 39A70 39-04
Sagemath
Python
Primary: 39B52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7c8d93f0c9e2d5d9e25a2a902834b2b5d71e24f56fb26e4dc5aec2b8a31772f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9034-408X
OpenAccessLink https://link.springer.com/10.1007/s00010-023-01008-2
PQID 3015442604
PQPubID 36840
PageCount 20
ParticipantIDs proquest_journals_3015442604
crossref_citationtrail_10_1007_s00010_023_01008_2
crossref_primary_10_1007_s00010_023_01008_2
springer_journals_10_1007_s00010_023_01008_2
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Basel
PublicationTitle Aequationes mathematicae
PublicationTitleAbbrev Aequat. Math
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Nadhomi, Okeke, Sablik, Szostok (CR14) 2021; 95
Fechner, Gselmann (CR7) 2012; 80
Wilson (CR20) 1918; 40
CR3
Sahoo (CR17) 2007; 2
Borus, Gilányi (CR6) 2020; 94
CR13
Koclȩga-Kulpa, Szostok (CR11) 2008; 1
CR12
Aczél, Kuczma (CR2) 1989; 38
CR10
Okeke (CR16) 2023; 78
Baják, Páles (CR5) 2010; 216
Aczél (CR1) 1985; 58
Baják, Páles (CR4) 2009; 58
Gilányi (CR8) 1998; 9
Székelyhidi (CR19) 1991
Okeke, Sablik (CR15) 2022; 77
Sahoo, Riedel (CR18) 1998
Házy (CR9) 2004; 67
1008_CR10
J Aczél (1008_CR1) 1985; 58
1008_CR3
W Fechner (1008_CR7) 2012; 80
S Baják (1008_CR5) 2010; 216
GG Borus (1008_CR6) 2020; 94
CP Okeke (1008_CR15) 2022; 77
L Székelyhidi (1008_CR19) 1991
S Baják (1008_CR4) 2009; 58
CP Okeke (1008_CR16) 2023; 78
PK Sahoo (1008_CR18) 1998
1008_CR12
1008_CR13
PK Sahoo (1008_CR17) 2007; 2
A Házy (1008_CR9) 2004; 67
J Aczél (1008_CR2) 1989; 38
B Koclȩga-Kulpa (1008_CR11) 2008; 1
A Gilányi (1008_CR8) 1998; 9
T Nadhomi (1008_CR14) 2021; 95
WH Wilson (1008_CR20) 1918; 40
References_xml – volume: 58
  start-page: 334
  issue: 2
  year: 2009
  end-page: 340
  ident: CR4
  article-title: Computer aided solution of the invariance equation for two-variable Gini means
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.03.107
– volume: 216
  start-page: 3219
  issue: 11
  year: 2010
  end-page: 3227
  ident: CR5
  article-title: Computer aided solution of the invariance equation for two-variable Stolarsky means
  publication-title: Comput. Math. Appl.
– volume: 2
  start-page: 67
  year: 2007
  end-page: 82
  ident: CR17
  article-title: On a functional equation associated with the trapezoidal rule
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
– volume: 58
  start-page: 42
  year: 1985
  end-page: 45
  ident: CR1
  article-title: A mean value property of the derivative of quadratic polynomials—without mean values and derivatives
  publication-title: Math. Mag.
– volume: 67
  start-page: 47
  issue: 1
  year: 2004
  end-page: 62
  ident: CR9
  article-title: Solving linear two variable functional equations with computer
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-003-2703-9
– volume: 95
  start-page: 1095
  year: 2021
  end-page: 1117
  ident: CR14
  article-title: On a new class of functional equations satisfied by polynomial functions
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-021-00781-2
– year: 1998
  ident: CR18
  publication-title: Mean value theorems and functional equations
  doi: 10.1142/3857
– year: 1991
  ident: CR19
  publication-title: Convolution type functional equations on topological abelian groups
  doi: 10.1142/1406
– ident: CR3
– volume: 80
  start-page: 143
  issue: 1–2
  year: 2012
  end-page: 154
  ident: CR7
  article-title: General and alien solutions of a functional equation and of a functional inequality
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.2012.4970
– volume: 77
  start-page: 1
  issue: 3
  year: 2022
  end-page: 17
  ident: CR15
  article-title: Functional equation characterizing polynomial functions and an algorithm
  publication-title: Results Math.
  doi: 10.1007/s00025-022-01664-x
– ident: CR12
– ident: CR13
– ident: CR10
– volume: 94
  start-page: 723
  issue: 4
  year: 2020
  end-page: 736
  ident: CR6
  article-title: Computer assisted solution of systems of two variable linear functional equations
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-020-00736-z
– volume: 78
  start-page: 1
  issue: 96
  year: 2023
  end-page: 30
  ident: CR16
  article-title: Further results on a new class of functional equations satisfied by polynomial functions
  publication-title: Results Math.
– volume: 40
  start-page: 263
  year: 1918
  end-page: 282
  ident: CR20
  article-title: On a certain general class of functional equations
  publication-title: Am. J. Math.
  doi: 10.2307/2370484
– volume: 9
  start-page: 57
  issue: 1
  year: 1998
  end-page: 70
  ident: CR8
  article-title: Solving linear functional equations with computer
  publication-title: Math. Pannon.
– volume: 1
  start-page: 119
  issue: 75
  year: 2008
  end-page: 129
  ident: CR11
  article-title: On some functional equations connected to Hadamard inequalities
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-007-2898-2
– volume: 38
  start-page: 216
  year: 1989
  end-page: 235
  ident: CR2
  article-title: On two mean value properties and functional equations associated with them
  publication-title: Aequ. Math.
  doi: 10.1007/BF01840007
– volume: 58
  start-page: 334
  issue: 2
  year: 2009
  ident: 1008_CR4
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.03.107
– volume: 9
  start-page: 57
  issue: 1
  year: 1998
  ident: 1008_CR8
  publication-title: Math. Pannon.
– ident: 1008_CR10
– ident: 1008_CR3
  doi: 10.1007/s00022-006-0035-3
– ident: 1008_CR12
  doi: 10.2478/v10127-009-0045-2
– volume: 38
  start-page: 216
  year: 1989
  ident: 1008_CR2
  publication-title: Aequ. Math.
  doi: 10.1007/BF01840007
– volume: 94
  start-page: 723
  issue: 4
  year: 2020
  ident: 1008_CR6
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-020-00736-z
– volume: 58
  start-page: 42
  year: 1985
  ident: 1008_CR1
  publication-title: Math. Mag.
– volume: 95
  start-page: 1095
  year: 2021
  ident: 1008_CR14
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-021-00781-2
– volume: 80
  start-page: 143
  issue: 1–2
  year: 2012
  ident: 1008_CR7
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.2012.4970
– volume-title: Convolution type functional equations on topological abelian groups
  year: 1991
  ident: 1008_CR19
  doi: 10.1142/1406
– volume: 67
  start-page: 47
  issue: 1
  year: 2004
  ident: 1008_CR9
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-003-2703-9
– volume: 77
  start-page: 1
  issue: 3
  year: 2022
  ident: 1008_CR15
  publication-title: Results Math.
  doi: 10.1007/s00025-022-01664-x
– volume: 216
  start-page: 3219
  issue: 11
  year: 2010
  ident: 1008_CR5
  publication-title: Comput. Math. Appl.
– ident: 1008_CR13
  doi: 10.1515/GMJ.2009.725
– volume: 2
  start-page: 67
  year: 2007
  ident: 1008_CR17
  publication-title: Bull. Inst. Math. Acad. Sin. (N.S.)
– volume-title: Mean value theorems and functional equations
  year: 1998
  ident: 1008_CR18
  doi: 10.1142/3857
– volume: 78
  start-page: 1
  issue: 96
  year: 2023
  ident: 1008_CR16
  publication-title: Results Math.
– volume: 1
  start-page: 119
  issue: 75
  year: 2008
  ident: 1008_CR11
  publication-title: Aequ. Math.
  doi: 10.1007/s00010-007-2898-2
– volume: 40
  start-page: 263
  year: 1918
  ident: 1008_CR20
  publication-title: Am. J. Math.
  doi: 10.2307/2370484
SSID ssj0012773
Score 2.321999
Snippet This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 483
SubjectTerms Analysis
Combinatorics
Exact solutions
Functional equations
Mathematics
Mathematics and Statistics
Numerical methods
Polynomials
Programming languages
Python
Robustness (mathematics)
Title On symbolic computation of C.P. Okeke functional equations using Python programming language
URI https://link.springer.com/article/10.1007/s00010-023-01008-2
https://www.proquest.com/docview/3015442604
Volume 98
WOSCitedRecordID wos001087985500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8903
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012773
  issn: 0001-9054
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwgADb0ShIA9skCp14tgZUUXFAG3Fo-qAFCWOjVBpCk1B6r_HdpxUIECCJUNiW9H5cXe-u-8DOAmxoD4PdKaaBtVOMXFYKNR2x4TFMnRZYshgBle022XDYdi3RWF5me1ehiTNSV0Vu2lzxHWUjlHurw7aq4N3Wak7pgkbbm4HVewAUxtXdnXyAfFtqcz3Y3xWRwsb80tY1Gibzsb__nMT1q11ic6L5bAFSyLbhrXrCpo134GHXoby-TjReMCIG04HMzloIlG72W-i3kiMBNL6rrgmROK1gAPPkU6Sf0T9ucYbQDaza6xflbeeu3DfubhrXzqWYsHhXuDNHMpZGnrS5aHAKUnVk8Q41ogunp_ghKS0JbAvSSATHAg_5SQWHCcsVmYHxTL09qCWTTKxD4hRZUtgiSVTHqNU-zwlVJOYCVdQj8RxHVqlpCNu8cc1DcZzVCEnG8lFSnKRkVyE63Ba9Xkp0Dd-bd0oJzCyOzGPPEOzprw2vw5n5YQtPv882sHfmh_CKlb2TpHU04DabPomjmCFv8-e8umxWaEfkNDcuQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yBfXBb3E6NQ--aUeXNk36KMMxcV_oHHsQQpsmInOdrlPYf2-SfgxFBX3pQ5uEcpfL3eXufgfAmY8EcbmnM9U0qHaEsEV9ocQdYRpI36ahaQYzaJFOhw6Hfi8rCkvybPc8JGlO6qLYTZsjtqV0jHJ_ddBeHbzLrtJYGjH_9m5QxA4QyeLKtk4-wG5WKvP9Gp_V0cLG_BIWNdqmsfm__9wCG5l1CS_T7bANlkS8A9bbBTRrsgseujFM5uNQ4wFDbno6GObAiYT1aq8KuyMxElDru_SaEIrXFA48gTpJ_hH25hpvAGaZXWP9Kr_13AP3jat-vWllLRYs7njOzCKcRr4jbe4LFOFIPXGAAo3o4rghCnFEagK5EnsyRJ5wI44DwVFIA2V2ECR9Zx-U4kksDgCkRNkSSCJJlccolZxHmOgmZsIWxMFBUAa1nNKMZ_jjug3GMyuQkw3lmKIcM5RjqAzOizkvKfrGr6MrOQNZJokJc0ybNeW1uWVwkTNs8fnn1Q7_NvwUrDb77RZrXXdujsAaUrZPmuBTAaXZ9E0cgxX-PntKpidmt34A8h_fnQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRfTBb3E6NQ--aWeXNk36KNOhOLeCOvYglDZNROa6uVZh_71J-jEVFcSXPrRpKHdJ7y73u98BcOQiTmzmKKSaItWOEDaoy-V2R5gGwjVpqJvB9Nqk06H9vut9qOLXaPciJZnVNCiWpjg9HUfitCx8U66JaUh7I0NhlcCXP-F5WwHpVbx-2yvzCIjkOWZTARGwnZfNfD_HZ9M08ze_pEi15Wmt_v-b18BK7nXCs2yZrIM5Hm-A5ZuSsjXZBA_dGCbTYah4giHTvR600uBIwGbdq8PugA84VHYwOz6E_CWjCU-gAs8_Qm-qeAhgjvgaqlvFaegWuG9d3DUvjbz1gsEsx0oNwmjkWsJkLkcRjuQVByhQTC-WHaIQR6TBkS2wI0LkcDtiOOAMhTSQ7ghBwrW2QSUexXwHQEqkj4EEElRGkkLu_wgT1dyMm5xYOAiqoFFI3Wc5L7lqj_Hsl4zKWnK-lJyvJeejKjgu3xlnrBy_jq4VyvTzHZr4lm6_JqM5uwpOCuXNHv882-7fhh-CRe-85bevOtd7YAlJlyjD_dRAJZ288n2wwN7Sp2RyoBfuO4XF6IE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+symbolic+computation+of+C.P.+Okeke+functional+equations+using+Python+programming+language&rft.jtitle=Aequationes+mathematicae&rft.au=Okeke%2C+Chisom+Prince&rft.au=Ogala%2C+Wisdom+I.&rft.au=Nadhomi%2C+Timothy&rft.date=2024-04-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=98&rft.issue=2&rft.spage=483&rft.epage=502&rft_id=info:doi/10.1007%2Fs00010-023-01008-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00010_023_01008_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon