On symbolic computation of C.P. Okeke functional equations using Python programming language
This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following func...
Gespeichert in:
| Veröffentlicht in: | Aequationes mathematicae Jg. 98; H. 2; S. 483 - 502 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.04.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0001-9054, 1420-8903 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation,
0.1
∑
i
=
1
n
γ
i
F
(
a
i
x
+
b
i
y
)
=
∑
j
=
1
m
(
α
j
x
+
β
j
y
)
f
(
c
j
x
+
d
j
y
)
,
for all
x
,
y
∈
R
,
γ
i
,
α
j
,
β
j
∈
R
,
and
a
i
,
b
i
,
c
j
,
d
j
∈
Q
,
and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered. |
|---|---|
| AbstractList | This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation,
0.1
∑
i
=
1
n
γ
i
F
(
a
i
x
+
b
i
y
)
=
∑
j
=
1
m
(
α
j
x
+
β
j
y
)
f
(
c
j
x
+
d
j
y
)
,
for all
x
,
y
∈
R
,
γ
i
,
α
j
,
β
j
∈
R
,
and
a
i
,
b
i
,
c
j
,
d
j
∈
Q
,
and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered. This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, 0.1∑i=1nγiF(aix+biy)=∑j=1m(αjx+βjy)f(cjx+djy),for all x,y∈R, γi,αj,βj∈R, and ai,bi,cj,dj∈Q, and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered. This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a robust computer code based on the theoretical results obtained in Okeke (2023), which determines the polynomial solutions of the following functional equation, $$\begin{aligned} \textstyle \sum \limits _{i=1}^n \gamma _i F(a_i x + b_i y)=\textstyle \sum \limits _{j=1}^m(\alpha _j x + \beta _j y) f(c_j x + d_j y), \end{aligned}$$ ∑ i = 1 n γ i F ( a i x + b i y ) = ∑ j = 1 m ( α j x + β j y ) f ( c j x + d j y ) , for all $$x,y\in \mathbb {R}$$ x , y ∈ R , $$\gamma _i,\alpha _j,\beta _j \in \mathbb {R},$$ γ i , α j , β j ∈ R , and $$a_i,b_i,c_j,d_j \in \mathbb {Q},$$ a i , b i , c j , d j ∈ Q , and their special forms. The primary motivation for writing such a computer code is that solving even simple equations belonging to class (0.1) needs long and tiresome calculations. Therefore, one of the advantages of such a computer code is that it allows us to solve complicated problems quickly, easily, and efficiently. Additionally, the computer code will significantly improve the level of accuracy in calculations. Along with that, there is also the factor of speed. We point out that the computer code will operate with symbolic calculations provided by the programming language Python, which means that it does not contain any numerical or approximate methods, and it yields the exact solutions of the equations considered. |
| Author | Ogala, Wisdom I. Okeke, Chisom Prince Nadhomi, Timothy |
| Author_xml | – sequence: 1 givenname: Chisom Prince orcidid: 0000-0002-9034-408X surname: Okeke fullname: Okeke, Chisom Prince email: chisom.okeke@us.edu.pl organization: Institute of Mathematics, University of Silesia – sequence: 2 givenname: Wisdom I. surname: Ogala fullname: Ogala, Wisdom I. organization: Department of Mathematics, University of Central Florida – sequence: 3 givenname: Timothy surname: Nadhomi fullname: Nadhomi, Timothy organization: Institute of Mathematics, University of Silesia |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hK0LXT0cOxvSyhLwgki3ZXELIsuU5sK5HsRf6-clwodJHNDDO6Z7i6MzRpbasRuiewIADJowcAAhFQFoUOaUSv0JRwClGaAZug6fAeZRDzGzTzfhcmmiRsir42LfanJrd1pbCyzaHvZFfZFluDV4vtAm_2eq-x6Vs1rGWN9bE_KzzufdWWeHvqvoP-4GzpZNMMq1q2ZS9LfYuujay9vvvtc_T58vyxeovWm9f31dM6UmzJuihRaZExAyrTtIiLUGNJZQY0ZTyneVwkRFNu4qXJ6VLzQsVSK5qnkpEkoSZjc_Qw3g0mjr32ndjZ3gWzXjAgMed0CTyo0lGlnPXeaSNUNX62c7KqBQExZCnGLEXIUpyzFDSg9B96cFUj3ekyxEbIB3Fbavfn6gL1Az7AiP8 |
| CitedBy_id | crossref_primary_10_1007_s00010_025_01184_3 crossref_primary_10_1007_s10998_025_00632_6 |
| Cites_doi | 10.1016/j.camwa.2009.03.107 10.1007/s00010-003-2703-9 10.1007/s00010-021-00781-2 10.1142/3857 10.1142/1406 10.5486/PMD.2012.4970 10.1007/s00025-022-01664-x 10.1007/s00010-020-00736-z 10.2307/2370484 10.1007/s00010-007-2898-2 10.1007/BF01840007 10.1007/s00022-006-0035-3 10.2478/v10127-009-0045-2 10.1515/GMJ.2009.725 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s00010-023-01008-2 |
| DatabaseName | Springer Open Access Journals CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1420-8903 |
| EndPage | 502 |
| ExternalDocumentID | 10_1007_s00010_023_01008_2 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DARCH DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-7c8d93f0c9e2d5d9e25a2a902834b2b5d71e24f56fb26e4dc5aec2b8a31772f93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001087985500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-9054 |
| IngestDate | Fri Jul 25 19:33:50 EDT 2025 Tue Nov 18 22:12:02 EST 2025 Sat Nov 29 02:57:01 EST 2025 Fri Feb 21 02:43:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Polynomial functions Functional equations Secondary: 39A70 39-04 Sagemath Python Primary: 39B52 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-7c8d93f0c9e2d5d9e25a2a902834b2b5d71e24f56fb26e4dc5aec2b8a31772f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9034-408X |
| OpenAccessLink | https://link.springer.com/10.1007/s00010-023-01008-2 |
| PQID | 3015442604 |
| PQPubID | 36840 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3015442604 crossref_citationtrail_10_1007_s00010_023_01008_2 crossref_primary_10_1007_s00010_023_01008_2 springer_journals_10_1007_s00010_023_01008_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Basel |
| PublicationTitle | Aequationes mathematicae |
| PublicationTitleAbbrev | Aequat. Math |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Nadhomi, Okeke, Sablik, Szostok (CR14) 2021; 95 Fechner, Gselmann (CR7) 2012; 80 Wilson (CR20) 1918; 40 CR3 Sahoo (CR17) 2007; 2 Borus, Gilányi (CR6) 2020; 94 CR13 Koclȩga-Kulpa, Szostok (CR11) 2008; 1 CR12 Aczél, Kuczma (CR2) 1989; 38 CR10 Okeke (CR16) 2023; 78 Baják, Páles (CR5) 2010; 216 Aczél (CR1) 1985; 58 Baják, Páles (CR4) 2009; 58 Gilányi (CR8) 1998; 9 Székelyhidi (CR19) 1991 Okeke, Sablik (CR15) 2022; 77 Sahoo, Riedel (CR18) 1998 Házy (CR9) 2004; 67 1008_CR10 J Aczél (1008_CR1) 1985; 58 1008_CR3 W Fechner (1008_CR7) 2012; 80 S Baják (1008_CR5) 2010; 216 GG Borus (1008_CR6) 2020; 94 CP Okeke (1008_CR15) 2022; 77 L Székelyhidi (1008_CR19) 1991 S Baják (1008_CR4) 2009; 58 CP Okeke (1008_CR16) 2023; 78 PK Sahoo (1008_CR18) 1998 1008_CR12 1008_CR13 PK Sahoo (1008_CR17) 2007; 2 A Házy (1008_CR9) 2004; 67 J Aczél (1008_CR2) 1989; 38 B Koclȩga-Kulpa (1008_CR11) 2008; 1 A Gilányi (1008_CR8) 1998; 9 T Nadhomi (1008_CR14) 2021; 95 WH Wilson (1008_CR20) 1918; 40 |
| References_xml | – volume: 58 start-page: 334 issue: 2 year: 2009 end-page: 340 ident: CR4 article-title: Computer aided solution of the invariance equation for two-variable Gini means publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.03.107 – volume: 216 start-page: 3219 issue: 11 year: 2010 end-page: 3227 ident: CR5 article-title: Computer aided solution of the invariance equation for two-variable Stolarsky means publication-title: Comput. Math. Appl. – volume: 2 start-page: 67 year: 2007 end-page: 82 ident: CR17 article-title: On a functional equation associated with the trapezoidal rule publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) – volume: 58 start-page: 42 year: 1985 end-page: 45 ident: CR1 article-title: A mean value property of the derivative of quadratic polynomials—without mean values and derivatives publication-title: Math. Mag. – volume: 67 start-page: 47 issue: 1 year: 2004 end-page: 62 ident: CR9 article-title: Solving linear two variable functional equations with computer publication-title: Aequ. Math. doi: 10.1007/s00010-003-2703-9 – volume: 95 start-page: 1095 year: 2021 end-page: 1117 ident: CR14 article-title: On a new class of functional equations satisfied by polynomial functions publication-title: Aequ. Math. doi: 10.1007/s00010-021-00781-2 – year: 1998 ident: CR18 publication-title: Mean value theorems and functional equations doi: 10.1142/3857 – year: 1991 ident: CR19 publication-title: Convolution type functional equations on topological abelian groups doi: 10.1142/1406 – ident: CR3 – volume: 80 start-page: 143 issue: 1–2 year: 2012 end-page: 154 ident: CR7 article-title: General and alien solutions of a functional equation and of a functional inequality publication-title: Publ. Math. Debrecen doi: 10.5486/PMD.2012.4970 – volume: 77 start-page: 1 issue: 3 year: 2022 end-page: 17 ident: CR15 article-title: Functional equation characterizing polynomial functions and an algorithm publication-title: Results Math. doi: 10.1007/s00025-022-01664-x – ident: CR12 – ident: CR13 – ident: CR10 – volume: 94 start-page: 723 issue: 4 year: 2020 end-page: 736 ident: CR6 article-title: Computer assisted solution of systems of two variable linear functional equations publication-title: Aequ. Math. doi: 10.1007/s00010-020-00736-z – volume: 78 start-page: 1 issue: 96 year: 2023 end-page: 30 ident: CR16 article-title: Further results on a new class of functional equations satisfied by polynomial functions publication-title: Results Math. – volume: 40 start-page: 263 year: 1918 end-page: 282 ident: CR20 article-title: On a certain general class of functional equations publication-title: Am. J. Math. doi: 10.2307/2370484 – volume: 9 start-page: 57 issue: 1 year: 1998 end-page: 70 ident: CR8 article-title: Solving linear functional equations with computer publication-title: Math. Pannon. – volume: 1 start-page: 119 issue: 75 year: 2008 end-page: 129 ident: CR11 article-title: On some functional equations connected to Hadamard inequalities publication-title: Aequ. Math. doi: 10.1007/s00010-007-2898-2 – volume: 38 start-page: 216 year: 1989 end-page: 235 ident: CR2 article-title: On two mean value properties and functional equations associated with them publication-title: Aequ. Math. doi: 10.1007/BF01840007 – volume: 58 start-page: 334 issue: 2 year: 2009 ident: 1008_CR4 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.03.107 – volume: 9 start-page: 57 issue: 1 year: 1998 ident: 1008_CR8 publication-title: Math. Pannon. – ident: 1008_CR10 – ident: 1008_CR3 doi: 10.1007/s00022-006-0035-3 – ident: 1008_CR12 doi: 10.2478/v10127-009-0045-2 – volume: 38 start-page: 216 year: 1989 ident: 1008_CR2 publication-title: Aequ. Math. doi: 10.1007/BF01840007 – volume: 94 start-page: 723 issue: 4 year: 2020 ident: 1008_CR6 publication-title: Aequ. Math. doi: 10.1007/s00010-020-00736-z – volume: 58 start-page: 42 year: 1985 ident: 1008_CR1 publication-title: Math. Mag. – volume: 95 start-page: 1095 year: 2021 ident: 1008_CR14 publication-title: Aequ. Math. doi: 10.1007/s00010-021-00781-2 – volume: 80 start-page: 143 issue: 1–2 year: 2012 ident: 1008_CR7 publication-title: Publ. Math. Debrecen doi: 10.5486/PMD.2012.4970 – volume-title: Convolution type functional equations on topological abelian groups year: 1991 ident: 1008_CR19 doi: 10.1142/1406 – volume: 67 start-page: 47 issue: 1 year: 2004 ident: 1008_CR9 publication-title: Aequ. Math. doi: 10.1007/s00010-003-2703-9 – volume: 77 start-page: 1 issue: 3 year: 2022 ident: 1008_CR15 publication-title: Results Math. doi: 10.1007/s00025-022-01664-x – volume: 216 start-page: 3219 issue: 11 year: 2010 ident: 1008_CR5 publication-title: Comput. Math. Appl. – ident: 1008_CR13 doi: 10.1515/GMJ.2009.725 – volume: 2 start-page: 67 year: 2007 ident: 1008_CR17 publication-title: Bull. Inst. Math. Acad. Sin. (N.S.) – volume-title: Mean value theorems and functional equations year: 1998 ident: 1008_CR18 doi: 10.1142/3857 – volume: 78 start-page: 1 issue: 96 year: 2023 ident: 1008_CR16 publication-title: Results Math. – volume: 1 start-page: 119 issue: 75 year: 2008 ident: 1008_CR11 publication-title: Aequ. Math. doi: 10.1007/s00010-007-2898-2 – volume: 40 start-page: 263 year: 1918 ident: 1008_CR20 publication-title: Am. J. Math. doi: 10.2307/2370484 |
| SSID | ssj0012773 |
| Score | 2.3220928 |
| Snippet | This present paper is inspired by one of the questions posed by Okeke (Results Math 78(96):1-30, 2023, see Remark 2.10b). In particular, we aim to develop a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 483 |
| SubjectTerms | Analysis Combinatorics Exact solutions Functional equations Mathematics Mathematics and Statistics Numerical methods Polynomials Programming languages Python Robustness (mathematics) |
| Title | On symbolic computation of C.P. Okeke functional equations using Python programming language |
| URI | https://link.springer.com/article/10.1007/s00010-023-01008-2 https://www.proquest.com/docview/3015442604 |
| Volume | 98 |
| WOSCitedRecordID | wos001087985500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1420-8903 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012773 issn: 0001-9054 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQMMDAG1EoyAMbpEptp4lHVFExQFvxUgekyE-ESlNoClL_PbbjpAIBEiwZEseK7i738N19B8AxVpwljMjAgq8FhBsxNkGBTfJKy3JGdOgahS_jbjcZDGjfN4XlZbV7mZJ0mrpqdrPuSBgYG2PCX5u0N4p3yZi7xA5suL65r3IHKPZ55dAWH0TEt8p8v8dnczT3Mb-kRZ216az_7zs3wJr3LuFZIQ6bYEFlW2D1qoJmzbfBQy-D-WzELR4wFG6mg2MOHGvYbvQbsDdUQwWtvSuOCaF6LeDAc2iL5B9hf2bxBqCv7BrZW-Wp5w6465zfti8CP2IhELiFp0EsEkmxDgVVSEbSXCOGmEV0wYQjHsm4qRDRUUtz1FJEiogpgXjCjNsRI03xLljMxpnaA1BqSjWW1GxmgkYpKNNExUahhhTFEeE10CwpnQqPP27HYDynFXKyo1xqKJc6yqWoBk6qd14K9I1fV9dLBqb-T8xT7MasmaiN1MBpybD545932__b8gOwgoy_UxT11MHidPKmDsGyeJ8-5ZMjJ6Ef-AneBw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-igvrgtzidmgfftKNL0rV5lOGYuC90yh6E0uZDZK7TdQr7703StENRQV_60Kah3F3vI3f3OwBOsYijICLc0eBrDomVGKugQCd5uWZ5RKRrGoVbfqcTDAa0Z5vC0rzaPU9JGk1dNLtpd8R1lI1R4a9O2ivFu0SUxdKI-Te390XuAPk2r-zq4gOP2FaZ7_f4bI7mPuaXtKixNo2N_33nJli33iW8yMRhCyyIZBustQto1nQHPHQTmM5GscYDhszMdDDMgWMJ65VeBXaHYiigtnfZMSEUrxkceAp1kfwj7M003gC0lV0jfSs_9dwFd43Lfr3p2BELDsM1PHV8FnCKpcuoQNzj6upFKNKILpjEKPa4XxWISK8mY1QThDMvEgzFQaTcDh9JivfAYjJOxD6AXFIqMadqMxU0ckYjSYSvFKpLke-RuASqOaVDZvHH9RiM57BATjaUCxXlQkO5EJXAWfHOS4a-8evqcs7A0P6JaYjNmDUVtZESOM8ZNn_8824Hf1t-Alaa_XYrbF11rg_BKlK-T1bgUwaL08mbOALL7H36lE6OjbR-AGkP4Os |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QQAgOvBGDATlwg25dkq7NEQ0mEGObxEM7IFVtHgiNdWMtSPv3JOljgAAJcemhTa3KdmM7tj8DcIRFGHgB4ZYGX7NIqNRYBQU6ycu1yAMibdMo3HY7Ha_fp70PXfym2j1PSaY9DRqlKUpqYy5rReObdk1sS9kbFQrrBL7ahOeJLqTX8frNfZFHQG6WY7Z1IYJDsraZ72l8Nk0zf_NLitRYntbq_795DaxkXic8TdVkHcyJaAMsXxeQrfEmeOhGMJ4OQ40TDJmZ9WCEBkcSNqu9KuwOxEBAbQfT40MoXlKY8Bjq4vlH2JtqHAKYVXwN9a38NHQL3LXOb5sXVjZ6wWK4gRPLZR6nWNqMCsQdrq5OgAKN9IJJiEKHu3WBiHQaMkQNQThzAsFQ6AXKHXGRpHgblKJRJHYA5JJSiTlVxFQwyRkNJBGu2mhtilyHhGVQz7nuswyXXI_HePYLRGXDOV9xzjec81EZHBfvjFNUjl9XV3Jh-tkfGvvYjF9T0Rwpg5NceLPHP1Pb_dvyQ7DYO2v57cvO1R5YQsolSut-KqCUTF7FPlhgb8lTPDkwivsOBtfpzw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+symbolic+computation+of+C.P.+Okeke+functional+equations+using+Python+programming+language&rft.jtitle=Aequationes+mathematicae&rft.au=Okeke%2C+Chisom+Prince&rft.au=Ogala%2C+Wisdom+I.&rft.au=Nadhomi%2C+Timothy&rft.date=2024-04-01&rft.issn=0001-9054&rft.eissn=1420-8903&rft.volume=98&rft.issue=2&rft.spage=483&rft.epage=502&rft_id=info:doi/10.1007%2Fs00010-023-01008-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00010_023_01008_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-9054&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-9054&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-9054&client=summon |