Global optimization via inverse distance weighting and radial basis functions
Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimizat...
Gespeichert in:
| Veröffentlicht in: | Computational optimization and applications Jg. 77; H. 2; S. 571 - 595 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.11.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a
surrogate function
to function samples and minimizing an
acquisition function
to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum (
exploitation
of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function (
exploration
of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at
http://cse.lab.imtlucca.it/~bemporad/glis
. |
|---|---|
| AbstractList | Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum (exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function (exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis. Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to function samples and minimizing an acquisition function to generate new samples. The acquisition step trades off between seeking for a new optimization vector where the surrogate is minimum ( exploitation of the surrogate) and looking for regions of the feasible space that have not yet been visited and that may potentially contain better values of the objective function ( exploration of the feasible space). This paper proposes a new global optimization algorithm that uses inverse distance weighting (IDW) and radial basis functions (RBF) to construct the acquisition function. Rather arbitrary constraints that are simple to evaluate can be easily taken into account. Compared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal minimum using Inverse distance weighting and Surrogate radial basis functions), is competitive and computationally lighter, as we show in a set of benchmark global optimization and hyperparameter tuning problems. MATLAB and Python implementations of GLIS are available at http://cse.lab.imtlucca.it/~bemporad/glis . |
| Author | Bemporad, Alberto |
| Author_xml | – sequence: 1 givenname: Alberto orcidid: 0000-0001-6761-0856 surname: Bemporad fullname: Bemporad, Alberto email: alberto.bemporad@imtlucca.it organization: IMT School for Advanced Studies Lucca |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16MnibktpWgVFDe6DpmZpKZMMzVJW_TpnXYEwUVXBw7_dy7fBI1CFyxClxiuMYC4SRiYVCUQKAEIZuXuBI0xE7QkUt2O0BgU4SUHoGdoktISAJSgZIxe5m1Xmbbo1tmv_LfJvgvF1pvCh62NyRaNT9mE2hY76xcf2YdFYUJTRNP4HqtM8qlwm1DvwXSOTp1pk734rVP0_nD_Nnssn1_nT7O757KmnOZSYC45NYowUTHmJK8Y544wRTk0tmm4IooZ6hzGTDaGU05cXWHuqkb1TU6n6GqYu47d58amrJfdJoZ-pSYcJCdCCNmn5JCqY5dStE7XPh8-zNH4VmPQe3l6kKd7efogT-96lPxD19GvTPw6DtEBSn04LGz8u-oI9QPeP4TE |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102013 crossref_primary_10_1016_j_ejco_2021_100012 crossref_primary_10_1016_j_rcim_2024_102781 crossref_primary_10_1109_TCST_2021_3136711 crossref_primary_10_1016_j_automatica_2021_109666 crossref_primary_10_1016_j_conengprac_2022_105411 crossref_primary_10_1016_j_asoc_2023_111194 crossref_primary_10_1007_s10589_023_00491_2 crossref_primary_10_1109_TAC_2022_3183036 crossref_primary_10_1109_TAC_2024_3477005 crossref_primary_10_1016_j_ejcon_2022_100647 crossref_primary_10_1016_j_ifacol_2023_10_1343 crossref_primary_10_1016_j_energy_2021_121133 crossref_primary_10_1016_j_ins_2022_05_017 crossref_primary_10_1016_j_icheatmasstransfer_2024_108302 crossref_primary_10_1109_LCSYS_2024_3417805 crossref_primary_10_1016_j_automatica_2021_109890 crossref_primary_10_3390_bdcc6040155 crossref_primary_10_1109_LCSYS_2023_3270347 crossref_primary_10_1007_s10957_024_02596_y crossref_primary_10_2166_wcc_2024_035 crossref_primary_10_1007_s10472_022_09807_0 crossref_primary_10_1016_j_cma_2020_113623 crossref_primary_10_1109_ACCESS_2023_3282842 crossref_primary_10_1109_LRA_2021_3094479 crossref_primary_10_3390_math10162906 crossref_primary_10_1007_s12652_021_03547_5 crossref_primary_10_1016_j_automatica_2023_111110 crossref_primary_10_3389_fphy_2022_867990 crossref_primary_10_1016_j_ins_2023_01_028 |
| Cites_doi | 10.1023/A:1018975909870 10.1016/j.apm.2006.08.008 10.1080/10556780902909948 10.1029/JB076i008p01905 10.1504/IJMMNO.2013.055204 10.1007/3-540-50871-6 10.1109/CDC.2017.8263928 10.1007/s12532-018-0144-7 10.1214/ss/1177012420 10.1115/1.3653121 10.1023/A:1011255519438 10.1109/JPROC.2015.2494218 10.1007/BF00175354 10.1007/978-0-387-74759-0_128 10.2113/gsecongeo.58.8.1246 10.1007/s10898-004-0570-0 10.1007/0-387-30065-1_16 10.1007/s10898-012-9951-y 10.1007/978-3-030-05318-5_6 10.1023/A:1012771025575 10.1023/A:1008306431147 10.1017/CBO9780511804441 10.1145/800186.810616 10.1561/2200000016 10.1109/CDC.2006.377490 10.1023/A:1008382309369 10.1007/s10898-007-9133-5 10.1162/106365601750190398 10.1198/TECH.2011.09154 10.1109/TAC.2015.2417851 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10589-020-00215-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1573-2894 |
| EndPage | 595 |
| ExternalDocumentID | 10_1007_s10589_020_00215_w |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c363t-716863a9257b55f86b566f259360dedd69295a3ff1158da6362fcb16fbd9ff163 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552952500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-6003 |
| IngestDate | Wed Nov 26 13:52:36 EST 2025 Sat Nov 29 01:51:29 EST 2025 Tue Nov 18 22:00:33 EST 2025 Fri Feb 21 02:30:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Global optimization Radial basis functions Black-box optimization Surrogate models Bayesian optimization Inverse distance weighting Derivative-free algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-716863a9257b55f86b566f259360dedd69295a3ff1158da6362fcb16fbd9ff163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6761-0856 |
| OpenAccessLink | https://link.springer.com/10.1007/s10589-020-00215-w |
| PQID | 2608627778 |
| PQPubID | 30811 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2608627778 crossref_citationtrail_10_1007_s10589_020_00215_w crossref_primary_10_1007_s10589_020_00215_w springer_journals_10_1007_s10589_020_00215_w |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Computational optimization and applications |
| PublicationTitleAbbrev | Comput Optim Appl |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | JosephVRKangLRegression-based inverse distance weighting with applications to computer experimentsTechnometrics2011533255265285770310.1198/TECH.2011.09154 ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc. IEEE2015104114817510.1109/JPROC.2015.2494218 HardyRLMultiquadric equations of topography and other irregular surfacesJ. Geophys. Res.19717681905191510.1029/JB076i008p01905 Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded MPC. In: Proc. 21th IFAC World Congress. https://arxiv.org/abs/1911.13021 (2020) CostaANanniciniGRbfopt: an open-source library for black-box optimization with costly function evaluationsMath. Program. Comput.2018104597629386370510.1007/s12532-018-0144-7 Bemporad, A., Piga, D.: Active preference learning based on radial basis functions. 2019. Available on arXiv at arxiv:1909.13049. Code available at http://cse.lab.imtlucca.it/~bemporad/idwgopt Piga, D., Forgione, M., Formentin, S., Bemporad, A.: Performance-oriented model learning for data-driven MPC design. IEEE Control Systems Letters, 2019. Also in Proc. 58th IEEE Conf. Decision and Control, Nice (France) (2019). arxiv:1904.10839 VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Glob. Optim.2007392197219233637110.1007/s10898-007-9133-5 WhitleyDA genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354 Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods, Systems, Challenges, pp. 113–134. Springer International Publishing (2019) Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 409–423 (1989) RiosLMSahinidisNVDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y Bemporad, A.: Model-based predictive control design: new trends and tools. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 6678–6683, San Diego, CA (2006) Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24, 669–685 (2009). http://www.norg.uminho.pt/aivaz/pswarm Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York, NY, USA (2004). http://www.stanford.edu/~boyd/cvxbook.html GutmannH-MA radial basis function method for global optimizationJ. Glob. Optim.2001192012227183321710.1023/A:1011255519438 McDonaldDBGranthamWJTaborWLMurphyMJGlobal and local optimization using radial basis function response surface modelsAppl. Math. Model.200731102095211010.1016/j.apm.2006.08.008 Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2):150–194 (2013). arxiv:1308.4008.pdf MatheronGPrinciples of geostatisticsEcon. Geol.19635881246126610.2113/gsecongeo.58.8.1246 The GPyOpt authors. GPyOpt: a Bayesian optimization framework in Python. http://github.com/SheffieldML/GPyOpt (2016) Snoek, J., Jasper, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012) Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code generation using the OSQP solver. In: Proc. 56th IEEE Conf. on Decision and Control, pp. 1906–1911, Melbourne, Australia, 2017. https://github.com/oxfordcontrol/osqp Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprintarXiv:1012.2599 (2010) Jones, D.R.: DIRECT global optimization algorithm. Encyclopedia of Optimization, pages 725–735, (2009) Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In Large-scale nonlinear optimization, pp. 255–297. Springer (2006) Bemporad, A.: Global optimization via inverse distance weighting. 2019. Available on arXiv at arxiv:1906.06498. Code available at http://cse.lab.imtlucca.it/~bemporad/glis HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Glob. Optim.1999144331355170779510.1023/A:1008382309369 HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398 The Mathworks, Inc. Statistics and Machine Learning Toolbox User’s Guide (2019). https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf Cimini, G., Bemporad, A., Bernardini, D.: ODYS QP Solver. ODYS S.r.l. (https://odys.it/qp), September 2017 JonesDRA taxonomy of global optimization methods based on response surfacesJ. Glob. Optim.2001214345383186939810.1023/A:1012771025575 BemporadAA multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squaresIEEE Trans. Autom. Control2015601128922903341957910.1109/TAC.2015.2417851 McKayMDBeckmanRJConoverWJComparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics19792122392455332520415.62011 Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. ACM National Conference, pp. 517–524. New York (1968) Blok, H.J.: The lhsdesigncon MATLAB function, 2014. https://github.com/rikblok/matlab-lhsdesigncon Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1995) KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ. Basic Eng.19648619710610.1115/1.3653121 RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Glob. Optim.2005311153171214217110.1007/s10898-004-0570-0 RippaSAn algorithm for selecting a good value for the parameter c in radial basis function interpolationAdv. Comput. Math.1999112–3193210173169710.1023/A:1018975909870 TörnAŽilinskasAGlobal Optimization1989BerlinSpringer10.1007/3-540-50871-6 BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016 JonesDRSchonlauMMatthiasWJEfficient global optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147 215_CR10 DB McDonald (215_CR27) 2007; 31 215_CR30 A Costa (215_CR11) 2018; 10 215_CR39 215_CR38 215_CR37 215_CR14 215_CR36 215_CR13 RG Regis (215_CR31) 2005; 31 215_CR12 215_CR34 D Whitley (215_CR43) 1994; 4 A Bemporad (215_CR3) 2015; 60 VR Joseph (215_CR24) 2011; 53 215_CR4 215_CR5 A Törn (215_CR40) 1989 215_CR6 215_CR1 215_CR2 S Rippa (215_CR33) 1999; 11 AIF Vaz (215_CR41) 2007; 39 MD McKay (215_CR28) 1979; 21 H-M Gutmann (215_CR15) 2001; 19 B Shahriari (215_CR35) 2015; 104 S Boyd (215_CR7) 2011; 3 215_CR20 215_CR42 DR Jones (215_CR21) 2001; 21 N Hansen (215_CR16) 2001; 9 215_CR29 215_CR8 215_CR9 215_CR22 G Matheron (215_CR26) 1963; 58 W Huyer (215_CR18) 1999; 14 215_CR19 HJ Kushner (215_CR25) 1964; 86 RL Hardy (215_CR17) 1971; 76 LM Rios (215_CR32) 2013; 56 DR Jones (215_CR23) 1998; 13 |
| References_xml | – reference: HuyerWNeumaierAGlobal optimization by multilevel coordinate searchJ. Glob. Optim.1999144331355170779510.1023/A:1008382309369 – reference: Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In Large-scale nonlinear optimization, pp. 255–297. Springer (2006) – reference: Jones, D.R.: DIRECT global optimization algorithm. Encyclopedia of Optimization, pages 725–735, (2009) – reference: McDonaldDBGranthamWJTaborWLMurphyMJGlobal and local optimization using radial basis function response surface modelsAppl. Math. Model.200731102095211010.1016/j.apm.2006.08.008 – reference: RiosLMSahinidisNVDerivative-free optimization: a review of algorithms and comparison of software implementationsJ. Glob. Optim.201356312471293307015410.1007/s10898-012-9951-y – reference: Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2):150–194 (2013). arxiv:1308.4008.pdf – reference: JonesDRSchonlauMMatthiasWJEfficient global optimization of expensive black-box functionsJ. Glob. Optim.1998134455492167346010.1023/A:1008306431147 – reference: McKayMDBeckmanRJConoverWJComparison of three methods for selecting values of input variables in the analysis of output from a computer codeTechnometrics19792122392455332520415.62011 – reference: Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. ACM National Conference, pp. 517–524. New York (1968) – reference: HardyRLMultiquadric equations of topography and other irregular surfacesJ. Geophys. Res.19717681905191510.1029/JB076i008p01905 – reference: KushnerHJA new method of locating the maximum point of an arbitrary multipeak curve in the presence of noiseJ. Basic Eng.19648619710610.1115/1.3653121 – reference: BoydSParikhNChuEPeleatoBEcksteinJDistributed optimization and statistical learning via the alternating direction method of multipliersFound. Trends Mach. Learn.201131112210.1561/2200000016 – reference: Bemporad, A.: Global optimization via inverse distance weighting. 2019. Available on arXiv at arxiv:1906.06498. Code available at http://cse.lab.imtlucca.it/~bemporad/glis – reference: VazAIFVicenteLNA particle swarm pattern search method for bound constrained global optimizationJ. Glob. Optim.2007392197219233637110.1007/s10898-007-9133-5 – reference: Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1995) – reference: Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24, 669–685 (2009). http://www.norg.uminho.pt/aivaz/pswarm/ – reference: Cimini, G., Bemporad, A., Bernardini, D.: ODYS QP Solver. ODYS S.r.l. (https://odys.it/qp), September 2017 – reference: Johnson, S.G.: The NLopt nonlinear-optimization package. http://github.com/stevengj/nlopt – reference: CostaANanniciniGRbfopt: an open-source library for black-box optimization with costly function evaluationsMath. Program. Comput.2018104597629386370510.1007/s12532-018-0144-7 – reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.20019215919510.1162/106365601750190398 – reference: WhitleyDA genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354 – reference: Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods, Systems, Challenges, pp. 113–134. Springer International Publishing (2019) – reference: RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ. Glob. Optim.2005311153171214217110.1007/s10898-004-0570-0 – reference: MatheronGPrinciples of geostatisticsEcon. Geol.19635881246126610.2113/gsecongeo.58.8.1246 – reference: GutmannH-MA radial basis function method for global optimizationJ. Glob. Optim.2001192012227183321710.1023/A:1011255519438 – reference: The GPyOpt authors. GPyOpt: a Bayesian optimization framework in Python. http://github.com/SheffieldML/GPyOpt (2016) – reference: Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York, NY, USA (2004). http://www.stanford.edu/~boyd/cvxbook.html – reference: Bemporad, A., Piga, D.: Active preference learning based on radial basis functions. 2019. Available on arXiv at arxiv:1909.13049. Code available at http://cse.lab.imtlucca.it/~bemporad/idwgopt – reference: Snoek, J., Jasper, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012) – reference: The Mathworks, Inc. Statistics and Machine Learning Toolbox User’s Guide (2019). https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf – reference: TörnAŽilinskasAGlobal Optimization1989BerlinSpringer10.1007/3-540-50871-6 – reference: Bemporad, A.: Model-based predictive control design: new trends and tools. In: Proc. 45th IEEE Conf. on Decision and Control, pp. 6678–6683, San Diego, CA (2006) – reference: Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 409–423 (1989) – reference: BemporadAA multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squaresIEEE Trans. Autom. Control2015601128922903341957910.1109/TAC.2015.2417851 – reference: RippaSAn algorithm for selecting a good value for the parameter c in radial basis function interpolationAdv. Comput. Math.1999112–3193210173169710.1023/A:1018975909870 – reference: Piga, D., Forgione, M., Formentin, S., Bemporad, A.: Performance-oriented model learning for data-driven MPC design. IEEE Control Systems Letters, 2019. Also in Proc. 58th IEEE Conf. Decision and Control, Nice (France) (2019). arxiv:1904.10839 – reference: ShahriariBSwerskyKWangZAdamsRPDe FreitasNTaking the human out of the loop: a review of Bayesian optimizationProc. IEEE2015104114817510.1109/JPROC.2015.2494218 – reference: Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code generation using the OSQP solver. In: Proc. 56th IEEE Conf. on Decision and Control, pp. 1906–1911, Melbourne, Australia, 2017. https://github.com/oxfordcontrol/osqp – reference: Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprintarXiv:1012.2599 (2010) – reference: Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded MPC. In: Proc. 21th IFAC World Congress. https://arxiv.org/abs/1911.13021 (2020) – reference: JosephVRKangLRegression-based inverse distance weighting with applications to computer experimentsTechnometrics2011533255265285770310.1198/TECH.2011.09154 – reference: Blok, H.J.: The lhsdesigncon MATLAB function, 2014. https://github.com/rikblok/matlab-lhsdesigncon – reference: JonesDRA taxonomy of global optimization methods based on response surfacesJ. Glob. Optim.2001214345383186939810.1023/A:1012771025575 – ident: 215_CR10 – volume: 11 start-page: 193 issue: 2–3 year: 1999 ident: 215_CR33 publication-title: Adv. Comput. Math. doi: 10.1023/A:1018975909870 – ident: 215_CR9 – ident: 215_CR12 – volume: 31 start-page: 2095 issue: 10 year: 2007 ident: 215_CR27 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2006.08.008 – ident: 215_CR37 – ident: 215_CR42 doi: 10.1080/10556780902909948 – volume: 76 start-page: 1905 issue: 8 year: 1971 ident: 215_CR17 publication-title: J. Geophys. Res. doi: 10.1029/JB076i008p01905 – ident: 215_CR29 – ident: 215_CR19 doi: 10.1504/IJMMNO.2013.055204 – volume-title: Global Optimization year: 1989 ident: 215_CR40 doi: 10.1007/3-540-50871-6 – ident: 215_CR1 doi: 10.1109/CDC.2017.8263928 – ident: 215_CR14 – volume: 10 start-page: 597 issue: 4 year: 2018 ident: 215_CR11 publication-title: Math. Program. Comput. doi: 10.1007/s12532-018-0144-7 – ident: 215_CR34 doi: 10.1214/ss/1177012420 – ident: 215_CR5 – volume: 86 start-page: 97 issue: 1 year: 1964 ident: 215_CR25 publication-title: J. Basic Eng. doi: 10.1115/1.3653121 – volume: 19 start-page: 201 year: 2001 ident: 215_CR15 publication-title: J. Glob. Optim. doi: 10.1023/A:1011255519438 – ident: 215_CR39 – volume: 104 start-page: 148 issue: 1 year: 2015 ident: 215_CR35 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 215_CR43 publication-title: Stat. Comput. doi: 10.1007/BF00175354 – ident: 215_CR22 doi: 10.1007/978-0-387-74759-0_128 – volume: 58 start-page: 1246 issue: 8 year: 1963 ident: 215_CR26 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.58.8.1246 – volume: 31 start-page: 153 issue: 1 year: 2005 ident: 215_CR31 publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-0570-0 – ident: 215_CR6 – ident: 215_CR30 doi: 10.1007/0-387-30065-1_16 – ident: 215_CR38 – volume: 56 start-page: 1247 issue: 3 year: 2013 ident: 215_CR32 publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9951-y – ident: 215_CR13 doi: 10.1007/978-3-030-05318-5_6 – volume: 21 start-page: 345 issue: 4 year: 2001 ident: 215_CR21 publication-title: J. Glob. Optim. doi: 10.1023/A:1012771025575 – ident: 215_CR4 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 215_CR23 publication-title: J. Glob. Optim. doi: 10.1023/A:1008306431147 – ident: 215_CR8 doi: 10.1017/CBO9780511804441 – ident: 215_CR20 – ident: 215_CR36 doi: 10.1145/800186.810616 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 215_CR7 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000016 – ident: 215_CR2 doi: 10.1109/CDC.2006.377490 – volume: 14 start-page: 331 issue: 4 year: 1999 ident: 215_CR18 publication-title: J. Glob. Optim. doi: 10.1023/A:1008382309369 – volume: 39 start-page: 197 issue: 2 year: 2007 ident: 215_CR41 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9133-5 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 215_CR16 publication-title: Evol. Comput. doi: 10.1162/106365601750190398 – volume: 53 start-page: 255 issue: 3 year: 2011 ident: 215_CR24 publication-title: Technometrics doi: 10.1198/TECH.2011.09154 – volume: 60 start-page: 2892 issue: 11 year: 2015 ident: 215_CR3 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2015.2417851 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 215_CR28 publication-title: Technometrics |
| SSID | ssj0009732 |
| Score | 2.514459 |
| Snippet | Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a
surrogate function
to... Global optimization problems whose objective function is expensive to evaluate can be solved effectively by recursively fitting a surrogate function to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 571 |
| SubjectTerms | Algorithms Convex and Discrete Geometry Global optimization Management Science Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Radial basis function Statistics Weighting |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8MgFCY6PejB38bpNBy8KXGFFujJGONioi4e1OzWUArJktnNbW7_vg9GrZroxWsppOl78H08eN9D6BSsKmQiOTHaMhJrJUieMkO0iNO2idtS-9DFy73odmWvlz6GgNskXKus1kS_UBdD7WLkF8C7gXwLIeTl6I24qlHudDWU0FhGKxGlkfPzO0Fq0V3hC5S1U8oJADsLSTMhdS5xl4Woy6sG2CPz78BUs80fB6Qedzqb__3iLbQRGCe-WrjINloy5Q5a_6JDuIseFsr_eAjrx2tIzMSzvsL90t3aMLhwLBPcA899JBU6YVUWeOyEDQYYkLA_wQ4hvRPvoefOzdP1LQl1FohmnE0JbJkkZyqF2ZsniZU8B45nqav11y5MUXCgUIli1gJ7lIXigHlW5xG3eZHCQ872UaMcluYA4cgksCUD4M1jEytqlaXKylhFTOWGCtVEUfWTMx1EyF0tjEFWyyc7w2RgmMwbJps30dlnn9FCguPPt1uVNbIwHSdZbYomOq_sWTf_Ptrh36MdoTXqXMjnJrZQYzp-N8doVc-m_cn4xDvjByFe5MU priority: 102 providerName: ProQuest |
| Title | Global optimization via inverse distance weighting and radial basis functions |
| URI | https://link.springer.com/article/10.1007/s10589-020-00215-w https://www.proquest.com/docview/2608627778 |
| Volume | 77 |
| WOSCitedRecordID | wos000552952500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-2894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009732 issn: 0926-6003 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfovTOfLgmwa6pk3SRxWHoBvDb30paZvAYHayze3f95K1TkUFfTlIm4Zyd8nvLsndARygVIUMJac6NYwGqRI0iZimqQgiTweeTN3Wxd2laLflw0PUKYLChuVt9_JI0q3UH4LdQnu9x7eR0AhUdDIPCwh30k7Hq-u7Wapd4cqSeZHPKcI5K0Jlvh_jMxzNbMwvx6IObZqr__vPNVgprEtyPFWHdZjT-QYsf8g5iK3We6LW4QYsWWNzmqt5E1rTAgCkj8vIcxGfScZdRbq5vbyhSWaNTdQSMnEbqjgeUXlGBja_QY8gIHaHxAKl0-UtuG2e3Zye06LcAk0ZZyOKnpPkTEU4iZMwNJInaOoZ35b88zKdZRwtqVAxY9CIlJniCH0mTRrcJFmEDznbhkrez_UOkIYO0TND_E0CHSjfKOMrIwPVYCrRvlBVaJRcj9MiF7ktidGLZ1mULRdj5GLsuBhPqnD4_s3LNBPHr71rpTDjYlYOY_Td0IETQsgqHJXCm73-ebTdv3XfgyXfyt-FLNagMhq86n1YTMco0EEd5sX9Yx0WTs7anStsXQiKtOWdWup3LBXXSDvhU91p9hv-uuux |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRQIOhfJQt-XhQzmBRdZObOdQVRUUgVhWHABxC45jSytBFna3rPhT_Y0de5OmIMGNA9c4tpTMNzOf7XkAfEOpSpUoQa1xnMZGS5qn3FIj4zSycaRMOLq47MhuV11dpWdT8KfOhfFhlbVNDIa66Bt_Rr6HvBvJt5RS_bi7p75rlL9drVtoTGBxYh_HuGUbfj8-QPluM3b463z_iFZdBajhgo8obhCU4DpFrOZJ4pTIkdE45jvbRYUtCoGEIdHcOeRKqtACLbwzeVu4vEjxoeC47jR8iGNUBx8qGO03RX5laIgWpUxQJBK8StKpUvUSH5zEfB43ulk6fuoIG3b77EI2-LnDxff2h5bgY8Woyc-JCnyCKVsuw8J_dRZX4HTS2YD00T7eVomn5KGnSa_0USmWFJ5FI_zJOJwU4ySiy4IMfOGGG4KevjckngEEJV2Fizf5njWYKful_QykbRPcciKxyGMba-a0Y9qpWLe5zi2TugXtWqiZqYqs-14fN1lTHtoDIUMgZAEI2bgFO__m3E1KjLz69not_awyN8OsEX0Ldmv8NMMvr_bl9dW2YO7o_LSTdY67J19hnnn4hjzMdZgZDX7bDZg1D6PecLAZFIHA9Vvj6i-qP0Db |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQBU9lG-xLRQf4AQWu3ZiO4cKIWAFWlhxoBW34Di2tBJkYXdh1b_WX9exNyGABDcOvebDUuI3M8_2zDyALZxVqWIlqDWO08hoSbOEW2pklDRt1FQmbF38PpPdrrq6Si6m4G9VC-PTKiufGBx13jd-j3wPeTeSbyml2nNlWsTFUXv_7p56BSl_0lrJaUwg0rF_xrh8G_48PcK53masfXx5eEJLhQFquOAjiosFJbhOELdZHDslMmQ3jnmVu2Zu81wgeYg1dw55k8q1QG_vTNYSLssTvCg4jvsJZjAKx97GOpLWDX9lEEdrJkxQJBW8LNgpy_Zin6jEfE03hlw6fhkUa6b76nA2xLz2_P_8txbga8m0ycHENBZhyhZL8OVZ_8VlOJ8oHpA--s3bsiCVPPY06RU-W8WS3LNrNAsyDjvI-BLRRU4GvqHDDUEG0BsSzwyC8a7Arw_5nlWYLvqFXQPSsjEuRZFwZJGNNHPaMe1UpFtcZ5ZJ3YBWNcGpKZuvew2Qm7RuG-1BkSIo0gCKdNyAnad37iatR959er1CQlq6oWFaw6ABuxWW6ttvj_bt_dE24TPCKT077Xa-wxzzSA7lmeswPRo82A2YNY-j3nDwI9gEgeuPhtU_DPNJgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+optimization+via+inverse+distance+weighting+and+radial+basis+functions&rft.jtitle=Computational+optimization+and+applications&rft.au=Bemporad%2C+Alberto&rft.date=2020-11-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=77&rft.issue=2&rft.spage=571&rft.epage=595&rft_id=info:doi/10.1007%2Fs10589-020-00215-w&rft.externalDocID=10_1007_s10589_020_00215_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |