Global optimization via inverse distance weighting and radial basis functions

Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 77; H. 2; S. 571 - 595
1. Verfasser: Bemporad, Alberto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.11.2020
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum ( exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function ( exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis .
AbstractList Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum (exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function (exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis.
Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum ( exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function ( exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis .
Author Bemporad, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0001-6761-0856
  surname: Bemporad
  fullname: Bemporad, Alberto
  email: alberto.bemporad@imtlucca.it
  organization: IMT School for Advanced Studies Lucca
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16MnibktpWgVFDe6DpmZpKZMMzVJW_TpnXYEwUVXBw7_dy7fBI1CFyxClxiuMYC4SRiYVCUQKAEIZuXuBI0xE7QkUt2O0BgU4SUHoGdoktISAJSgZIxe5m1Xmbbo1tmv_LfJvgvF1pvCh62NyRaNT9mE2hY76xcf2YdFYUJTRNP4HqtM8qlwm1DvwXSOTp1pk734rVP0_nD_Nnssn1_nT7O757KmnOZSYC45NYowUTHmJK8Y544wRTk0tmm4IooZ6hzGTDaGU05cXWHuqkb1TU6n6GqYu47d58amrJfdJoZ-pSYcJCdCCNmn5JCqY5dStE7XPh8-zNH4VmPQe3l6kKd7efogT-96lPxD19GvTPw6DtEBSn04LGz8u-oI9QPeP4TE
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102013
crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_1016_j_rcim_2024_102781
crossref_primary_10_1109_TCST_2021_3136711
crossref_primary_10_1016_j_automatica_2021_109666
crossref_primary_10_1016_j_conengprac_2022_105411
crossref_primary_10_1016_j_asoc_2023_111194
crossref_primary_10_1007_s10589_023_00491_2
crossref_primary_10_1109_TAC_2022_3183036
crossref_primary_10_1109_TAC_2024_3477005
crossref_primary_10_1016_j_ejcon_2022_100647
crossref_primary_10_1016_j_ifacol_2023_10_1343
crossref_primary_10_1016_j_energy_2021_121133
crossref_primary_10_1016_j_ins_2022_05_017
crossref_primary_10_1016_j_icheatmasstransfer_2024_108302
crossref_primary_10_1109_LCSYS_2024_3417805
crossref_primary_10_1016_j_automatica_2021_109890
crossref_primary_10_3390_bdcc6040155
crossref_primary_10_1109_LCSYS_2023_3270347
crossref_primary_10_1007_s10957_024_02596_y
crossref_primary_10_2166_wcc_2024_035
crossref_primary_10_1007_s10472_022_09807_0
crossref_primary_10_1016_j_cma_2020_113623
crossref_primary_10_1109_ACCESS_2023_3282842
crossref_primary_10_1109_LRA_2021_3094479
crossref_primary_10_3390_math10162906
crossref_primary_10_1007_s12652_021_03547_5
crossref_primary_10_1016_j_automatica_2023_111110
crossref_primary_10_3389_fphy_2022_867990
crossref_primary_10_1016_j_ins_2023_01_028
Cites_doi 10.1023/A:1018975909870
10.1016/j.apm.2006.08.008
10.1080/10556780902909948
10.1029/JB076i008p01905
10.1504/IJMMNO.2013.055204
10.1007/3-540-50871-6
10.1109/CDC.2017.8263928
10.1007/s12532-018-0144-7
10.1214/ss/1177012420
10.1115/1.3653121
10.1023/A:1011255519438
10.1109/JPROC.2015.2494218
10.1007/BF00175354
10.1007/978-0-387-74759-0_128
10.2113/gsecongeo.58.8.1246
10.1007/s10898-004-0570-0
10.1007/0-387-30065-1_16
10.1007/s10898-012-9951-y
10.1007/978-3-030-05318-5_6
10.1023/A:1012771025575
10.1023/A:1008306431147
10.1017/CBO9780511804441
10.1145/800186.810616
10.1561/2200000016
10.1109/CDC.2006.377490
10.1023/A:1008382309369
10.1007/s10898-007-9133-5
10.1162/106365601750190398
10.1198/TECH.2011.09154
10.1109/TAC.2015.2417851
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-020-00215-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 595
ExternalDocumentID 10_1007_s10589_020_00215_w
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-716863a9257b55f86b566f259360dedd69295a3ff1158da6362fcb16fbd9ff163
IEDL.DBID RSV
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552952500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Wed Nov 26 13:52:36 EST 2025
Sat Nov 29 01:51:29 EST 2025
Tue Nov 18 22:00:33 EST 2025
Fri Feb 21 02:30:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Global optimization
Radial basis functions
Black-box optimization
Surrogate models
Bayesian optimization
Inverse distance weighting
Derivative-free algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-716863a9257b55f86b566f259360dedd69295a3ff1158da6362fcb16fbd9ff163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6761-0856
OpenAccessLink https://link.springer.com/10.1007/s10589-020-00215-w
PQID 2608627778
PQPubID 30811
PageCount 25
ParticipantIDs proquest_journals_2608627778
crossref_citationtrail_10_1007_s10589_020_00215_w
crossref_primary_10_1007_s10589_020_00215_w
springer_journals_10_1007_s10589_020_00215_w
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References JosephVRKangLRegression-based inverse distance weighting with applications to computer experimentsTechnometrics2011533255265285770310.1198/TECH.2011.09154
ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc. IEEE2015104114817510.1109/JPROC.2015.2494218
HardyRLMultiquadric equations of topography and other irregular surfacesJ. Geophys. Res.19717681905191510.1029/JB076i008p01905
Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded MPC. In: Proc. 21th IFAC World Congress. https://arxiv.org/abs/1911.13021 (2020)
CostaANanniciniGRbfopt: an open-source library for black-box optimization with costly function evaluationsMath. Program. Comput.2018104597629386370510.1007/s12532-018-0144-7
Bemporad, A., Piga, D.: Active preference learning based on radial basis functions. 2019. Available on arXiv at arxiv:1909.13049. Code available at http://cse.lab.imtlucca.it/~bemporad/idwgopt
Piga, D., Forgione, M., Formentin, S., Bemporad, A.: Performance-oriented model learning for data-driven MPC design. IEEE Control Systems Letters, 2019. Also in Proc. 58th IEEE Conf. Decision and Control, Nice (France) (2019). arxiv:1904.10839
VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Glob. Optim.2007392197219233637110.1007/s10898-007-9133-5
WhitleyDA genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods, Systems, Challenges, pp. 113–134. Springer International Publishing (2019)
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 409–423 (1989)
RiosLMSahinidisNVDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y
Bemporad, A.: Model-based predictive control design: new trends and tools. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 6678–6683, San Diego, CA (2006)
Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24, 669–685 (2009). http://www.norg.uminho.pt/aivaz/pswarm
Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York, NY, USA (2004). http://www.stanford.edu/~boyd/cvxbook.html
GutmannH-MA radial basis function method for global optimizationJ. Glob. Optim.2001192012227183321710.1023/A:1011255519438
McDonaldDBGranthamWJTaborWLMurphyMJGlobal and local optimization using radial basis function response surface modelsAppl. Math. Model.200731102095211010.1016/j.apm.2006.08.008
Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2):150–194 (2013). arxiv:1308.4008.pdf
MatheronGPrinciples of geostatisticsEcon. Geol.19635881246126610.2113/gsecongeo.58.8.1246
The GPyOpt authors. GPyOpt: a Bayesian optimization framework in Python. http://github.com/SheffieldML/GPyOpt (2016)
Snoek, J., Jasper, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code generation using the OSQP solver. In: Proc. 56th IEEE Conf. on Decision and Control, pp. 1906–1911, Melbourne, Australia, 2017. https://github.com/oxfordcontrol/osqp
Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprintarXiv:1012.2599 (2010)
Jones, D.R.: DIRECT global optimization algorithm. Encyclopedia of Optimization, pages 725–735, (2009)
Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In Large-scale nonlinear optimization, pp. 255–297. Springer (2006)
Bemporad, A.: Global optimization via inverse distance weighting. 2019. Available on arXiv at arxiv:1906.06498. Code available at http://cse.lab.imtlucca.it/~bemporad/glis
HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Glob. Optim.1999144331355170779510.1023/A:1008382309369
HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398
The Mathworks, Inc. Statistics and Machine Learning Toolbox User’s Guide (2019). https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf
Cimini, G., Bemporad, A., Bernardini, D.: ODYS QP Solver. ODYS S.r.l. (https://odys.it/qp), September 2017
JonesDRA taxonomy of global optimization methods based on response surfacesJ. Glob. Optim.2001214345383186939810.1023/A:1012771025575
BemporadAA multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squaresIEEE Trans. Autom. Control2015601128922903341957910.1109/TAC.2015.2417851
McKayMDBeckmanRJConoverWJComparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics19792122392455332520415.62011
Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. ACM National Conference, pp. 517–524. New York (1968)
Blok, H.J.: The lhsdesigncon MATLAB function, 2014. https://github.com/rikblok/matlab-lhsdesigncon
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1995)
KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ. Basic Eng.19648619710610.1115/1.3653121
RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Glob. Optim.2005311153171214217110.1007/s10898-004-0570-0
RippaSAn algorithm for selecting a good value for the parameter c in radial basis function interpolationAdv. Comput. Math.1999112–3193210173169710.1023/A:1018975909870
TörnAŽilinskasAGlobal Optimization1989BerlinSpringer10.1007/3-540-50871-6
BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016
JonesDRSchonlauMMatthiasWJEfficient global optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147
215_CR10
DB McDonald (215_CR27) 2007; 31
215_CR30
A Costa (215_CR11) 2018; 10
215_CR39
215_CR38
215_CR37
215_CR14
215_CR36
215_CR13
RG Regis (215_CR31) 2005; 31
215_CR12
215_CR34
D Whitley (215_CR43) 1994; 4
A Bemporad (215_CR3) 2015; 60
VR Joseph (215_CR24) 2011; 53
215_CR4
215_CR5
A Törn (215_CR40) 1989
215_CR6
215_CR1
215_CR2
S Rippa (215_CR33) 1999; 11
AIF Vaz (215_CR41) 2007; 39
MD McKay (215_CR28) 1979; 21
H-M Gutmann (215_CR15) 2001; 19
B Shahriari (215_CR35) 2015; 104
S Boyd (215_CR7) 2011; 3
215_CR20
215_CR42
DR Jones (215_CR21) 2001; 21
N Hansen (215_CR16) 2001; 9
215_CR29
215_CR8
215_CR9
215_CR22
G Matheron (215_CR26) 1963; 58
W Huyer (215_CR18) 1999; 14
215_CR19
HJ Kushner (215_CR25) 1964; 86
RL Hardy (215_CR17) 1971; 76
LM Rios (215_CR32) 2013; 56
DR Jones (215_CR23) 1998; 13
References_xml – reference: HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Glob. Optim.1999144331355170779510.1023/A:1008382309369
– reference: Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In Large-scale nonlinear optimization, pp. 255–297. Springer (2006)
– reference: Jones, D.R.: DIRECT global optimization algorithm. Encyclopedia of Optimization, pages 725–735, (2009)
– reference: McDonaldDBGranthamWJTaborWLMurphyMJGlobal and local optimization using radial basis function response surface modelsAppl. Math. Model.200731102095211010.1016/j.apm.2006.08.008
– reference: RiosLMSahinidisNVDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y
– reference: Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2):150–194 (2013). arxiv:1308.4008.pdf
– reference: JonesDRSchonlauMMatthiasWJEfficient global optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147
– reference: McKayMDBeckmanRJConoverWJComparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics19792122392455332520415.62011
– reference: Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. ACM National Conference, pp. 517–524. New York (1968)
– reference: HardyRLMultiquadric equations of topography and other irregular surfacesJ. Geophys. Res.19717681905191510.1029/JB076i008p01905
– reference: KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ. Basic Eng.19648619710610.1115/1.3653121
– reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016
– reference: Bemporad, A.: Global optimization via inverse distance weighting. 2019. Available on arXiv at arxiv:1906.06498. Code available at http://cse.lab.imtlucca.it/~bemporad/glis
– reference: VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Glob. Optim.2007392197219233637110.1007/s10898-007-9133-5
– reference: Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1995)
– reference: Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24, 669–685 (2009). http://www.norg.uminho.pt/aivaz/pswarm/
– reference: Cimini, G., Bemporad, A., Bernardini, D.: ODYS QP Solver. ODYS S.r.l. (https://odys.it/qp), September 2017
– reference: Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt
– reference: CostaANanniciniGRbfopt: an open-source library for black-box optimization with costly function evaluationsMath. Program. Comput.2018104597629386370510.1007/s12532-018-0144-7
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398
– reference: WhitleyDA genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354
– reference: Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods, Systems, Challenges, pp. 113–134. Springer International Publishing (2019)
– reference: RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Glob. Optim.2005311153171214217110.1007/s10898-004-0570-0
– reference: MatheronGPrinciples of geostatisticsEcon. Geol.19635881246126610.2113/gsecongeo.58.8.1246
– reference: GutmannH-MA radial basis function method for global optimizationJ. Glob. Optim.2001192012227183321710.1023/A:1011255519438
– reference: The GPyOpt authors. GPyOpt: a Bayesian optimization framework in Python. http://github.com/SheffieldML/GPyOpt (2016)
– reference: Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York, NY, USA (2004). http://www.stanford.edu/~boyd/cvxbook.html
– reference: Bemporad, A., Piga, D.: Active preference learning based on radial basis functions. 2019. Available on arXiv at arxiv:1909.13049. Code available at http://cse.lab.imtlucca.it/~bemporad/idwgopt
– reference: Snoek, J., Jasper, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)
– reference: The Mathworks, Inc. Statistics and Machine Learning Toolbox User’s Guide (2019). https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf
– reference: TörnAŽilinskasAGlobal Optimization1989BerlinSpringer10.1007/3-540-50871-6
– reference: Bemporad, A.: Model-based predictive control design: new trends and tools. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 6678–6683, San Diego, CA (2006)
– reference: Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 409–423 (1989)
– reference: BemporadAA multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squaresIEEE Trans. Autom. Control2015601128922903341957910.1109/TAC.2015.2417851
– reference: RippaSAn algorithm for selecting a good value for the parameter c in radial basis function interpolationAdv. Comput. Math.1999112–3193210173169710.1023/A:1018975909870
– reference: Piga, D., Forgione, M., Formentin, S., Bemporad, A.: Performance-oriented model learning for data-driven MPC design. IEEE Control Systems Letters, 2019. Also in Proc. 58th IEEE Conf. Decision and Control, Nice (France) (2019). arxiv:1904.10839
– reference: ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc. IEEE2015104114817510.1109/JPROC.2015.2494218
– reference: Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code generation using the OSQP solver. In: Proc. 56th IEEE Conf. on Decision and Control, pp. 1906–1911, Melbourne, Australia, 2017. https://github.com/oxfordcontrol/osqp
– reference: Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprintarXiv:1012.2599 (2010)
– reference: Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded MPC. In: Proc. 21th IFAC World Congress. https://arxiv.org/abs/1911.13021 (2020)
– reference: JosephVRKangLRegression-based inverse distance weighting with applications to computer experimentsTechnometrics2011533255265285770310.1198/TECH.2011.09154
– reference: Blok, H.J.: The lhsdesigncon MATLAB function, 2014. https://github.com/rikblok/matlab-lhsdesigncon
– reference: JonesDRA taxonomy of global optimization methods based on response surfacesJ. Glob. Optim.2001214345383186939810.1023/A:1012771025575
– ident: 215_CR10
– volume: 11
  start-page: 193
  issue: 2–3
  year: 1999
  ident: 215_CR33
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018975909870
– ident: 215_CR9
– ident: 215_CR12
– volume: 31
  start-page: 2095
  issue: 10
  year: 2007
  ident: 215_CR27
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.08.008
– ident: 215_CR37
– ident: 215_CR42
  doi: 10.1080/10556780902909948
– volume: 76
  start-page: 1905
  issue: 8
  year: 1971
  ident: 215_CR17
  publication-title: J. Geophys. Res.
  doi: 10.1029/JB076i008p01905
– ident: 215_CR29
– ident: 215_CR19
  doi: 10.1504/IJMMNO.2013.055204
– volume-title: Global Optimization
  year: 1989
  ident: 215_CR40
  doi: 10.1007/3-540-50871-6
– ident: 215_CR1
  doi: 10.1109/CDC.2017.8263928
– ident: 215_CR14
– volume: 10
  start-page: 597
  issue: 4
  year: 2018
  ident: 215_CR11
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0144-7
– ident: 215_CR34
  doi: 10.1214/ss/1177012420
– ident: 215_CR5
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  ident: 215_CR25
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 19
  start-page: 201
  year: 2001
  ident: 215_CR15
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1011255519438
– ident: 215_CR39
– volume: 104
  start-page: 148
  issue: 1
  year: 2015
  ident: 215_CR35
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 215_CR43
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– ident: 215_CR22
  doi: 10.1007/978-0-387-74759-0_128
– volume: 58
  start-page: 1246
  issue: 8
  year: 1963
  ident: 215_CR26
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 215_CR31
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– ident: 215_CR6
– ident: 215_CR30
  doi: 10.1007/0-387-30065-1_16
– ident: 215_CR38
– volume: 56
  start-page: 1247
  issue: 3
  year: 2013
  ident: 215_CR32
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– ident: 215_CR13
  doi: 10.1007/978-3-030-05318-5_6
– volume: 21
  start-page: 345
  issue: 4
  year: 2001
  ident: 215_CR21
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012771025575
– ident: 215_CR4
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 215_CR23
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008306431147
– ident: 215_CR8
  doi: 10.1017/CBO9780511804441
– ident: 215_CR20
– ident: 215_CR36
  doi: 10.1145/800186.810616
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 215_CR7
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000016
– ident: 215_CR2
  doi: 10.1109/CDC.2006.377490
– volume: 14
  start-page: 331
  issue: 4
  year: 1999
  ident: 215_CR18
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008382309369
– volume: 39
  start-page: 197
  issue: 2
  year: 2007
  ident: 215_CR41
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9133-5
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 215_CR16
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– volume: 53
  start-page: 255
  issue: 3
  year: 2011
  ident: 215_CR24
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.09154
– volume: 60
  start-page: 2892
  issue: 11
  year: 2015
  ident: 215_CR3
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2417851
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 215_CR28
  publication-title: Technometrics
SSID ssj0009732
Score 2.514459
Snippet Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to...
Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Algorithms
Convex and Discrete Geometry
Global optimization
Management Science
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Radial basis function
Statistics
Weighting
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8MgFCY6PejB38bpNBy8KXGFFujJGONioi4e1OzWUArJktnNbW7_vg9GrZroxWsppOl78H08eN9D6BSsKmQiOTHaMhJrJUieMkO0iNO2idtS-9DFy73odmWvlz6GgNskXKus1kS_UBdD7WLkF8C7gXwLIeTl6I24qlHudDWU0FhGKxGlkfPzO0Fq0V3hC5S1U8oJADsLSTMhdS5xl4Woy6sG2CPz78BUs80fB6Qedzqb__3iLbQRGCe-WrjINloy5Q5a_6JDuIseFsr_eAjrx2tIzMSzvsL90t3aMLhwLBPcA899JBU6YVUWeOyEDQYYkLA_wQ4hvRPvoefOzdP1LQl1FohmnE0JbJkkZyqF2ZsniZU8B45nqav11y5MUXCgUIli1gJ7lIXigHlW5xG3eZHCQ872UaMcluYA4cgksCUD4M1jEytqlaXKylhFTOWGCtVEUfWTMx1EyF0tjEFWyyc7w2RgmMwbJps30dlnn9FCguPPt1uVNbIwHSdZbYomOq_sWTf_Ptrh36MdoTXqXMjnJrZQYzp-N8doVc-m_cn4xDvjByFe5MU
  priority: 102
  providerName: ProQuest
Title Global optimization via inverse distance weighting and radial basis functions
URI https://link.springer.com/article/10.1007/s10589-020-00215-w
https://www.proquest.com/docview/2608627778
Volume 77
WOSCitedRecordID wos000552952500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfLgmwa6pk3SRxWHoBvDb30paZvAYHayze3f95K1TkUFfTlIm4Zyd8nvLsndARygVIUMJac6NYwGqRI0iZimqQgiTweeTN3Wxd2laLflw0PUKYLChuVt9_JI0q3UH4LdQnu9x7eR0AhUdDIPCwh30k7Hq-u7Wapd4cqSeZHPKcI5K0Jlvh_jMxzNbMwvx6IObZqr__vPNVgprEtyPFWHdZjT-QYsf8g5iK3We6LW4QYsWWNzmqt5E1rTAgCkj8vIcxGfScZdRbq5vbyhSWaNTdQSMnEbqjgeUXlGBja_QY8gIHaHxAKl0-UtuG2e3Zye06LcAk0ZZyOKnpPkTEU4iZMwNJInaOoZ35b88zKdZRwtqVAxY9CIlJniCH0mTRrcJFmEDznbhkrez_UOkIYO0TND_E0CHSjfKOMrIwPVYCrRvlBVaJRcj9MiF7ktidGLZ1mULRdj5GLsuBhPqnD4_s3LNBPHr71rpTDjYlYOY_Td0IETQsgqHJXCm73-ebTdv3XfgyXfyt-FLNagMhq86n1YTMco0EEd5sX9Yx0WTs7anStsXQiKtOWdWup3LBXXSDvhU91p9hv-uuux
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRQIOhfJQt-XhQzmBRdZObOdQVRUUgVhWHABxC45jSytBFna3rPhT_Y0de5OmIMGNA9c4tpTMNzOf7XkAfEOpSpUoQa1xnMZGS5qn3FIj4zSycaRMOLq47MhuV11dpWdT8KfOhfFhlbVNDIa66Bt_Rr6HvBvJt5RS_bi7p75rlL9drVtoTGBxYh_HuGUbfj8-QPluM3b463z_iFZdBajhgo8obhCU4DpFrOZJ4pTIkdE45jvbRYUtCoGEIdHcOeRKqtACLbwzeVu4vEjxoeC47jR8iGNUBx8qGO03RX5laIgWpUxQJBK8StKpUvUSH5zEfB43ulk6fuoIG3b77EI2-LnDxff2h5bgY8Woyc-JCnyCKVsuw8J_dRZX4HTS2YD00T7eVomn5KGnSa_0USmWFJ5FI_zJOJwU4ySiy4IMfOGGG4KevjckngEEJV2Fizf5njWYKful_QykbRPcciKxyGMba-a0Y9qpWLe5zi2TugXtWqiZqYqs-14fN1lTHtoDIUMgZAEI2bgFO__m3E1KjLz69not_awyN8OsEX0Ldmv8NMMvr_bl9dW2YO7o_LSTdY67J19hnnn4hjzMdZgZDX7bDZg1D6PecLAZFIHA9Vvj6i-qP0Db
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQBU9lG-xLRQf4AQWu3ZiO4cKIWAFWlhxoBW34Di2tBJkYXdh1b_WX9exNyGABDcOvebDUuI3M8_2zDyALZxVqWIlqDWO08hoSbOEW2pklDRt1FQmbF38PpPdrrq6Si6m4G9VC-PTKiufGBx13jd-j3wPeTeSbyml2nNlWsTFUXv_7p56BSl_0lrJaUwg0rF_xrh8G_48PcK53masfXx5eEJLhQFquOAjiosFJbhOELdZHDslMmQ3jnmVu2Zu81wgeYg1dw55k8q1QG_vTNYSLssTvCg4jvsJZjAKx97GOpLWDX9lEEdrJkxQJBW8LNgpy_Zin6jEfE03hlw6fhkUa6b76nA2xLz2_P_8txbga8m0ycHENBZhyhZL8OVZ_8VlOJ8oHpA--s3bsiCVPPY06RU-W8WS3LNrNAsyDjvI-BLRRU4GvqHDDUEG0BsSzwyC8a7Arw_5nlWYLvqFXQPSsjEuRZFwZJGNNHPaMe1UpFtcZ5ZJ3YBWNcGpKZuvew2Qm7RuG-1BkSIo0gCKdNyAnad37iatR959er1CQlq6oWFaw6ABuxWW6ttvj_bt_dE24TPCKT077Xa-wxzzSA7lmeswPRo82A2YNY-j3nDwI9gEgeuPhtU_DPNJgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+optimization+via+inverse+distance+weighting+and+radial+basis+functions&rft.jtitle=Computational+optimization+and+applications&rft.au=Bemporad%2C+Alberto&rft.date=2020-11-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=77&rft.issue=2&rft.spage=571&rft.epage=595&rft_id=info:doi/10.1007%2Fs10589-020-00215-w&rft.externalDocID=10_1007_s10589_020_00215_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon