An iterative numerical algorithm for modeling a class of Wiener nonlinear systems

This letter presents an iterative estimation algorithm for modeling a class of output nonlinear systems. The basic idea is to derive an estimation model and to solve an optimization problem using the gradient search. The proposed iterative numerical algorithm can estimate the parameters of a class o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied mathematics letters Ročník 26; číslo 4; s. 487 - 493
Hlavní autori: Xiong, Weili, Ma, Junxia, Ding, Ruifeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2013
Predmet:
ISSN:0893-9659, 1873-5452
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This letter presents an iterative estimation algorithm for modeling a class of output nonlinear systems. The basic idea is to derive an estimation model and to solve an optimization problem using the gradient search. The proposed iterative numerical algorithm can estimate the parameters of a class of Wiener nonlinear systems from input–output measurement data. The proposed algorithm has faster convergence rates compared with the stochastic gradient algorithm. The numerical simulation results indicate that the proposed algorithm works well.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0893-9659
1873-5452
DOI:10.1016/j.aml.2012.12.001