Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem

•Four different MILP models based on four different modeling ideas are proposed.•A constraint programming (CP) model is designed.•MILP and CP models prove the optimality of 62 benchmark instances.•CP model obtains new best solutions for 11 benchmark instances. This paper intends to address the distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering Jg. 142; S. 106347
Hauptverfasser: Meng, Leilei, Zhang, Chaoyong, Ren, Yaping, Zhang, Biao, Lv, Chang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2020
Schlagworte:
ISSN:0360-8352, 1879-0550
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Four different MILP models based on four different modeling ideas are proposed.•A constraint programming (CP) model is designed.•MILP and CP models prove the optimality of 62 benchmark instances.•CP model obtains new best solutions for 11 benchmark instances. This paper intends to address the distributed flexible job shop scheduling problem (DFJSP) with minimizing maximum completion time (makespan). In order to solve this problem, we propose four mixed integer linear programming (MILP) models as well as a constraint programming (CP) model, among which four MILP models are formulated based on four different modeling ideas. MILP models are effective in solving small-scaled problems to optimality. DFJSP is NP-hard, therefore, we propose an efficient constraint programming (CP) model based on interval decision variables and domain filtering algorithms. Numerical experiments are conducted to evaluate the performance of the proposed MILP models and CP model. The results show that the sequence-based MILP model is the most efficient one, and the proposed CP model is effective in finding good quality solutions for the both the small-sized and large-sized instances. The CP model incomparably outperforms the state-of-the-art algorithms and obtains new best solutions for 11 benchmark problems. Moreover, the best MILP model and CP model have proved the optimality of 62 best-known solutions.
AbstractList •Four different MILP models based on four different modeling ideas are proposed.•A constraint programming (CP) model is designed.•MILP and CP models prove the optimality of 62 benchmark instances.•CP model obtains new best solutions for 11 benchmark instances. This paper intends to address the distributed flexible job shop scheduling problem (DFJSP) with minimizing maximum completion time (makespan). In order to solve this problem, we propose four mixed integer linear programming (MILP) models as well as a constraint programming (CP) model, among which four MILP models are formulated based on four different modeling ideas. MILP models are effective in solving small-scaled problems to optimality. DFJSP is NP-hard, therefore, we propose an efficient constraint programming (CP) model based on interval decision variables and domain filtering algorithms. Numerical experiments are conducted to evaluate the performance of the proposed MILP models and CP model. The results show that the sequence-based MILP model is the most efficient one, and the proposed CP model is effective in finding good quality solutions for the both the small-sized and large-sized instances. The CP model incomparably outperforms the state-of-the-art algorithms and obtains new best solutions for 11 benchmark problems. Moreover, the best MILP model and CP model have proved the optimality of 62 best-known solutions.
ArticleNumber 106347
Author Zhang, Biao
Zhang, Chaoyong
Ren, Yaping
Meng, Leilei
Lv, Chang
Author_xml – sequence: 1
  givenname: Leilei
  orcidid: 0000-0003-1439-4832
  surname: Meng
  fullname: Meng, Leilei
  organization: School of Computer Science, Liaocheng University, Liaocheng 252059, China
– sequence: 2
  givenname: Chaoyong
  surname: Zhang
  fullname: Zhang, Chaoyong
  email: zcyhust@hust.edu.cn
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074,China
– sequence: 3
  givenname: Yaping
  surname: Ren
  fullname: Ren, Yaping
  organization: School of Intelligent Systems Science and Engineering, Jinan University (Zhuhai Campus), Zhuhai 519070, China
– sequence: 4
  givenname: Biao
  orcidid: 0000-0002-4898-2731
  surname: Zhang
  fullname: Zhang, Biao
  organization: School of Computer Science, Liaocheng University, Liaocheng 252059, China
– sequence: 5
  givenname: Chang
  surname: Lv
  fullname: Lv, Chang
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074,China
BookMark eNp9kE1OwzAQhS1UJNrCAdj5Ail23NiJWKGKPwnEBtaRfyatIyeu7LQqB-DeOJQNLKpZjMbvfSPPm6FJ73tA6JqSBSWU37QLbWGRk3ycOVuKMzSlpagyUhRkgqaEcZKVrMgv0CzGlhCyLCo6RV-v9gAms_0AawjY2R5kwNvg10F2ne3XWPYGa9_HIcjk-iM1PnQ7Jweb5HHA0bv9KBib7FbtBjC4cXCwygFuvcJx47c46g2YnRuNaVuSukt03kgX4eq3z9HHw_376il7eXt8Xt29ZJpxNmSiMI3SoApNBdfCyLJKZYRSIEvKS0EqpQpTcoAGeCV5XpIlE4Kxghqgks2ROO7VwccYoKm1HX7-P17nakrqMc26Te9Qj2nWxzQTSf-R22A7GT5PMrdHBtJJewuhjsnSazA2gB5q4-0J-htLNZPg
CitedBy_id crossref_primary_10_1016_j_cie_2023_109325
crossref_primary_10_1080_00207543_2024_2356628
crossref_primary_10_3390_math11112575
crossref_primary_10_1016_j_eswa_2024_123970
crossref_primary_10_1371_journal_pone_0255737
crossref_primary_10_23919_CSMS_2025_0001
crossref_primary_10_1016_j_aei_2025_103210
crossref_primary_10_1016_j_engappai_2023_107458
crossref_primary_10_1111_exsy_12683
crossref_primary_10_1177_0020294020962130
crossref_primary_10_1016_j_omega_2022_102770
crossref_primary_10_1016_j_engappai_2024_109488
crossref_primary_10_1080_23302674_2023_2224509
crossref_primary_10_1080_00207543_2024_2427344
crossref_primary_10_1016_j_swevo_2024_101750
crossref_primary_10_1016_j_cie_2023_109330
crossref_primary_10_1080_00207543_2022_2139002
crossref_primary_10_3390_machines9060108
crossref_primary_10_1109_ACCESS_2024_3432594
crossref_primary_10_1109_TEVC_2023_3334626
crossref_primary_10_1016_j_eswa_2023_121723
crossref_primary_10_3390_a18030158
crossref_primary_10_1007_s10462_021_10081_5
crossref_primary_10_1016_j_engappai_2023_106347
crossref_primary_10_3390_machines12080584
crossref_primary_10_1007_s10586_023_04127_2
crossref_primary_10_1016_j_engappai_2024_108841
crossref_primary_10_1016_j_jmsy_2022_04_019
crossref_primary_10_3390_s23052808
crossref_primary_10_3390_buildings11030121
crossref_primary_10_1007_s11431_022_2096_6
crossref_primary_10_1016_j_cie_2025_111065
crossref_primary_10_1016_j_swevo_2023_101374
crossref_primary_10_1016_j_eswa_2024_125374
crossref_primary_10_1287_ijoc_2023_1287
crossref_primary_10_1109_TETCI_2023_3271331
crossref_primary_10_1109_TEVC_2024_3354850
crossref_primary_10_1016_j_knosys_2025_114192
crossref_primary_10_1109_TNNLS_2023_3306421
crossref_primary_10_3390_math10162871
crossref_primary_10_1109_ACCESS_2025_3545478
crossref_primary_10_1007_s10489_023_04479_7
crossref_primary_10_1016_j_swevo_2025_101907
crossref_primary_10_1186_s10033_025_01281_z
crossref_primary_10_1016_j_engappai_2024_109257
crossref_primary_10_1016_j_eswa_2023_120732
crossref_primary_10_1016_j_swevo_2025_101902
crossref_primary_10_1049_cim2_12005
crossref_primary_10_1016_j_eswa_2023_122594
crossref_primary_10_1016_j_isci_2023_108415
crossref_primary_10_1007_s12293_022_00364_x
crossref_primary_10_1016_j_asoc_2025_113474
crossref_primary_10_3390_s23083815
crossref_primary_10_1016_j_neucom_2024_127897
crossref_primary_10_1109_TASE_2025_3546281
crossref_primary_10_1007_s00500_023_09086_9
crossref_primary_10_1016_j_eswa_2023_121756
crossref_primary_10_1016_j_swevo_2024_101836
crossref_primary_10_1016_j_asoc_2025_112938
crossref_primary_10_1016_j_swevo_2021_100861
crossref_primary_10_1080_00207543_2025_2539312
crossref_primary_10_1007_s40747_024_01484_2
crossref_primary_10_1016_j_cie_2024_110484
crossref_primary_10_1016_j_eswa_2023_122734
crossref_primary_10_1016_j_eswa_2023_121050
crossref_primary_10_1016_j_cie_2024_110379
crossref_primary_10_3390_math13111765
crossref_primary_10_1016_j_jmsy_2023_09_002
crossref_primary_10_1109_TMC_2023_3298888
crossref_primary_10_1016_j_cor_2023_106156
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1080_00207543_2022_2154404
crossref_primary_10_1016_j_matpr_2022_08_263
crossref_primary_10_3390_su15010776
crossref_primary_10_1016_j_swevo_2021_101015
crossref_primary_10_1016_j_cie_2024_109950
crossref_primary_10_1016_j_swevo_2025_102086
crossref_primary_10_1016_j_eswa_2022_117182
crossref_primary_10_23919_CSMS_2024_0041
crossref_primary_10_1016_j_eswa_2022_118711
crossref_primary_10_1016_j_eswa_2022_117984
crossref_primary_10_1016_j_cor_2023_106386
crossref_primary_10_1016_j_eswa_2023_119548
crossref_primary_10_1049_cim2_12049
crossref_primary_10_1016_j_ejor_2022_07_042
crossref_primary_10_1016_j_eswa_2023_120893
crossref_primary_10_1016_j_asoc_2022_109783
crossref_primary_10_1016_j_swevo_2024_101485
crossref_primary_10_1109_TWC_2023_3321648
crossref_primary_10_3390_s24072251
crossref_primary_10_1016_j_cie_2021_107542
crossref_primary_10_32604_cmes_2024_049756
crossref_primary_10_1016_j_ejor_2025_08_039
crossref_primary_10_1080_00207543_2025_2553820
crossref_primary_10_1016_j_asoc_2025_112697
crossref_primary_10_1007_s40747_024_01365_8
crossref_primary_10_1016_j_knosys_2024_111474
crossref_primary_10_1049_cim2_12075
crossref_primary_10_1016_j_eswa_2024_125866
crossref_primary_10_1016_j_jmsy_2024_09_011
crossref_primary_10_1016_j_eswa_2023_120909
crossref_primary_10_3390_app10248887
crossref_primary_10_1007_s11227_024_06167_w
crossref_primary_10_3390_math13060932
crossref_primary_10_1016_j_eswa_2023_121205
crossref_primary_10_1016_j_jmsy_2022_01_006
crossref_primary_10_1109_ACCESS_2020_3032548
crossref_primary_10_1016_j_eswa_2024_125189
crossref_primary_10_1016_j_cie_2023_109621
crossref_primary_10_1007_s40747_025_01890_0
crossref_primary_10_1016_j_cie_2021_107884
crossref_primary_10_3390_electronics13234710
crossref_primary_10_1109_TEVC_2024_3378911
crossref_primary_10_1016_j_ejor_2021_08_007
crossref_primary_10_1016_j_ijpe_2023_109102
crossref_primary_10_1080_00207543_2023_2173503
crossref_primary_10_1016_j_cie_2024_109903
crossref_primary_10_1016_j_engappai_2024_108572
crossref_primary_10_1016_j_swevo_2022_101139
crossref_primary_10_1016_j_swevo_2023_101416
crossref_primary_10_1016_j_asoc_2024_111746
crossref_primary_10_1016_j_eswa_2024_126182
crossref_primary_10_1109_TSMC_2023_3305541
crossref_primary_10_1016_j_swevo_2023_101419
crossref_primary_10_1080_00207543_2025_2503465
crossref_primary_10_1109_ACCESS_2024_3384923
crossref_primary_10_1016_j_swevo_2024_101697
crossref_primary_10_1109_ACCESS_2025_3535825
crossref_primary_10_1049_cim2_12099
crossref_primary_10_3390_math9212653
crossref_primary_10_1016_j_cirpj_2025_04_006
crossref_primary_10_1080_01605682_2025_2539491
crossref_primary_10_1016_j_cie_2024_110581
crossref_primary_10_1016_j_asoc_2024_112276
crossref_primary_10_1007_s10479_023_05592_z
crossref_primary_10_1016_j_cie_2024_109916
crossref_primary_10_2478_cait_2025_0009
crossref_primary_10_1016_j_asoc_2024_112148
crossref_primary_10_3233_JIFS_201120
crossref_primary_10_1016_j_swevo_2023_101421
crossref_primary_10_1016_j_eswa_2023_122197
crossref_primary_10_3390_math10030329
crossref_primary_10_3390_pr13010095
crossref_primary_10_1016_j_swevo_2025_101861
crossref_primary_10_1016_j_cie_2024_110635
crossref_primary_10_1016_j_asoc_2021_107349
crossref_primary_10_1016_j_swevo_2025_102134
crossref_primary_10_3390_math10203854
crossref_primary_10_1109_TASE_2021_3088047
crossref_primary_10_3390_su141912120
crossref_primary_10_1080_21681015_2024_2435847
crossref_primary_10_1109_TAI_2024_3456086
crossref_primary_10_1109_TEVC_2023_3244607
crossref_primary_10_1111_itor_13108
crossref_primary_10_1016_j_cor_2024_106970
crossref_primary_10_1016_j_apenergy_2025_126701
crossref_primary_10_1016_j_swevo_2020_100745
crossref_primary_10_1016_j_swevo_2024_101558
crossref_primary_10_1109_LRA_2021_3086422
crossref_primary_10_3390_su15032622
crossref_primary_10_1016_j_cie_2024_110646
crossref_primary_10_3390_app12084018
crossref_primary_10_1016_j_jmsy_2025_06_005
crossref_primary_10_1016_j_cor_2023_106442
crossref_primary_10_1016_j_swevo_2025_101849
crossref_primary_10_1080_03081079_2025_2548921
crossref_primary_10_1016_j_cie_2025_110861
crossref_primary_10_1016_j_swevo_2024_101544
crossref_primary_10_1016_j_ejor_2023_05_017
crossref_primary_10_1016_j_swevo_2022_101149
crossref_primary_10_3390_s25113435
crossref_primary_10_1109_TCOMM_2022_3184160
crossref_primary_10_1016_j_ins_2023_119949
crossref_primary_10_1016_j_eij_2025_100759
crossref_primary_10_1145_3734865
crossref_primary_10_1007_s40747_023_01153_w
crossref_primary_10_1016_j_swevo_2023_101338
crossref_primary_10_1080_19397038_2025_2507916
crossref_primary_10_1016_j_ejor_2022_08_009
crossref_primary_10_1016_j_swevo_2024_101538
crossref_primary_10_1016_j_ejco_2022_100052
crossref_primary_10_1016_j_jmsy_2024_10_014
crossref_primary_10_3390_math11030581
crossref_primary_10_1016_j_jmsy_2022_01_014
crossref_primary_10_1109_TEVC_2024_3388527
crossref_primary_10_1016_j_swevo_2024_101651
crossref_primary_10_1016_j_swevo_2022_101058
crossref_primary_10_3390_app15168847
crossref_primary_10_1016_j_engappai_2025_110447
crossref_primary_10_1109_TEM_2021_3095954
crossref_primary_10_1007_s13369_021_05964_2
crossref_primary_10_1111_exsy_13800
crossref_primary_10_1080_00207543_2020_1753897
crossref_primary_10_1016_j_engappai_2024_108634
crossref_primary_10_1109_TIV_2023_3319110
crossref_primary_10_1016_j_swevo_2025_101945
crossref_primary_10_1007_s12065_022_00767_2
crossref_primary_10_1016_j_knosys_2024_111940
crossref_primary_10_1016_j_engappai_2023_107011
crossref_primary_10_1371_journal_pone_0330020
crossref_primary_10_32604_cmc_2023_045803
crossref_primary_10_1038_s41598_024_56745_4
crossref_primary_10_1016_j_swevo_2023_101467
crossref_primary_10_1016_j_eswa_2025_129542
Cites_doi 10.1016/j.cor.2008.11.009
10.1016/j.cie.2017.03.017
10.1016/j.cor.2016.11.021
10.1080/00207540500319229
10.1287/opre.8.2.219
10.1016/j.cor.2016.04.006
10.1007/s10845-009-0318-2
10.1016/j.cie.2016.11.001
10.1287/ijoc.13.4.258.9733
10.1016/j.cor.2006.07.014
10.1016/j.engappai.2008.11.004
10.1016/j.eswa.2019.01.062
10.1016/j.jclepro.2019.03.155
10.1002/nav.3800060205
10.1016/j.apm.2012.03.020
10.1016/j.compchemeng.2016.04.030
10.1016/j.jclepro.2019.118644
10.1080/00207543.2012.746480
10.1016/j.apm.2009.09.002
10.1016/j.omega.2017.06.008
10.1016/j.omega.2018.03.004
10.1016/j.ejor.2015.11.020
10.1016/j.rcim.2005.11.005
10.1007/s10845-015-1039-3
10.1080/00207543.2013.827806
10.1016/j.ejor.2017.08.021
10.1080/00207543.2016.1140917
10.1080/00207543.2018.1501166
10.1007/s10845-007-0026-8
10.1016/j.ejor.2018.05.056
10.1007/s10845-015-1083-z
10.1007/s10845-015-1084-y
10.1007/BF02023073
10.1016/j.jclepro.2018.11.021
10.1016/j.jmsy.2015.05.004
10.1080/00207543.2013.871389
10.1016/j.cie.2009.06.005
10.1016/j.cie.2018.09.025
10.1016/j.ejor.2009.01.008
10.1016/j.procs.2018.08.114
10.1016/j.cor.2011.02.017
10.1080/00207543.2010.497174
10.1016/j.ejor.2011.01.011
10.1080/00207543.2013.848487
10.1109/ACCESS.2019.2916468
10.1016/j.jclepro.2018.02.004
10.1016/j.energy.2017.07.005
10.1016/j.cor.2006.07.015
10.1080/00207543.2017.1346322
10.1023/A:1024653810491
10.1016/j.rcim.2019.01.005
10.1016/j.eswa.2014.06.023
10.1016/j.cie.2018.05.014
10.1016/j.cie.2012.03.018
10.1016/j.cam.2010.08.013
10.1007/s11227-013-0986-8
10.1080/00207543.2017.1341066
10.1016/j.eswa.2007.07.026
10.1080/00207729708929360
10.14807/ijmp.v6i1.262
10.1016/j.eswa.2005.04.009
10.1016/j.cor.2010.12.003
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106347
S0360835220300814
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-75dfbceb5c176c7da89898d7bbea8168709bb5d86eefe69a628043773351de1a3
ISICitedReferencesCount 246
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525375800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Tue Nov 18 22:23:36 EST 2025
Sat Nov 29 07:24:12 EST 2025
Fri Feb 23 02:47:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Makespan
Mixed integer linear programming
Distributed flexible job shop scheduling problem
Constraint programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-75dfbceb5c176c7da89898d7bbea8168709bb5d86eefe69a628043773351de1a3
ORCID 0000-0003-1439-4832
0000-0002-4898-2731
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2020_106347
crossref_primary_10_1016_j_cie_2020_106347
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106347
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wagner (b0310) 1959; 6
Wu, Liu, Zhao (b0330) 2018; 6
Ziaee (b0345) 2014; 67
Marzouki, Driss, Ghédira (b0160) 2018; 126
Rocha, Ravetti, Mateus, Pardalos (b0270) 2008; 35
Na, Park (b0195) 2014; 52
Edis, Oguz (b0055) 2012; 63
Meng, Zhang, Shao, Zhang, Ren, Lin (b0180) 2019
Roshanaei, Azab, ElMaraghy (b0275) 2013; 51
Keskinturk, Yildirim, Barut (b0125) 2012; 39
Novara, Novas, Henning (b0230) 2016; 93
Matta (b0165) 2009; 36
Wu, Lin, Lin, Chen (b0320) 2017; 80
Chan, Chung, Chan, Finke, Tiwari (b0025) 2006; 22
Gedik, Kalathia, Egilmez, Kirac (b0070) 2018; 121
Meng, Zhang, Shao, Ren (b0170) 2019; 210
Naderi, Azab (b0200) 2014; 41
Shen, Dauzère-Pérès, Neufeld (b0295) 2018; 265
Li, Bai, Duan, Sang, Han, Zheng (b0135) 2019
Ren, Meng, Zhang, Zhao, Saif, Huang, Sutherland (b0265) 2020; 245
Nouiri, Bekrar, Jemai, Niar, Ammari (b0225) 2018; 29
IBM (2014). IBM ILOG CPLEX Optimization Studio 12.6.
Gicquel, Hege, Minoux, van Canneyt (b0085) 2012; 39
Demir, Kürşat İşleyen (b0050) 2013; 37
Li, Sang, Han, Wang, Gao (b0140) 2018; 181
Brandimarte (b0010) 1993; 41
Chan, Chung, Chan (b0030) 2005; 29
Bożek, Werner (b0005) 2018; 56
Ruiz, Pan, Naderi (b0280) 2019; 83
Chang, Liu (b0035) 2017; 28
Sun, Lin, Li, Gen (b0300) 2019; 128
Naderi, Zandieh, Shirazi (b0220) 2009; 57
Zhang, Tang, Wu, Wang (b0340) 2017; 138
Ku, Beck (b0130) 2016; 73
Schulz, Neufeld, Buscher (b0290) 2019; 224
Jia, Nee, Fuh, Zhang (b0110) 2003; 14
Oliveira, Ribeiro (b0235) 2015; 6
Pan, Gao, Wang, Liang, Li (b0255) 2019; 124
Mousakhani (b0190) 2013; 51
Meng, Zhang, Shao, Ren, Ren (b0175) 2019; 4
Pan (b0250) 1997; 28
Bukchin, Raviv (b0015) 2018; 78
De Giovanni, Pezzella (b0045) 2010; 200
Fleszar, Hindi (b0065) 2018; 271
Gedik, Kirac, Bennet Milburn, Rainwater (b0075) 2017; 107
Meng, Zhang, Zhang, Ren (b0185) 2019; 7
Wu, Guo, Li, Wang (b0325) 2018
Lin, Lee, Wu (b0145) 2019; 58
Ruiz, Şerifoğlu, Urlings (b0285) 2008; 35
Fattahi, Saidi Mehrabad, Jolai (b0060) 2007; 18
Vallada, Ruiz (b0305) 2011; 211
Öztürk, Tunalı, Hnich, Örnek (b0245) 2015; 36
Manne (b0155) 1960; 8
Wu, Chien (b0315) 2008; 35
Jain, Grossmann (b0105) 2001; 13
Chung, Chan, Chan (b0040) 2009; 22
Jin, Tang, Zhang, Shao, Tian (b0115) 2016; 54
Lu, Wu, Tan, Peng, Chen (b0150) 2015; 29
Naderi, Fatemi Ghomi, Aminnayeri, Zandieh (b0205) 2011; 49
Naderi, Khalili, Khamseh (b0215) 2013; 52
Gedik, Rainwater, Nachtmann, Pohl (b0080) 2016; 251
Kelbel, Hanzálek (b0120) 2011; 22
Zhang, Pan, Gao, Meng, Li, Peng (b0335) 2019
Chan, Chung, Chan (b0020) 2006; 44
Ham, Cakici (b0090) 2016; 102
Huang, Yao (b0095) 2012; 43
Naderi, Ghomi, Aminnayeri, Zandieh (b0210) 2011; 235
Ren, Yu, Zhang, Tian, Meng, Zhou (b0260) 2017; 55
Özgüven, Özbakır, Yavuz (b0240) 2010; 34
Manne (10.1016/j.cie.2020.106347_b0155) 1960; 8
Oliveira (10.1016/j.cie.2020.106347_b0235) 2015; 6
Chung (10.1016/j.cie.2020.106347_b0040) 2009; 22
Meng (10.1016/j.cie.2020.106347_b0185) 2019; 7
Ku (10.1016/j.cie.2020.106347_b0130) 2016; 73
Marzouki (10.1016/j.cie.2020.106347_b0160) 2018; 126
Mousakhani (10.1016/j.cie.2020.106347_b0190) 2013; 51
Wagner (10.1016/j.cie.2020.106347_b0310) 1959; 6
Naderi (10.1016/j.cie.2020.106347_b0220) 2009; 57
Rocha (10.1016/j.cie.2020.106347_b0270) 2008; 35
Zhang (10.1016/j.cie.2020.106347_b0335) 2019
Jain (10.1016/j.cie.2020.106347_b0105) 2001; 13
Matta (10.1016/j.cie.2020.106347_b0165) 2009; 36
Meng (10.1016/j.cie.2020.106347_b0180) 2019
Shen (10.1016/j.cie.2020.106347_b0295) 2018; 265
Wu (10.1016/j.cie.2020.106347_b0325) 2018
Roshanaei (10.1016/j.cie.2020.106347_b0275) 2013; 51
Fleszar (10.1016/j.cie.2020.106347_b0065) 2018; 271
Ham (10.1016/j.cie.2020.106347_b0090) 2016; 102
Öztürk (10.1016/j.cie.2020.106347_b0245) 2015; 36
Ruiz (10.1016/j.cie.2020.106347_b0285) 2008; 35
Pan (10.1016/j.cie.2020.106347_b0255) 2019; 124
Lu (10.1016/j.cie.2020.106347_b0150) 2015; 29
Meng (10.1016/j.cie.2020.106347_b0175) 2019; 4
Zhang (10.1016/j.cie.2020.106347_b0340) 2017; 138
De Giovanni (10.1016/j.cie.2020.106347_b0045) 2010; 200
Meng (10.1016/j.cie.2020.106347_b0170) 2019; 210
Naderi (10.1016/j.cie.2020.106347_b0210) 2011; 235
Gedik (10.1016/j.cie.2020.106347_b0075) 2017; 107
Wu (10.1016/j.cie.2020.106347_b0315) 2008; 35
Demir (10.1016/j.cie.2020.106347_b0050) 2013; 37
Chang (10.1016/j.cie.2020.106347_b0035) 2017; 28
Gicquel (10.1016/j.cie.2020.106347_b0085) 2012; 39
Ren (10.1016/j.cie.2020.106347_b0260) 2017; 55
Ren (10.1016/j.cie.2020.106347_b0265) 2020; 245
Edis (10.1016/j.cie.2020.106347_b0055) 2012; 63
Brandimarte (10.1016/j.cie.2020.106347_b0010) 1993; 41
Novara (10.1016/j.cie.2020.106347_b0230) 2016; 93
Vallada (10.1016/j.cie.2020.106347_b0305) 2011; 211
Fattahi (10.1016/j.cie.2020.106347_b0060) 2007; 18
Naderi (10.1016/j.cie.2020.106347_b0205) 2011; 49
Naderi (10.1016/j.cie.2020.106347_b0200) 2014; 41
Chan (10.1016/j.cie.2020.106347_b0025) 2006; 22
Keskinturk (10.1016/j.cie.2020.106347_b0125) 2012; 39
Bukchin (10.1016/j.cie.2020.106347_b0015) 2018; 78
Sun (10.1016/j.cie.2020.106347_b0300) 2019; 128
10.1016/j.cie.2020.106347_b0100
Li (10.1016/j.cie.2020.106347_b0135) 2019
Li (10.1016/j.cie.2020.106347_b0140) 2018; 181
Jin (10.1016/j.cie.2020.106347_b0115) 2016; 54
Özgüven (10.1016/j.cie.2020.106347_b0240) 2010; 34
Ziaee (10.1016/j.cie.2020.106347_b0345) 2014; 67
Bożek (10.1016/j.cie.2020.106347_b0005) 2018; 56
Chan (10.1016/j.cie.2020.106347_b0030) 2005; 29
Schulz (10.1016/j.cie.2020.106347_b0290) 2019; 224
Chan (10.1016/j.cie.2020.106347_b0020) 2006; 44
Jia (10.1016/j.cie.2020.106347_b0110) 2003; 14
Wu (10.1016/j.cie.2020.106347_b0320) 2017; 80
Wu (10.1016/j.cie.2020.106347_b0330) 2018; 6
Pan (10.1016/j.cie.2020.106347_b0250) 1997; 28
Gedik (10.1016/j.cie.2020.106347_b0080) 2016; 251
Kelbel (10.1016/j.cie.2020.106347_b0120) 2011; 22
Huang (10.1016/j.cie.2020.106347_b0095) 2012; 43
Na (10.1016/j.cie.2020.106347_b0195) 2014; 52
Gedik (10.1016/j.cie.2020.106347_b0070) 2018; 121
Nouiri (10.1016/j.cie.2020.106347_b0225) 2018; 29
Naderi (10.1016/j.cie.2020.106347_b0215) 2013; 52
Ruiz (10.1016/j.cie.2020.106347_b0280) 2019; 83
Lin (10.1016/j.cie.2020.106347_b0145) 2019; 58
References_xml – volume: 39
  start-page: 1225
  year: 2012
  end-page: 1235
  ident: b0125
  article-title: An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times
  publication-title: Computers & Operations Research
– start-page: 1
  year: 2019
  end-page: 16
  ident: b0335
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 58
  start-page: 196
  year: 2019
  end-page: 207
  ident: b0145
  article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 8
  start-page: 219
  year: 1960
  end-page: 223
  ident: b0155
  article-title: On the Job-Shop Scheduling Problem
  publication-title: Operations Research
– volume: 51
  start-page: 3476
  year: 2013
  end-page: 3487
  ident: b0190
  article-title: Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness
  publication-title: International Journal of Production Research
– volume: 29
  start-page: 603
  year: 2018
  end-page: 615
  ident: b0225
  article-title: An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem
  publication-title: Journal of Intelligent Manufacturing
– volume: 56
  start-page: 6391
  year: 2018
  end-page: 6411
  ident: b0005
  article-title: Flexible job shop scheduling with lot streaming and sublot size optimisation
  publication-title: International Journal of Production Research
– volume: 245
  start-page: 118644
  year: 2020
  ident: b0265
  article-title: An efficient metaheuristics for a sequence-dependent disassembly planning
  publication-title: Journal of Cleaner Production
– volume: 121
  start-page: 139
  year: 2018
  end-page: 149
  ident: b0070
  article-title: A constraint programming approach for solving unrelated parallel machine scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 107
  start-page: 178
  year: 2017
  end-page: 195
  ident: b0075
  article-title: A constraint programming approach for the team orienteering problem with time windows
  publication-title: Computers & Industrial Engineering
– volume: 54
  start-page: 4387
  year: 2016
  end-page: 4402
  ident: b0115
  article-title: More MILP models for integrated process planning and scheduling
  publication-title: International Journal of Production Research
– volume: 7
  start-page: 68043
  year: 2019
  end-page: 68059
  ident: b0185
  article-title: Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility
  publication-title: IEEE Access
– volume: 35
  start-page: 1151
  year: 2008
  end-page: 1175
  ident: b0285
  article-title: Modeling realistic hybrid flexible flowshop scheduling problems
  publication-title: Computers and Operations Research
– volume: 265
  start-page: 503
  year: 2018
  end-page: 516
  ident: b0295
  article-title: Solving the flexible job shop scheduling problem with sequence-dependent setup times
  publication-title: European Journal of Operational Research
– start-page: 1
  year: 2019
  end-page: 22
  ident: b0180
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems
  publication-title: International Journal of Production Research
– volume: 128
  start-page: 894
  year: 2019
  end-page: 904
  ident: b0300
  article-title: Large scale flexible scheduling optimization by a distributed evolutionary algorithm
  publication-title: Computers & Industrial Engineering
– volume: 52
  start-page: 3877
  year: 2014
  end-page: 3887
  ident: b0195
  article-title: Multi-level job scheduling in a flexible job shop environment
  publication-title: International Journal of Production Research
– volume: 4
  start-page: 1119
  year: 2019
  end-page: 1145
  ident: b0175
  article-title: Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines
  publication-title: International Journal of Production Research
– volume: 18
  start-page: 331
  year: 2007
  end-page: 342
  ident: b0060
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 34
  start-page: 1539
  year: 2010
  end-page: 1548
  ident: b0240
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility
  publication-title: Applied Mathematical Modelling
– volume: 43
  start-page: 151
  year: 2012
  end-page: 158
  ident: b0095
  article-title: Planning and scheduling of multiple flexible-shops based on analytical target cascading and particle swarm optimization
  publication-title: Journal of Central South University(Science and Technology)
– volume: 36
  start-page: 147
  year: 2015
  end-page: 158
  ident: b0245
  article-title: Cyclic scheduling of flexible mixed model assembly lines with parallel stations
  publication-title: Journal of Manufacturing Systems
– volume: 126
  start-page: 1424
  year: 2018
  end-page: 1433
  ident: b0160
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Computer Science
– volume: 181
  start-page: 584
  year: 2018
  end-page: 598
  ident: b0140
  article-title: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
  publication-title: Journal of Cleaner Production
– volume: 93
  start-page: 101
  year: 2016
  end-page: 117
  ident: b0230
  article-title: A novel constraint programming model for large-scale scheduling problems in multiproduct multistage batch plants: Limited resources and campaign-based operation
  publication-title: Computers & Chemical Engineering
– volume: 80
  start-page: 101
  year: 2017
  end-page: 112
  ident: b0320
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Computers & Operations Research
– volume: 22
  start-page: 1005
  year: 2009
  end-page: 1014
  ident: b0040
  article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 35
  start-page: 1250
  year: 2008
  end-page: 1264
  ident: b0270
  article-title: Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times
  publication-title: Computers & Operations Research
– volume: 55
  start-page: 7302
  year: 2017
  end-page: 7316
  ident: b0260
  article-title: An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem
  publication-title: International Journal of Production Research
– volume: 39
  start-page: 629
  year: 2012
  end-page: 636
  ident: b0085
  article-title: A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints
  publication-title: Computers & Operations Research
– volume: 44
  start-page: 523
  year: 2006
  end-page: 543
  ident: b0020
  article-title: Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems
  publication-title: International Journal of Production Research
– volume: 224
  start-page: 421
  year: 2019
  end-page: 434
  ident: b0290
  article-title: A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling
  publication-title: Journal of Cleaner Production
– volume: 210
  start-page: 710
  year: 2019
  end-page: 723
  ident: b0170
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: Journal of Cleaner Production
– volume: 35
  start-page: 485
  year: 2008
  end-page: 496
  ident: b0315
  article-title: Modeling semiconductor testing job scheduling and dynamic testing machine configuration
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 7754
  year: 2014
  end-page: 7763
  ident: b0200
  article-title: Modeling and heuristics for scheduling of distributed job shops
  publication-title: Expert Systems with Applications
– volume: 51
  start-page: 6247
  year: 2013
  end-page: 6274
  ident: b0275
  article-title: Mathematical modelling and a meta-heuristic for flexible job shop scheduling
  publication-title: International Journal of Production Research
– volume: 124
  start-page: 309
  year: 2019
  end-page: 324
  ident: b0255
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2018
  end-page: 11
  ident: b0325
  article-title: An improved artificial bee colony algorithm for distributed and flexible job-shop scheduling problem
  publication-title: Control and Decision
– volume: 22
  start-page: 553
  year: 2011
  end-page: 562
  ident: b0120
  article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming
  publication-title: Journal of Intelligent Manufacturing
– volume: 67
  start-page: 69
  year: 2014
  end-page: 83
  ident: b0345
  article-title: A heuristic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: The Journal of Supercomputing
– volume: 102
  start-page: 160
  year: 2016
  end-page: 165
  ident: b0090
  article-title: Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches
  publication-title: Computers & Industrial Engineering
– volume: 57
  start-page: 1258
  year: 2009
  end-page: 1267
  ident: b0220
  article-title: Modeling and scheduling a case of flexible flowshops: Total weighted tardiness minimization
  publication-title: Computers & Industrial Engineering
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: b0045
  article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem
  publication-title: European Journal of Operational Research
– volume: 63
  start-page: 433
  year: 2012
  end-page: 447
  ident: b0055
  article-title: Parallel machine scheduling with flexible resources
  publication-title: Computers & Industrial Engineering
– volume: 73
  start-page: 165
  year: 2016
  end-page: 173
  ident: b0130
  article-title: Mixed Integer Programming models for job shop scheduling: A computational analysis
  publication-title: Computers & Operations Research
– volume: 52
  start-page: 2667
  year: 2013
  end-page: 2681
  ident: b0215
  article-title: Mathematical models and a hunting search algorithm for the no-wait flowshop scheduling with parallel machines
  publication-title: International Journal of Production Research
– volume: 6
  year: 2015
  ident: b0235
  article-title: Comparing mixed & integer programming vs. constraint programming by solving job-shop scheduling problems
  publication-title: Independent Journal of Management & Production
– volume: 83
  start-page: 213
  year: 2019
  end-page: 222
  ident: b0280
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
– volume: 138
  start-page: 210
  year: 2017
  end-page: 227
  ident: b0340
  article-title: Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops
  publication-title: Energy
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: b0010
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations Research
– volume: 37
  start-page: 977
  year: 2013
  end-page: 988
  ident: b0050
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems
  publication-title: Applied Mathematical Modelling
– volume: 22
  start-page: 493
  year: 2006
  end-page: 504
  ident: b0025
  article-title: Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 28
  start-page: 33
  year: 1997
  end-page: 41
  ident: b0250
  article-title: A study of integer programming formulations for scheduling problems
  publication-title: International Journal of Systems Science
– start-page: 1
  year: 2019
  end-page: 21
  ident: b0135
  article-title: An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system
  publication-title: International Journal of Production Research
– volume: 13
  start-page: 258
  year: 2001
  end-page: 276
  ident: b0105
  article-title: Algorithms for hybrid MILP/CP models for a class of optimization problems
  publication-title: INFORMS Journal on Computing
– volume: 211
  start-page: 612
  year: 2011
  end-page: 622
  ident: b0305
  article-title: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times
  publication-title: European Journal of Operational Research
– volume: 78
  start-page: 57
  year: 2018
  end-page: 68
  ident: b0015
  article-title: Constraint programming for solving various assembly line balancing problems
  publication-title: Omega
– volume: 14
  start-page: 351
  year: 2003
  end-page: 362
  ident: b0110
  article-title: A modified genetic algorithm for distributed scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 235
  start-page: 1275
  year: 2011
  end-page: 1287
  ident: b0210
  article-title: Scheduling open shops with parallel machines to minimize total completion time
  publication-title: Journal of Computational & Applied Mathematics
– volume: 6
  start-page: 131
  year: 1959
  end-page: 140
  ident: b0310
  article-title: An integer linear-programming model for machine scheduling
  publication-title: Naval Research Logistics Quarterly
– volume: 251
  start-page: 640
  year: 2016
  end-page: 650
  ident: b0080
  article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals
  publication-title: European Journal of Operational Research
– reference: IBM (2014). IBM ILOG CPLEX Optimization Studio 12.6.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 21
  ident: b0330
  article-title: An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem
  publication-title: Memetic Computing
– volume: 36
  start-page: 2601
  year: 2009
  end-page: 2618
  ident: b0165
  article-title: A genetic algorithm for the proportionate multiprocessor open shop
  publication-title: Computers & Operations Research
– volume: 28
  start-page: 1973
  year: 2017
  end-page: 1986
  ident: b0035
  article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms
  publication-title: Journal of Intelligent Manufacturing
– volume: 49
  start-page: 4657
  year: 2011
  end-page: 4678
  ident: b0205
  article-title: A study on open shop scheduling to minimise total tardiness
  publication-title: International Journal of Production Research
– volume: 29
  start-page: 19
  year: 2015
  end-page: 34
  ident: b0150
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
– volume: 29
  start-page: 364
  year: 2005
  end-page: 371
  ident: b0030
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Systems with Applications
– volume: 271
  start-page: 839
  year: 2018
  end-page: 848
  ident: b0065
  article-title: Algorithms for the unrelated parallel machine scheduling problem with a resource constraint
  publication-title: European Journal of Operational Research
– volume: 36
  start-page: 2601
  issue: 9
  year: 2009
  ident: 10.1016/j.cie.2020.106347_b0165
  article-title: A genetic algorithm for the proportionate multiprocessor open shop
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.11.009
– volume: 107
  start-page: 178
  year: 2017
  ident: 10.1016/j.cie.2020.106347_b0075
  article-title: A constraint programming approach for the team orienteering problem with time windows
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.03.017
– volume: 80
  start-page: 101
  year: 2017
  ident: 10.1016/j.cie.2020.106347_b0320
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.11.021
– volume: 44
  start-page: 523
  issue: 3
  year: 2006
  ident: 10.1016/j.cie.2020.106347_b0020
  article-title: Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540500319229
– volume: 8
  start-page: 219
  issue: 2
  year: 1960
  ident: 10.1016/j.cie.2020.106347_b0155
  article-title: On the Job-Shop Scheduling Problem
  publication-title: Operations Research
  doi: 10.1287/opre.8.2.219
– volume: 73
  start-page: 165
  year: 2016
  ident: 10.1016/j.cie.2020.106347_b0130
  article-title: Mixed Integer Programming models for job shop scheduling: A computational analysis
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.04.006
– volume: 22
  start-page: 553
  issue: 4
  year: 2011
  ident: 10.1016/j.cie.2020.106347_b0120
  article-title: Solving production scheduling with earliness/tardiness penalties by constraint programming
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-009-0318-2
– volume: 102
  start-page: 160
  year: 2016
  ident: 10.1016/j.cie.2020.106347_b0090
  article-title: Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.11.001
– volume: 13
  start-page: 258
  issue: 4
  year: 2001
  ident: 10.1016/j.cie.2020.106347_b0105
  article-title: Algorithms for hybrid MILP/CP models for a class of optimization problems
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.13.4.258.9733
– volume: 35
  start-page: 1151
  issue: 4
  year: 2008
  ident: 10.1016/j.cie.2020.106347_b0285
  article-title: Modeling realistic hybrid flexible flowshop scheduling problems
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2006.07.014
– volume: 22
  start-page: 1005
  issue: 7
  year: 2009
  ident: 10.1016/j.cie.2020.106347_b0040
  article-title: A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2008.11.004
– volume: 124
  start-page: 309
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0255
  article-title: Effective heuristics and metaheuristics to minimize total flowtime for the distributed permutation flowshop problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.062
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0330
  article-title: An improved differential evolution algorithm for solving a distributed assembly flexible job shop scheduling problem
  publication-title: Memetic Computing
– volume: 224
  start-page: 421
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0290
  article-title: A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.03.155
– volume: 6
  start-page: 131
  issue: 2
  year: 1959
  ident: 10.1016/j.cie.2020.106347_b0310
  article-title: An integer linear-programming model for machine scheduling
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800060205
– volume: 37
  start-page: 977
  issue: 3
  year: 2013
  ident: 10.1016/j.cie.2020.106347_b0050
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.03.020
– volume: 93
  start-page: 101
  year: 2016
  ident: 10.1016/j.cie.2020.106347_b0230
  article-title: A novel constraint programming model for large-scale scheduling problems in multiproduct multistage batch plants: Limited resources and campaign-based operation
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2016.04.030
– volume: 245
  start-page: 118644
  year: 2020
  ident: 10.1016/j.cie.2020.106347_b0265
  article-title: An efficient metaheuristics for a sequence-dependent disassembly planning
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.118644
– volume: 51
  start-page: 3476
  issue: 12
  year: 2013
  ident: 10.1016/j.cie.2020.106347_b0190
  article-title: Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2012.746480
– volume: 34
  start-page: 1539
  issue: 6
  year: 2010
  ident: 10.1016/j.cie.2020.106347_b0240
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2009.09.002
– volume: 78
  start-page: 57
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0015
  article-title: Constraint programming for solving various assembly line balancing problems
  publication-title: Omega
  doi: 10.1016/j.omega.2017.06.008
– volume: 43
  start-page: 151
  issue: 01
  year: 2012
  ident: 10.1016/j.cie.2020.106347_b0095
  article-title: Planning and scheduling of multiple flexible-shops based on analytical target cascading and particle swarm optimization
  publication-title: Journal of Central South University(Science and Technology)
– volume: 83
  start-page: 213
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0280
  article-title: Iterated Greedy methods for the distributed permutation flowshop scheduling problem
  publication-title: Omega
  doi: 10.1016/j.omega.2018.03.004
– volume: 251
  start-page: 640
  issue: 2
  year: 2016
  ident: 10.1016/j.cie.2020.106347_b0080
  article-title: Analysis of a parallel machine scheduling problem with sequence dependent setup times and job availability intervals
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.11.020
– volume: 22
  start-page: 493
  issue: 5–6
  year: 2006
  ident: 10.1016/j.cie.2020.106347_b0025
  article-title: Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2005.11.005
– volume: 29
  start-page: 603
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0225
  article-title: An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1039-3
– volume: 51
  start-page: 6247
  issue: 20
  year: 2013
  ident: 10.1016/j.cie.2020.106347_b0275
  article-title: Mathematical modelling and a meta-heuristic for flexible job shop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.827806
– volume: 265
  start-page: 503
  issue: 2
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0295
  article-title: Solving the flexible job shop scheduling problem with sequence-dependent setup times
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.08.021
– volume: 54
  start-page: 4387
  issue: 14
  year: 2016
  ident: 10.1016/j.cie.2020.106347_b0115
  article-title: More MILP models for integrated process planning and scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2016.1140917
– volume: 4
  start-page: 1119
  issue: 57
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0175
  article-title: Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1501166
– volume: 18
  start-page: 331
  issue: 3
  year: 2007
  ident: 10.1016/j.cie.2020.106347_b0060
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-007-0026-8
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0180
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems
  publication-title: International Journal of Production Research
– volume: 271
  start-page: 839
  issue: 3
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0065
  article-title: Algorithms for the unrelated parallel machine scheduling problem with a resource constraint
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.05.056
– volume: 29
  start-page: 19
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2020.106347_b0150
  article-title: A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1083-z
– volume: 28
  start-page: 1973
  issue: 8
  year: 2017
  ident: 10.1016/j.cie.2020.106347_b0035
  article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1084-y
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.cie.2020.106347_b0010
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02023073
– volume: 210
  start-page: 710
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0170
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.11.021
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0135
  article-title: An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system
  publication-title: International Journal of Production Research
– volume: 36
  start-page: 147
  year: 2015
  ident: 10.1016/j.cie.2020.106347_b0245
  article-title: Cyclic scheduling of flexible mixed model assembly lines with parallel stations
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2015.05.004
– volume: 52
  start-page: 2667
  issue: 9
  year: 2013
  ident: 10.1016/j.cie.2020.106347_b0215
  article-title: Mathematical models and a hunting search algorithm for the no-wait flowshop scheduling with parallel machines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.871389
– volume: 57
  start-page: 1258
  issue: 4
  year: 2009
  ident: 10.1016/j.cie.2020.106347_b0220
  article-title: Modeling and scheduling a case of flexible flowshops: Total weighted tardiness minimization
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.06.005
– volume: 128
  start-page: 894
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0300
  article-title: Large scale flexible scheduling optimization by a distributed evolutionary algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.09.025
– volume: 200
  start-page: 395
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2020.106347_b0045
  article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.01.008
– volume: 126
  start-page: 1424
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0160
  article-title: Solving distributed and flexible job shop scheduling problem using a chemical reaction optimization metaheuristic
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.08.114
– start-page: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0335
  article-title: A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 39
  start-page: 629
  issue: 3
  year: 2012
  ident: 10.1016/j.cie.2020.106347_b0085
  article-title: A discrete time exact solution approach for a complex hybrid flow-shop scheduling problem with limited-wait constraints
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.02.017
– volume: 49
  start-page: 4657
  issue: 15
  year: 2011
  ident: 10.1016/j.cie.2020.106347_b0205
  article-title: A study on open shop scheduling to minimise total tardiness
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2010.497174
– volume: 211
  start-page: 612
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2020.106347_b0305
  article-title: A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.01.011
– volume: 52
  start-page: 3877
  issue: 13
  year: 2014
  ident: 10.1016/j.cie.2020.106347_b0195
  article-title: Multi-level job scheduling in a flexible job shop environment
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.848487
– volume: 7
  start-page: 68043
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0185
  article-title: Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916468
– volume: 181
  start-page: 584
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0140
  article-title: Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.02.004
– start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0325
  article-title: An improved artificial bee colony algorithm for distributed and flexible job-shop scheduling problem
  publication-title: Control and Decision
– volume: 138
  start-page: 210
  year: 2017
  ident: 10.1016/j.cie.2020.106347_b0340
  article-title: Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.005
– volume: 35
  start-page: 1250
  issue: 4
  year: 2008
  ident: 10.1016/j.cie.2020.106347_b0270
  article-title: Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2006.07.015
– volume: 56
  start-page: 6391
  issue: 19
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0005
  article-title: Flexible job shop scheduling with lot streaming and sublot size optimisation
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1346322
– volume: 14
  start-page: 351
  issue: 3–4
  year: 2003
  ident: 10.1016/j.cie.2020.106347_b0110
  article-title: A modified genetic algorithm for distributed scheduling problems
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1023/A:1024653810491
– ident: 10.1016/j.cie.2020.106347_b0100
– volume: 58
  start-page: 196
  year: 2019
  ident: 10.1016/j.cie.2020.106347_b0145
  article-title: Merits of using chromosome representations and shadow chromosomes in genetic algorithms for solving scheduling problems
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2019.01.005
– volume: 41
  start-page: 7754
  issue: 17
  year: 2014
  ident: 10.1016/j.cie.2020.106347_b0200
  article-title: Modeling and heuristics for scheduling of distributed job shops
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.06.023
– volume: 121
  start-page: 139
  year: 2018
  ident: 10.1016/j.cie.2020.106347_b0070
  article-title: A constraint programming approach for solving unrelated parallel machine scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.05.014
– volume: 63
  start-page: 433
  issue: 2
  year: 2012
  ident: 10.1016/j.cie.2020.106347_b0055
  article-title: Parallel machine scheduling with flexible resources
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.03.018
– volume: 235
  start-page: 1275
  issue: 5
  year: 2011
  ident: 10.1016/j.cie.2020.106347_b0210
  article-title: Scheduling open shops with parallel machines to minimize total completion time
  publication-title: Journal of Computational & Applied Mathematics
  doi: 10.1016/j.cam.2010.08.013
– volume: 67
  start-page: 69
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2020.106347_b0345
  article-title: A heuristic algorithm for the distributed and flexible job-shop scheduling problem
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-013-0986-8
– volume: 55
  start-page: 7302
  issue: 24
  year: 2017
  ident: 10.1016/j.cie.2020.106347_b0260
  article-title: An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2017.1341066
– volume: 35
  start-page: 485
  issue: 1–2
  year: 2008
  ident: 10.1016/j.cie.2020.106347_b0315
  article-title: Modeling semiconductor testing job scheduling and dynamic testing machine configuration
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.07.026
– volume: 28
  start-page: 33
  issue: 1
  year: 1997
  ident: 10.1016/j.cie.2020.106347_b0250
  article-title: A study of integer programming formulations for scheduling problems
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207729708929360
– volume: 6
  issue: 1
  year: 2015
  ident: 10.1016/j.cie.2020.106347_b0235
  article-title: Comparing mixed & integer programming vs. constraint programming by solving job-shop scheduling problems
  publication-title: Independent Journal of Management & Production
  doi: 10.14807/ijmp.v6i1.262
– volume: 29
  start-page: 364
  issue: 2
  year: 2005
  ident: 10.1016/j.cie.2020.106347_b0030
  article-title: An adaptive genetic algorithm with dominated genes for distributed scheduling problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.04.009
– volume: 39
  start-page: 1225
  issue: 6
  year: 2012
  ident: 10.1016/j.cie.2020.106347_b0125
  article-title: An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2010.12.003
SSID ssj0004591
Score 2.6673539
Snippet •Four different MILP models based on four different modeling ideas are proposed.•A constraint programming (CP) model is designed.•MILP and CP models prove the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106347
SubjectTerms Constraint programming
Distributed flexible job shop scheduling problem
Makespan
Mixed integer linear programming
Title Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem
URI https://dx.doi.org/10.1016/j.cie.2020.106347
Volume 142
WOSCitedRecordID wos000525375800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQQ5aU9cCJyFT_XPpaqCFCpEBQpnCzveqw6KnaUpFX4AfwQ_ikz3l170wICJC5WvF57ncyX2c_rmW8Yex7GqQz9ADw_SFIvigG8DGhXlTKTJA9SdOr6R-L4OJ1Os_ej0XebC3NxJpomXa-z-X81NbahsSl19i_M3V8UG_AzGh23aHbc_pHh39VrKL1OBgIWY2KRpGatw7C-2JRERbSQqkOsNg4Rgz230XEUgIi32q04lKSvS6WxkJ9WpKFJCVezVo6Xp-18jE_IOGOZxPauQI3LeW3hiGUHs3qoFQKDFmJvd9C-5wjQW9VXVrUPTov2azt0_6Cd5udi7lyj7_2yLlp3VSOYOMEw3VKbTbcZYpt0itfEI8qoJy_tsVOReZNYq9f2Ll0rdl2ZHvRKxWwP3eYejYotSagVPy-pbn-ksTp2il4QaVN0jW0HIs7QcW7vvzmcvnUk6XVZRntv9tV5F0R4aaCfkx-H0JzcYbfMkwjf1wi6y0bQ7LDb5qmEG5-_3GE3HcnKe-zbBry4hhd3MMQRXnyA18YhF160ww28uAMvbuHFEV6c4MUHeHEDr_vs06vDk4PXninl4akwCVeeiMtKKpCx8kWiRFlQ1dK0FFJCQZVfxCSTMi7TBKCCJCuSICXRLRGGsV-CX4QP2FbTNvCQ8SpVqooqCb6MoyrASTLCS6C_CVQciqrYZRP7G-fK6NzTNz7LbUDjDNshJ7Pk2iy77EV_ylyLvPyuc2QNlxuWqtlnjij79WmP_u20x-zG8Pd4wrZWi3N4yq6ri1W9XDwzWPwB86y9-Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed-integer+linear+programming+and+constraint+programming+formulations+for+solving+distributed+flexible+job+shop+scheduling+problem&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Meng%2C+Leilei&rft.au=Zhang%2C+Chaoyong&rft.au=Ren%2C+Yaping&rft.au=Zhang%2C+Biao&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=142&rft_id=info:doi/10.1016%2Fj.cie.2020.106347&rft.externalDocID=S0360835220300814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon