First three years of the international verification of neural networks competition (VNN-COMP)

This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on software tools for technology transfer Jg. 25; H. 3; S. 329 - 339
Hauptverfasser: Brix, Christopher, Müller, Mark Niklas, Bak, Stanley, Johnson, Taylor T., Liu, Changliu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Schlagworte:
ISSN:1433-2779, 1433-2787
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes, rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments.
AbstractList This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition (VNN-COMP), held in 2020, 2021, and 2022. In the VNN-COMP, participants submit software tools that analyze whether given neural networks satisfy specifications describing their input-output behavior. These neural networks and specifications cover a variety of problem classes and tasks, corresponding to safety and robustness properties in image classification, neural control, reinforcement learning, and autonomous systems. We summarize the key processes, rules, and results, present trends observed over the last three years, and provide an outlook into possible future developments.
Author Johnson, Taylor T.
Müller, Mark Niklas
Bak, Stanley
Liu, Changliu
Brix, Christopher
Author_xml – sequence: 1
  givenname: Christopher
  surname: Brix
  fullname: Brix, Christopher
  email: brix@cs.rwth-aachen.de
  organization: RWTH Aachen University
– sequence: 2
  givenname: Mark Niklas
  surname: Müller
  fullname: Müller, Mark Niklas
  organization: ETH Zurich
– sequence: 3
  givenname: Stanley
  surname: Bak
  fullname: Bak, Stanley
  organization: Stony Brook University
– sequence: 4
  givenname: Taylor T.
  surname: Johnson
  fullname: Johnson, Taylor T.
  organization: Vanderbilt University
– sequence: 5
  givenname: Changliu
  surname: Liu
  fullname: Liu, Changliu
  organization: Carnegie Mellon University
BookMark eNp9kEFPAyEQhYnRxLb6Bzxt4kUPKCy7y-7RNFZNautBvRlC6aDU7VKBavrvpbtGEw-9MLyZ95Hh9dF-YxtA6ISSC0oIv_TxJBUmKcNREoazPdSjGWM45SXf_73z6hD1vV8QQnnBqx56GRnnQxLeHECyAel8YnWUkJgmgGtkMLaRdfIJzmijWrl1NLB2sd1A-LLu3SfKLlcQTDs-e55M8HB6_3B-hA60rD0c_9QBehpdPw5v8Xh6cze8GmPFChYwlwUvoZrNeJlnpU5VqWVG5oqC1kWVz3OWMqlyrossjyPFpE5znkkKlFLCNBug0-7dlbMfa_BBLOw6Ll97kZZFQauSsyq6ys6lnPXegRbKhPZHwUlTC0rENkzRhSlimKINU2QRTf-hK2eW0m12Q6yDfDQ3r-D-ttpBfQOz-Yke
CitedBy_id crossref_primary_10_1016_j_scico_2025_103280
crossref_primary_10_1016_j_solener_2024_113219
crossref_primary_10_3390_math12121884
crossref_primary_10_1016_j_ijar_2024_109206
crossref_primary_10_3389_fcomp_2025_1557977
crossref_primary_10_1515_auto_2024_0132
crossref_primary_10_1017_S0956792525000099
crossref_primary_10_1145_3720417
crossref_primary_10_1007_s10009_023_00715_0
crossref_primary_10_1109_TSE_2024_3385378
crossref_primary_10_1016_j_neucom_2024_127936
Cites_doi 10.1007/978-3-030-25540-4_26
10.1145/3290354
10.1109/TNNLS.2018.2808470
10.29007/wfgr
10.1007/978-3-319-63387-9_5
10.1007/978-3-319-68167-2_19
10.48550/arXiv.2104.06718
10.1007/978-3-319-63387-9_1
10.1145/3498704
10.1109/CVPR.2016.90
10.1109/SP.2018.00058
10.1109/DASC.2016.7778091
10.1109/ICSE43902.2021.00036
10.48550/ARXIV.2109.00498
10.24963/ijcai.2021/351
10.48550/ARXIV.1604.07316
10.24963/ijcai.2021/364
10.48550/arXiv.2206.14772
10.1109/FormaliSE.2019.00012
10.29007/rgv8
10.1109/ICNN.1988.23914
10.1007/978-3-030-81685-8_6
10.48550/arXiv.2208.05740
10.48550/arXiv.2101.05844
10.48550/arXiv.2210.04871
10.1613/jair.2490
10.48550/arXiv.2212.10376
10.1561/2400000035
10.1145/3365365.3382213
10.1007/978-3-031-13185-1_7
10.1109/ICRA48506.2021.9561956
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M2O
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10009-023-00703-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-2787
EndPage 339
ExternalDocumentID 10_1007_s10009_023_00703_4
GrantInformation_xml – fundername: RWTH Aachen University (3131)
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8AO
8FE
8FG
8FW
8G5
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
L6V
LAS
LLZTM
M0N
M2O
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9O
PADUT
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-7a678e9bb78548f2c8fa40dc1eff695d5323ac57f6458fac3af2574a1e11103f3
IEDL.DBID K7-
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000998184400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-2779
IngestDate Wed Nov 05 01:53:49 EST 2025
Tue Nov 18 22:39:57 EST 2025
Sat Nov 29 03:07:49 EST 2025
Fri Feb 21 02:42:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Adversarial robustness
Neural networks
Certified robustness
Machine learning
Formal methods
Formal verification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7a678e9bb78548f2c8fa40dc1eff695d5323ac57f6458fac3af2574a1e11103f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10009-023-00703-4
PQID 2866198739
PQPubID 46652
PageCount 11
ParticipantIDs proquest_journals_2866198739
crossref_citationtrail_10_1007_s10009_023_00703_4
crossref_primary_10_1007_s10009_023_00703_4
springer_journals_10_1007_s10009_023_00703_4
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal on software tools for technology transfer
PublicationTitleAbbrev Int J Softw Tools Technol Transfer
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZhangH.ChenH.XiaoC.GowalS.StanforthR.LiB.BoningD.S.HsiehC.Towards stable and efficient training of verifiably robust neural networks8th International Conference on Learning Representations, ICLR 20202020https://openreview.net/forum?id=Skxuk1rFwB
De Palma, A., Bunel, R., Desmaison, Alban., Dvijotham, K., Kohli, P., Torr, P.H.S., Kumar, M.P.: Improved branch and bound for neural network verification via lagrangian decomposition. CoRR (2021). https://doi.org/10.48550/arXiv.2104.06718
Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks using the geometry of linear regions. arXiv preprint (2020). arXiv:2006.10864
Brix, C., Noll, T.: Debona: decoupled boundary network analysis for tighter bounds and faster adversarial robustness proofs. CoRR (2020). arXiv:2006.09040 [abs]
SinghG.GehrT.MirmanM.PüschelM.VechevM.BengioS.WallachH.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.Fast and effective robustness certificationAdvances in Neural Information Processing Systems2018Red HookCurran Associates1080210813http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
FerrariC.MüllerM.N.JovanovicN.VechevM.T.Complete verification via multi-neuron relaxation guided branch-and-bound10th International Conference on Learning Representations, ICLR 2022, Virtual Event2022https://openreview.net/forum?id=l_amHf1oaK
GehrT.MirmanM.Drachsler-CohenD.TsankovP.ChaudhuriS.VechevM.T.AI2: safety and robustness certification of neural networks with abstract interpretation2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings2018Los AlamitosIEEE Comput. Soc.31810.1109/SP.2018.00058
De Palma, A., Behl, H.S., Bunel, R., Torr, P.H.S., Kumar, M.P.: Scaling the convex barrier with sparse dual algorithms. CoRR (2021). https://doi.org/10.48550/arXiv.2101.05844
LuJ.KumarM.P.Neural network branching for neural network verificationInternational Conference on Learning Representations2020
TranH.D.BakS.XiangW.JohnsonT.T.Verification of deep convolutional neural networks using imagestars32nd International Conference on Computer-Aided Verification (CAV)2020BerlinSpringer
ZhangH.WengT.W.ChenP.Y.HsiehC.J.DanielL.Efficient neural network robustness certification with general activation functionsAdv. Neural Inf. Process. Syst.20183149394948https://arxiv.org/pdf/1811.00866.pdf
BunelR.De PalmaA.DesmaisonA.DvijothamK.KohliP.TorrP.H.KumarM.P.Lagrangian decomposition for neural network verificationConference on Uncertainty in Artificial Intelligence2020
HeK.ZhangX.RenS.SunJ.Deep residual learning for image recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)201677077810.1109/CVPR.2016.90
Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results (2021). https://doi.org/10.48550/ARXIV.2109.00498
MirmanM.GehrT.VechevM.T.DyJ.G.KrauseA.Differentiable abstract interpretation for provably robust neural networksProceedings of the 35th International Conference on Machine Learning, ICML 2018201835753583http://proceedings.mlr.press/v80/mirman18b.html
ShriverD.ElbaumS.DwyerM.B.SilvaA.LeinoK.R.M.DNNV: a framework for deep neural network verificationComputer Aided Verification2021ChamSpringer13715010.1007/978-3-030-81685-8_6
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars (2016). https://doi.org/10.48550/ARXIV.1604.07316
Vincent, J.A., Schwager, M.: Reachable polyhedral marching (RPM): a safety verification algorithm for robotic systems with deep neural network components (2021)
KatzG.BarrettC.DillD.L.JulianK.KochenderferM.J.MajumdarR.KunčakV.Reluplex: An efficient SMT solver for verifying deep neural networksComputer Aided Verification2017ChamSpringer9711710.1007/978-3-319-63387-9_5
SzegedyC.ZarembaW.SutskeverI.BrunaJ.ErhanD.GoodfellowI.J.FergusR.BengioY.LeCunY.Intriguing properties of neural networks2nd International Conference on Learning Representations, ICLR 2014, Conference Track Proceedings2014http://arxiv.org/abs/1312.6199
De Palma, A., Bunel, R., Dvijotham, K., Kumar, M.P., Stanforth, R.: IBP regularization for verified adversarial robustness via branch-and-bound. (2022). https://doi.org/10.48550/arXiv.2206.14772
Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima: precise and general neural network certification via multi-neuron convex relaxations. arXiv preprint (2021). arXiv:2103.03638
HenriksenP.LomuscioA.Deepsplit: an efficient splitting method for neural network verification via indirect effect analysisProceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21)202110.24963/ijcai.2021/351
Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, Z.: Beta-CROWN: efficient bound propagation with per-neuron split constraints for complete and incomplete neural network verification. arXiv preprint (2021). arXiv:2103.06624
ZhouC.Computation of optical flow using a neural networkIEEE 1988 International Conference on Neural Networks1988717810.1109/ICNN.1988.23914
Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international verification of neural networks competition (VNN-COMP 2022): summary and results (2022). https://doi.org/10.48550/arXiv.2212.10376
HuangX.KwiatkowskaM.WangS.WuM.MajumdarR.KunčakV.Safety verification of deep neural networksComputer Aided Verification2017ChamSpringer32910.1007/978-3-319-63387-9_1
KatzG.HuangD.A.IbelingD.JulianK.LazarusC.LimR.ShahP.ThakoorS.WuH.ZeljićA.The Marabou framework for verification and analysis of deep neural networksInternational Conference on Computer Aided Verification2019BerlinSpringer44345210.1007/978-3-030-25540-4_26
SinghG.GehrT.PüschelM.VechevM.Boosting robustness certification of neural networksProc. International Conference on Learning Representations (ICLR)2019
MadryA.MakelovA.SchmidtL.TsiprasD.VladuA.Towards deep learning models resistant to adversarial attacks6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings2018https://openreview.net/forum?id=rJzIBfZAb
De PalmaA.BehlH.S.BunelR.TorrP.H.S.KumarM.P.Scaling the convex barrier with active sets9th International Conference on Learning Representations, ICLR 2021, Conference Track Proceedings2021https://openreview.net/forum?id=uQfOy7LrlTR
BunelR.LuJ.TurkaslanI.KohliP.TorrP.KumarM.P.Branch and bound for piecewise linear neural network verificationJ. Mach. Learn. Res.2020211574161240737751498.68153
FischerM.SprecherC.DimitrovD.I.SinghG.VechevM.T.ShohamS.VizelY.Shared certificates for neural network verificationComputer Aided Verification – 34th International Conference, CAV 2022, Proceedings, Part I2022BerlinSpringer12714810.1007/978-3-031-13185-1_7
ShiZ.WangY.ZhangH.YiJ.HsiehC.RanzatoM.BeygelzimerA.DauphinY.N.LiangP.VaughanJ.W.Fast certified robust training with short warmupAdvances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual20211833518349https://proceedings.neurips.cc/paper/2021/hash/988f9153ac4fd966ea302dd9ab9bae15-Abstract.html
VNN-COMP2020 report. https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9. Accessed: 2022-08-28
SinghG.GanvirR.PüschelM.VechevM.Beyond the single neuron convex barrier for neural network certificationAdvances in Neural Information Processing Systems2019Red HookCurran Associates1509815109
IsacO.BarrettC.ZhangM.KatzG.Neural network verification with proof production22nd International Conference on Formal Methods in Computer-Aided Design (FMCAD)2022
Bai, J., Lu, F., Zhang, K., et al.: Onnx: open neural network exchange (2019). https://github.com/onnx/onnx
BunelR.TurkaslanI.TorrP.H.S.KohliP.MudigondaP.K.BengioS.WallachH.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.A unified view of piecewise linear neural network verificationAdvances in Neural Information Processing Systems2018Red HookCurran Associates47954804https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
TjengV.XiaoK.Y.TedrakeR.Evaluating robustness of neural networks with mixed integer programmingICLR2019
ZhangH.WengT.ChenP.HsiehC.DanielL.BengioS.WallachH.M.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.Efficient neural network robustness certification with general activation functionsAdvances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018201849444953https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
TranH.D.MusauP.LopezD.M.YangX.NguyenL.V.XiangW.JohnsonT.T.Parallelizable reachability analysis algorithms for feed-forward neural networksProceedings of the 7th International Workshop on Formal Methods in Software Engineering (FormaliSE’19), FormaliSE ’192019PiscatawayIEEE Press314010.1109/FormaliSE.2019.00012
BotoevaE.KouvarosP.KronqvistJ.LomuscioA.MisenerR.Efficient verification of neural networks via dependency analysisProceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI20)2020Menlo ParkAAAI Press
LopezD.M.MusauP.TranH.D.DuttaS.CarpenterT.J.IvanovR.JohnsonT.T.FrehseG.AlthoffM.Arch-comp19 category report: artificial intelligence and neural network control systems (ainncs) for continuous and hybrid systems plantsARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems201910311910.29007/rgv8
LopezD.M.AlthoffM.BenetL.ChenX.FanJ.ForetsM.HuangC.JohnsonT.T.LadnerT.LiW.SchillingC.ZhuQ.FrehseG.AlthoffM.SchoitschE.GuiochetJ.Arch-comp22 category report: artificial intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plantsProceedings of 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22)202214218410.29007/wfgr
TranH.D.MusauP.LopezD.M.YangX.NguyenL.V.XiangW.JohnsonT.T.Star-based reachability analysis for deep neural networks23rd Inter
H.D. Tran (703_CR55) 2020
M. Fischer (703_CR16) 2022
C. Szegedy (703_CR52) 2014
703_CR2
703_CR3
703_CR1
G. Katz (703_CR25) 2017
C. Liu (703_CR30) 2021; 4
E. Botoeva (703_CR8) 2020
R. Bunel (703_CR12) 2018
D. Shriver (703_CR46) 2021
703_CR19
X. Huang (703_CR23) 2017
703_CR59
A. De Palma (703_CR40) 2021
P. Henriksen (703_CR22) 2021
703_CR53
R. Bunel (703_CR10) 2020
A. Madry (703_CR34) 2018
G. Singh (703_CR48) 2019
F. Serre (703_CR44) 2021
K. Xu (703_CR62) 2020
O. Isac (703_CR39) 2022
P. Henriksen (703_CR21) 2020
H.D. Tran (703_CR58) 2020
H. Zhang (703_CR68) 2018; 31
703_CR7
703_CR4
703_CR5
J. Ferlez (703_CR14) 2020
P. Kouvaros (703_CR28) 2021
703_CR41
703_CR43
703_CR9
G. Katz (703_CR26) 2019
703_CR42
J. Lu (703_CR33) 2020
W. Xiang (703_CR61) 2018; 29
M. Balunovic (703_CR6) 2020
H.D. Tran (703_CR56) 2019
I.J. Goodfellow (703_CR18) 2015
H. Zhang (703_CR65) 2020
K.D. Julian (703_CR24) 2016
D.M. Lopez (703_CR32) 2019
K. Xu (703_CR63) 2021
M. Mirman (703_CR35) 2018
L. Xu (703_CR64) 2008; 32
C. Zhou (703_CR69) 1988
703_CR38
703_CR37
D. Shriver (703_CR47) 2021
V. Tjeng (703_CR54) 2019
703_CR36
R. Bunel (703_CR11) 2020; 21
G. Singh (703_CR51) 2019
H.D. Tran (703_CR57) 2019
G. Singh (703_CR50) 2019; 3
703_CR60
R. Ehlers (703_CR13) 2017
C. Ferrari (703_CR15) 2022
703_CR27
C. Liu (703_CR29) 2019
K. He (703_CR20) 2016
G. Singh (703_CR49) 2018
703_CR66
Z. Shi (703_CR45) 2021
H. Zhang (703_CR67) 2018
T. Gehr (703_CR17) 2018
D.M. Lopez (703_CR31) 2022
References_xml – reference: BunelR.LuJ.TurkaslanI.KohliP.TorrP.KumarM.P.Branch and bound for piecewise linear neural network verificationJ. Mach. Learn. Res.2020211574161240737751498.68153
– reference: KouvarosP.LomuscioA.Towards scalable complete verification of ReLU neural networks via dependency-based branchingProceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21)202110.24963/ijcai.2021/364
– reference: BunelR.De PalmaA.DesmaisonA.DvijothamK.KohliP.TorrP.H.KumarM.P.Lagrangian decomposition for neural network verificationConference on Uncertainty in Artificial Intelligence2020
– reference: Tacchella, A., Pulina, L., Guidotti, D., Demarchi, S.: The verification of neural networks library (VNN-LIB) (2019). https://www.vnnlib.org
– reference: VNN-COMP2020 report. https://www.overleaf.com/project/5f0c85e8d15dc10001749fa9. Accessed: 2022-08-28
– reference: TranH.D.MusauP.LopezD.M.YangX.NguyenL.V.XiangW.JohnsonT.T.Parallelizable reachability analysis algorithms for feed-forward neural networksProceedings of the 7th International Workshop on Formal Methods in Software Engineering (FormaliSE’19), FormaliSE ’192019PiscatawayIEEE Press314010.1109/FormaliSE.2019.00012
– reference: Brix, C., Noll, T.: Debona: decoupled boundary network analysis for tighter bounds and faster adversarial robustness proofs. CoRR (2020). arXiv:2006.09040 [abs]
– reference: EhlersR.Formal verification of piece-wise linear feed-forward neural networksInternational Symposium on Automated Technology for Verification and Analysis201726928610.1007/978-3-319-68167-2_19
– reference: HenriksenP.LomuscioA.Efficient neural network verification via adaptive refinement and adversarial searchProceedings of the 24th European Conference on Artificial Intelligence (ECAI20)2020
– reference: HeK.ZhangX.RenS.SunJ.Deep residual learning for image recognition2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)201677077810.1109/CVPR.2016.90
– reference: ZhangH.WengT.ChenP.HsiehC.DanielL.BengioS.WallachH.M.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.Efficient neural network robustness certification with general activation functionsAdvances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018201849444953https://proceedings.neurips.cc/paper/2018/hash/d04863f100d59b3eb688a11f95b0ae60-Abstract.html
– reference: BalunovicM.VechevM.T.Adversarial training and provable defenses: bridging the gap8th International Conference on Learning Representations, ICLR 20202020https://openreview.net/forum?id=SJxSDxrKDr
– reference: GehrT.MirmanM.Drachsler-CohenD.TsankovP.ChaudhuriS.VechevM.T.AI2: safety and robustness certification of neural networks with abstract interpretation2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings2018Los AlamitosIEEE Comput. Soc.31810.1109/SP.2018.00058
– reference: Bak, S., Liu, C., Johnson, T.: The second international verification of neural networks competition (VNN-COMP 2021): summary and results (2021). https://doi.org/10.48550/ARXIV.2109.00498
– reference: GoodfellowI.J.ShlensJ.SzegedyC.BengioY.LeCunY.Explaining and harnessing adversarial examples3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings2015http://arxiv.org/abs/1412.6572
– reference: Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international verification of neural networks competition (VNN-COMP 2022): summary and results (2022). https://doi.org/10.48550/arXiv.2212.10376
– reference: TranH.D.BakS.XiangW.JohnsonT.T.Verification of deep convolutional neural networks using imagestars32nd International Conference on Computer-Aided Verification (CAV)2020BerlinSpringer
– reference: Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arandjelovic, R., Mann, T.A., Kohli, P.: On the effectiveness of interval bound propagation for training verifiably robust models. CoRR (2018). arXiv:1810.12715 [abs]
– reference: XuK.ShiZ.ZhangH.WangY.ChangK.W.HuangM.KailkhuraB.LinX.HsiehC.J.Automatic perturbation analysis for scalable certified robustness and beyondAdvances in Neural Information Processing Systems2020
– reference: SerreF.MüllerC.SinghG.PüschelM.VechevM.Scaling polyhedral neural network verification on GPUsProc. Machine Learning and Systems (MLSys)2021
– reference: BunelR.TurkaslanI.TorrP.H.S.KohliP.MudigondaP.K.BengioS.WallachH.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.A unified view of piecewise linear neural network verificationAdvances in Neural Information Processing Systems2018Red HookCurran Associates47954804https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda3e9b2-Abstract.html
– reference: De Palma, A., Bunel, R., Desmaison, Alban., Dvijotham, K., Kohli, P., Torr, P.H.S., Kumar, M.P.: Improved branch and bound for neural network verification via lagrangian decomposition. CoRR (2021). https://doi.org/10.48550/arXiv.2104.06718
– reference: FerrariC.MüllerM.N.JovanovicN.VechevM.T.Complete verification via multi-neuron relaxation guided branch-and-bound10th International Conference on Learning Representations, ICLR 2022, Virtual Event2022https://openreview.net/forum?id=l_amHf1oaK
– reference: Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars (2016). https://doi.org/10.48550/ARXIV.1604.07316
– reference: IsacO.BarrettC.ZhangM.KatzG.Neural network verification with proof production22nd International Conference on Formal Methods in Computer-Aided Design (FMCAD)2022
– reference: Simple Adversarial Generator. https://github.com/stanleybak/simple_adversarial_generator. Accessed: 2022-09-13
– reference: De Palma, A., Behl, H.S., Bunel, R., Torr, P.H.S., Kumar, M.P.: Scaling the convex barrier with sparse dual algorithms. CoRR (2021). https://doi.org/10.48550/arXiv.2101.05844
– reference: KatzG.BarrettC.DillD.L.JulianK.KochenderferM.J.MajumdarR.KunčakV.Reluplex: An efficient SMT solver for verifying deep neural networksComputer Aided Verification2017ChamSpringer9711710.1007/978-3-319-63387-9_5
– reference: SinghG.GehrT.MirmanM.PüschelM.VechevM.BengioS.WallachH.LarochelleH.GraumanK.Cesa-BianchiN.GarnettR.Fast and effective robustness certificationAdvances in Neural Information Processing Systems2018Red HookCurran Associates1080210813http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf
– reference: Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, Z.: Beta-CROWN: efficient bound propagation with per-neuron split constraints for complete and incomplete neural network verification. arXiv preprint (2021). arXiv:2103.06624
– reference: FerlezJ.ShoukryY.AReN: assured ReLU NN architecture for model predictive control of LTI systemsProceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’202020New YorkACM10.1145/3365365.338221307300847
– reference: MirmanM.GehrT.VechevM.T.DyJ.G.KrauseA.Differentiable abstract interpretation for provably robust neural networksProceedings of the 35th International Conference on Machine Learning, ICML 2018201835753583http://proceedings.mlr.press/v80/mirman18b.html
– reference: SinghG.GehrT.PüschelM.VechevM.Boosting robustness certification of neural networksProc. International Conference on Learning Representations (ICLR)2019
– reference: HenriksenP.LomuscioA.Deepsplit: an efficient splitting method for neural network verification via indirect effect analysisProceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21)202110.24963/ijcai.2021/351
– reference: MadryA.MakelovA.SchmidtL.TsiprasD.VladuA.Towards deep learning models resistant to adversarial attacks6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings2018https://openreview.net/forum?id=rJzIBfZAb
– reference: FischerM.SprecherC.DimitrovD.I.SinghG.VechevM.T.ShohamS.VizelY.Shared certificates for neural network verificationComputer Aided Verification – 34th International Conference, CAV 2022, Proceedings, Part I2022BerlinSpringer12714810.1007/978-3-031-13185-1_7
– reference: ZhangH.ChenH.XiaoC.GowalS.StanforthR.LiB.BoningD.S.HsiehC.Towards stable and efficient training of verifiably robust neural networks8th International Conference on Learning Representations, ICLR 20202020https://openreview.net/forum?id=Skxuk1rFwB
– reference: Bak, S.: Execution-guided overapproximation (ego) for improving scalability of neural network verification (2020)
– reference: LopezD.M.MusauP.TranH.D.DuttaS.CarpenterT.J.IvanovR.JohnsonT.T.FrehseG.AlthoffM.Arch-comp19 category report: artificial intelligence and neural network control systems (ainncs) for continuous and hybrid systems plantsARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems201910311910.29007/rgv8
– reference: Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh, C., Kolter, J.Z.: General cutting planes for bound-propagation-based neural network verification. CoRR (2022). https://doi.org/10.48550/arXiv.2208.05740
– reference: TjengV.XiaoK.Y.TedrakeR.Evaluating robustness of neural networks with mixed integer programmingICLR2019
– reference: ShiZ.WangY.ZhangH.YiJ.HsiehC.RanzatoM.BeygelzimerA.DauphinY.N.LiangP.VaughanJ.W.Fast certified robust training with short warmupAdvances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual20211833518349https://proceedings.neurips.cc/paper/2021/hash/988f9153ac4fd966ea302dd9ab9bae15-Abstract.html
– reference: TranH.D.YangX.LopezD.M.MusauP.NguyenL.V.XiangW.BakS.JohnsonT.T.NNV: the neural network verification tool for deep neural networks and learning-enabled cyber-physical systems32nd International Conference on Computer-Aided Verification (CAV)2020
– reference: SinghG.GehrT.PüschelM.VechevM.An abstract domain for certifying neural networksProc. ACM Program. Lang.20193POPL41:141:3010.1145/3290354
– reference: LopezD.M.AlthoffM.BenetL.ChenX.FanJ.ForetsM.HuangC.JohnsonT.T.LadnerT.LiW.SchillingC.ZhuQ.FrehseG.AlthoffM.SchoitschE.GuiochetJ.Arch-comp22 category report: artificial intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plantsProceedings of 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22)202214218410.29007/wfgr
– reference: ZhangH.WengT.W.ChenP.Y.HsiehC.J.DanielL.Efficient neural network robustness certification with general activation functionsAdv. Neural Inf. Process. Syst.20183149394948https://arxiv.org/pdf/1811.00866.pdf
– reference: XuL.HutterF.HoosH.H.Leyton-BrownK.SATzilla: portfolio-based algorithm selection for SATJ. Artif. Intell. Res.200832156560610.1613/jair.24901182.68272
– reference: SinghG.GanvirR.PüschelM.VechevM.Beyond the single neuron convex barrier for neural network certificationAdvances in Neural Information Processing Systems2019Red HookCurran Associates1509815109
– reference: HuangX.KwiatkowskaM.WangS.WuM.MajumdarR.KunčakV.Safety verification of deep neural networksComputer Aided Verification2017ChamSpringer32910.1007/978-3-319-63387-9_1
– reference: KatzG.HuangD.A.IbelingD.JulianK.LazarusC.LimR.ShahP.ThakoorS.WuH.ZeljićA.The Marabou framework for verification and analysis of deep neural networksInternational Conference on Computer Aided Verification2019BerlinSpringer44345210.1007/978-3-030-25540-4_26
– reference: TranH.D.MusauP.LopezD.M.YangX.NguyenL.V.XiangW.JohnsonT.T.Star-based reachability analysis for deep neural networks23rd International Symposium on Formal Methods (FM’19)2019BerlinSpringer
– reference: XuK.ZhangH.WangS.WangY.JanaS.LinX.HsiehC.J.Fast and complete: enabling complete neural network verification with rapid and massively parallel incomplete verifiersInternational Conference on Learning Representations2021https://openreview.net/forum?id=nVZtXBI6LNn
– reference: Bai, J., Lu, F., Zhang, K., et al.: Onnx: open neural network exchange (2019). https://github.com/onnx/onnx
– reference: JulianK.D.LopezJ.BrushJ.S.OwenM.P.KochenderferM.J.Policy compression for aircraft collision avoidance systems2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)201611010.1109/DASC.2016.7778091
– reference: ShriverD.ElbaumS.G.DwyerM.B.Reducing DNN properties to enable falsification with adversarial attacks43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021202127528710.1109/ICSE43902.2021.00036IEEE
– reference: LiuC.ArnonT.LazarusC.StrongC.BarrettC.KochenderferM.J.Algorithms for verifying deep neural networksFound. Trends Optim.202143–424440410.1561/2400000035
– reference: LuJ.KumarM.P.Neural network branching for neural network verificationInternational Conference on Learning Representations2020
– reference: SzegedyC.ZarembaW.SutskeverI.BrunaJ.ErhanD.GoodfellowI.J.FergusR.BengioY.LeCunY.Intriguing properties of neural networks2nd International Conference on Learning Representations, ICLR 2014, Conference Track Proceedings2014http://arxiv.org/abs/1312.6199
– reference: XiangW.TranH.JohnsonT.T.Output reachable set estimation and verification for multilayer neural networksIEEE Trans. Neural Netw. Learn. Syst.2018291157775783386788510.1109/TNNLS.2018.2808470
– reference: ZhouC.Computation of optical flow using a neural networkIEEE 1988 International Conference on Neural Networks1988717810.1109/ICNN.1988.23914
– reference: De PalmaA.BehlH.S.BunelR.TorrP.H.S.KumarM.P.Scaling the convex barrier with active sets9th International Conference on Learning Representations, ICLR 2021, Conference Track Proceedings2021https://openreview.net/forum?id=uQfOy7LrlTR
– reference: Vincent, J.A., Schwager, M.: Reachable polyhedral marching (RPM): a safety verification algorithm for robotic systems with deep neural network components (2021)
– reference: LiuC.ArnonT.LazarusC.KochenderferM.J.Neuralverification.jl: algorithms for verifying deep neural networksICLR 2019 Debugging Machine Learning Models Workshop2019https://debug-ml-iclr2019.github.io/cameraready/DebugML-19_paper_22.pdf
– reference: BotoevaE.KouvarosP.KronqvistJ.LomuscioA.MisenerR.Efficient verification of neural networks via dependency analysisProceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI20)2020Menlo ParkAAAI Press
– reference: De Palma, A., Bunel, R., Dvijotham, K., Kumar, M.P., Stanforth, R.: IBP regularization for verified adversarial robustness via branch-and-bound. (2022). https://doi.org/10.48550/arXiv.2206.14772
– reference: Müller, M.N., Eckert, F., Fischer, M., Vechev, M.T.: Certified training: small boxes are all you need. CoRR (2022). https://doi.org/10.48550/arXiv.2210.04871
– reference: Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima: precise and general neural network certification via multi-neuron convex relaxations. arXiv preprint (2021). arXiv:2103.03638
– reference: Khedr, H., Ferlez, J., Shoukry, Y.: Effective formal verification of neural networks using the geometry of linear regions. arXiv preprint (2020). arXiv:2006.10864
– reference: ShriverD.ElbaumS.DwyerM.B.SilvaA.LeinoK.R.M.DNNV: a framework for deep neural network verificationComputer Aided Verification2021ChamSpringer13715010.1007/978-3-030-81685-8_6
– start-page: 443
  volume-title: International Conference on Computer Aided Verification
  year: 2019
  ident: 703_CR26
  doi: 10.1007/978-3-030-25540-4_26
– volume: 3
  start-page: 41:1
  issue: POPL
  year: 2019
  ident: 703_CR50
  publication-title: Proc. ACM Program. Lang.
  doi: 10.1145/3290354
– volume: 29
  start-page: 5777
  issue: 11
  year: 2018
  ident: 703_CR61
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2808470
– start-page: 18335
  volume-title: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, Virtual
  year: 2021
  ident: 703_CR45
– volume-title: 2nd International Conference on Learning Representations, ICLR 2014, Conference Track Proceedings
  year: 2014
  ident: 703_CR52
– start-page: 142
  volume-title: Proceedings of 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22)
  year: 2022
  ident: 703_CR31
  doi: 10.29007/wfgr
– volume-title: 8th International Conference on Learning Representations, ICLR 2020
  year: 2020
  ident: 703_CR6
– start-page: 97
  volume-title: Computer Aided Verification
  year: 2017
  ident: 703_CR25
  doi: 10.1007/978-3-319-63387-9_5
– ident: 703_CR3
– volume-title: 32nd International Conference on Computer-Aided Verification (CAV)
  year: 2020
  ident: 703_CR58
– volume-title: 32nd International Conference on Computer-Aided Verification (CAV)
  year: 2020
  ident: 703_CR55
– start-page: 10802
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: 703_CR49
– start-page: 4944
  volume-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018
  year: 2018
  ident: 703_CR67
– start-page: 269
  volume-title: International Symposium on Automated Technology for Verification and Analysis
  year: 2017
  ident: 703_CR13
  doi: 10.1007/978-3-319-68167-2_19
– start-page: 4795
  volume-title: Advances in Neural Information Processing Systems
  year: 2018
  ident: 703_CR12
– volume-title: International Conference on Learning Representations
  year: 2020
  ident: 703_CR33
– ident: 703_CR42
  doi: 10.48550/arXiv.2104.06718
– volume-title: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings
  year: 2015
  ident: 703_CR18
– ident: 703_CR27
– volume-title: ICLR
  year: 2019
  ident: 703_CR54
– volume: 31
  start-page: 4939
  year: 2018
  ident: 703_CR68
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3
  volume-title: Computer Aided Verification
  year: 2017
  ident: 703_CR23
  doi: 10.1007/978-3-319-63387-9_1
– start-page: 3575
  volume-title: Proceedings of the 35th International Conference on Machine Learning, ICML 2018
  year: 2018
  ident: 703_CR35
– volume-title: Proceedings of the 24th European Conference on Artificial Intelligence (ECAI20)
  year: 2020
  ident: 703_CR21
– ident: 703_CR38
  doi: 10.1145/3498704
– ident: 703_CR4
– start-page: 770
  volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: 703_CR20
  doi: 10.1109/CVPR.2016.90
– start-page: 3
  volume-title: 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings
  year: 2018
  ident: 703_CR17
  doi: 10.1109/SP.2018.00058
– ident: 703_CR9
– start-page: 1
  volume-title: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)
  year: 2016
  ident: 703_CR24
  doi: 10.1109/DASC.2016.7778091
– start-page: 275
  volume-title: 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021
  year: 2021
  ident: 703_CR47
  doi: 10.1109/ICSE43902.2021.00036
– ident: 703_CR5
  doi: 10.48550/ARXIV.2109.00498
– volume-title: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21)
  year: 2021
  ident: 703_CR22
  doi: 10.24963/ijcai.2021/351
– volume-title: 23rd International Symposium on Formal Methods (FM’19)
  year: 2019
  ident: 703_CR57
– volume-title: 9th International Conference on Learning Representations, ICLR 2021, Conference Track Proceedings
  year: 2021
  ident: 703_CR40
– volume-title: Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI20)
  year: 2020
  ident: 703_CR8
– ident: 703_CR7
  doi: 10.48550/ARXIV.1604.07316
– ident: 703_CR1
– volume-title: ICLR 2019 Debugging Machine Learning Models Workshop
  year: 2019
  ident: 703_CR29
– volume-title: International Conference on Learning Representations
  year: 2021
  ident: 703_CR63
– volume-title: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI21)
  year: 2021
  ident: 703_CR28
  doi: 10.24963/ijcai.2021/364
– ident: 703_CR43
  doi: 10.48550/arXiv.2206.14772
– start-page: 31
  volume-title: Proceedings of the 7th International Workshop on Formal Methods in Software Engineering (FormaliSE’19), FormaliSE ’19
  year: 2019
  ident: 703_CR56
  doi: 10.1109/FormaliSE.2019.00012
– start-page: 103
  volume-title: ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems
  year: 2019
  ident: 703_CR32
  doi: 10.29007/rgv8
– start-page: 71
  volume-title: IEEE 1988 International Conference on Neural Networks
  year: 1988
  ident: 703_CR69
  doi: 10.1109/ICNN.1988.23914
– volume-title: Proc. International Conference on Learning Representations (ICLR)
  year: 2019
  ident: 703_CR51
– volume-title: Proc. Machine Learning and Systems (MLSys)
  year: 2021
  ident: 703_CR44
– volume-title: Conference on Uncertainty in Artificial Intelligence
  year: 2020
  ident: 703_CR10
– start-page: 137
  volume-title: Computer Aided Verification
  year: 2021
  ident: 703_CR46
  doi: 10.1007/978-3-030-81685-8_6
– ident: 703_CR66
  doi: 10.48550/arXiv.2208.05740
– ident: 703_CR41
  doi: 10.48550/arXiv.2101.05844
– ident: 703_CR37
  doi: 10.48550/arXiv.2210.04871
– volume-title: 10th International Conference on Learning Representations, ICLR 2022, Virtual Event
  year: 2022
  ident: 703_CR15
– volume-title: 6th International Conference on Learning Representations, ICLR 2018, Conference Track Proceedings
  year: 2018
  ident: 703_CR34
– ident: 703_CR2
– start-page: 15098
  volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: 703_CR48
– ident: 703_CR19
– ident: 703_CR53
– volume: 32
  start-page: 565
  issue: 1
  year: 2008
  ident: 703_CR64
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2490
– ident: 703_CR36
  doi: 10.48550/arXiv.2212.10376
– volume: 21
  start-page: 1574
  year: 2020
  ident: 703_CR11
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 244
  issue: 3–4
  year: 2021
  ident: 703_CR30
  publication-title: Found. Trends Optim.
  doi: 10.1561/2400000035
– volume-title: 8th International Conference on Learning Representations, ICLR 2020
  year: 2020
  ident: 703_CR65
– volume-title: 22nd International Conference on Formal Methods in Computer-Aided Design (FMCAD)
  year: 2022
  ident: 703_CR39
– volume-title: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, HSCC ’20
  year: 2020
  ident: 703_CR14
  doi: 10.1145/3365365.3382213
– start-page: 127
  volume-title: Computer Aided Verification – 34th International Conference, CAV 2022, Proceedings, Part I
  year: 2022
  ident: 703_CR16
  doi: 10.1007/978-3-031-13185-1_7
– ident: 703_CR59
  doi: 10.1109/ICRA48506.2021.9561956
– volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 703_CR62
– ident: 703_CR60
SSID ssj0017679
Score 2.5708885
Snippet This paper presents a summary and meta-analysis of the first three iterations of the annual International Verification of Neural Networks Competition...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 329
SubjectTerms Aircraft
Benchmarks
Classification
Competition
Computer Science
Deep learning
Explanation Paradigms Leveraging Analytic Intuition
Image classification
Machine learning
Neural networks
Software
Software Engineering
Software Engineering/Programming and Operating Systems
Software utilities
Specifications
Theory of Computation
Trends
Verification
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PXhxPnE6JQcPigbWJl2SowyHB63Dx9hFSpomMJBO1in43_sla7cpKugxzYPyPX_kewShYyVNlimwfjzNJHGAl4gg0ESmIjPKAEBlvlD4msexGAxkrywKK6ps9yok6S31QrGbv8gPKXE9aihhy2gF3J1w6nh335_FDnjbd9gDIEBJyLksS2W-P-OzO5pjzC9hUe9tuvX__ecGWi_RJb6YisMmWjL5FqpXLzfgUpG30VN3CKgPT4CRBr-DsBd4ZGFo8HDxhhCDnLtUIj90K1z3S_icT3PHC6w96vZZX_ikH8ekc3vTO91Bj93Lh84VKR9aIJq26YRwBS7LyDTlwBphQy2sYq1MB8batoyyiIZU6YjbNotgSlNlQdOZCgxYyha1dBfV8lFu9hC2WgtAAIADmWYiZGkAByseBWBHBdNRAwUVvRNddiF3j2E8J_P-yY5-CdAv8fRLWAOdzfa8THtw_Lq6WbExKfWxSEIBOEQKTmUDnVdsm0__fNr-35YfoLXQc95d0zRRbTJ-NYdoVb9NhsX4yMvpBw7z4KI
  priority: 102
  providerName: Springer Nature
Title First three years of the international verification of neural networks competition (VNN-COMP)
URI https://link.springer.com/article/10.1007/s10009-023-00703-4
https://www.proquest.com/docview/2866198739
Volume 25
WOSCitedRecordID wos000998184400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: K7-
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: M7S
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: P5Z
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: M2O
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-2787
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017679
  issn: 1433-2779
  databaseCode: RSV
  dateStart: 19971201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_qx4MvaluLZ1Xy0IeWGmo-9pJ9KlU8BHU9_EIEWbLZBA7kTt2z0P--k1zWU0FffBnIZjcsOx_57cxkBuCbyV1dG7R-qqpzGgAv1YxZmle6dsYhQJXxoPChKgp9eZn3k8OtSWmVrU2Mhroe2eAj_8U17iT4gyzy37d3NHSNCtHV1EJjBuYY5yzI-YGij1EE1Y219hASCMqVytOhmXR0LoYFuKCh4o2g8vnGNEWbLwKkcd_pLb33jZdhMSFO8mciIh_hgxt-gqW2mwNJyv0ZrnsDRIJkjMx15B8qQENGHoeODJ56DQnKfkgvisNwR6iIiZeHk3zyhtiIxGMmGPl-URR09_io_2MFznt7Z7v7NDVfoFZ0xZgqg9uYy6tKIbu051Z7I7dry5z33TyrM8GFsZnyXZnhlBXGo_ZLwxxaz23hxReYHY6GbhWIt1YjKkBsKK3UXFYMFzYqY2hbtbRZB1j75UubKpOHBhk35bSmcuBWidwqI7dK2YGfj8_cTupyvHn3esuiMuloU07504GtlsnT6ddXW3t7ta-wwKNcBVfNOsyO7x_cBszbv-NBc78Jczt7Rf9kM0oq0iN-HKg6RdrPrpCenF78B_2_8Fc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFH8aGxJc1sFAdCvDB5BAYLHYTu0cEELbqk7twg4b6gVljmNLlaZ2awpTvxSfkWc3abdJ9LYDR8fOkxP__N6z3z-AtzqxRaGR-8m8SKhXeKmKIkOTXBVWW1RQRQgU7ss0VYNBcroGf-pYGO9WWfPEwKiLsfF35J-ZQkmCB2SefL26pr5qlLeu1iU05rDo2dkNHtnKL8eHuL7vGOscnR10aVVVgBre5lMqNfJnm-S5xHkox4xyWuwXJrLOtZO4iDnj2sTStUWMXYZrh7AWOrLIFva540j3EWwIrqTP1d-TdGG1kO2Q2w9VEE6ZlEkVpFOF6gUzBOPUZ9jhVNwVhEvt9p5BNsi5TuN_-0NbsFlp1OTbfAs8gzU7eg6NuloFqZjXNvzsDFHTJVMEryUznGdJxg6blgxv34oS3NvefSo0_Qif8RMfj-b-8iUx4aQRPN3I-x9pSg--n5x-eAHnD_KRL2F9NB7ZV0CcMQq1HtR9hRGKiTxCwlrGEcoOJUzchKhe6cxUmdd9AZDLbJkz2qMjQ3RkAR2ZaMLHxTtX87wjK0e3akhkFQ8qsyUemvCpBtWy-9_UdlZTewNPumcn_ax_nPZ24SkLmPbXUi1Yn05-2dfw2PyeDsvJXtgdBC4eGmx_AY_PSCc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH8ChtAuMD6mlcHwASQQWBDbqZ0DQghWgQqhB0BcUOY4tlQJtUAKE__a_ro9uwkdk-DGgaNjx3Li3_uw3xfAqk5sUWjkfjIvEuoVXqqiyNAkV4XVFhVUEQKFT2SaqqurpDMGf-pYGO9WWfPEwKiLvvF35NtMoSTBAzJPtl3lFtE5bO3d3lFfQcpbWutyGkOItO3Tbzy-lbvHh7jXa4y1fp4fHNGqwgA1vMkHVGrk1TbJc4lrUo4Z5bTYKUxknWsmcRFzxrWJpWuKGLsM1w4hLnRkkUXscMdx3nH4hFI49jTWlvTZgiGbIc8fqiOcMimTKmCnCtsLJgnGqc-2w6l4KRRHmu5_xtkg81ozH_lvfYHpStMm-0PSmIUx25uDmbqKBamY2jxct7qoAZMBgtqSJ1xnSfoOm5Z0_70tJUjz3q0qNP0InwkUH_eGfvQlMeEEEjzgyPplmtKDs9POxgJcvMtHfoWJXr9nvwFxxijUhlAnFkYoJvIIJ9YyjlCmKGHiBkT1rmemysjuC4PcZKNc0h4pGSIlC0jJRAM2n9-5HeYjeXP0Ug2PrOJNZTbCRgO2aoCNul-fbfHt2VZgCjGWnRyn7e_wmQV4-9uqJZgY3D_YZZg0j4Nuef8jEAqBX--Ntb_QjVDh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+three+years+of+the+international+verification+of+neural+networks+competition+%28VNN-COMP%29&rft.jtitle=International+journal+on+software+tools+for+technology+transfer&rft.au=Brix%2C+Christopher&rft.au=M%C3%BCller%2C+Mark+Niklas&rft.au=Bak%2C+Stanley&rft.au=Johnson%2C+Taylor+T.&rft.date=2023-06-01&rft.issn=1433-2779&rft.eissn=1433-2787&rft.volume=25&rft.issue=3&rft.spage=329&rft.epage=339&rft_id=info:doi/10.1007%2Fs10009-023-00703-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10009_023_00703_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-2779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-2779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-2779&client=summon