FFNSL: Feed-Forward Neural-Symbolic Learner

Logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FFN...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 112; no. 2; pp. 515 - 569
Main Authors: Cunnington, Daniel, Law, Mark, Lobo, Jorge, Russo, Alessandra
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2023
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FFNSL) , that integrates a logic-based machine learning system capable of learning from noisy examples, with neural networks, in order to learn interpretable knowledge from labelled unstructured data. We demonstrate the generality of FFNSL on four neural-symbolic classification problems, where different pre-trained neural network models and logic-based machine learning systems are integrated to learn interpretable knowledge from sequences of images. We evaluate the robustness of our framework by using images subject to distributional shifts, for which the pre-trained neural networks may predict incorrectly and with high confidence. We analyse the impact that these shifts have on the accuracy of the learned knowledge and run-time performance, comparing FFNSL to tree-based and pure neural approaches. Our experimental results show that FFNSL outperforms the baselines by learning more accurate and interpretable knowledge with fewer examples.
AbstractList Logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FFNSL) , that integrates a logic-based machine learning system capable of learning from noisy examples, with neural networks, in order to learn interpretable knowledge from labelled unstructured data. We demonstrate the generality of FFNSL on four neural-symbolic classification problems, where different pre-trained neural network models and logic-based machine learning systems are integrated to learn interpretable knowledge from sequences of images. We evaluate the robustness of our framework by using images subject to distributional shifts, for which the pre-trained neural networks may predict incorrectly and with high confidence. We analyse the impact that these shifts have on the accuracy of the learned knowledge and run-time performance, comparing FFNSL to tree-based and pure neural approaches. Our experimental results show that FFNSL outperforms the baselines by learning more accurate and interpretable knowledge with fewer examples.
Logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a structured logical form. To address this limitation, we propose a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FFNSL), that integrates a logic-based machine learning system capable of learning from noisy examples, with neural networks, in order to learn interpretable knowledge from labelled unstructured data. We demonstrate the generality of FFNSL on four neural-symbolic classification problems, where different pre-trained neural network models and logic-based machine learning systems are integrated to learn interpretable knowledge from sequences of images. We evaluate the robustness of our framework by using images subject to distributional shifts, for which the pre-trained neural networks may predict incorrectly and with high confidence. We analyse the impact that these shifts have on the accuracy of the learned knowledge and run-time performance, comparing FFNSL to tree-based and pure neural approaches. Our experimental results show that FFNSL outperforms the baselines by learning more accurate and interpretable knowledge with fewer examples.
Author Russo, Alessandra
Lobo, Jorge
Cunnington, Daniel
Law, Mark
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0003-0715-964X
  surname: Cunnington
  fullname: Cunnington, Daniel
  email: dancunnington@uk.ibm.com
  organization: IBM Research Europe, Imperial College London
– sequence: 2
  givenname: Mark
  surname: Law
  fullname: Law, Mark
  organization: Imperial College London, ILASP Limited
– sequence: 3
  givenname: Jorge
  surname: Lobo
  fullname: Lobo, Jorge
  organization: ICREA-Universitat Pompeu Fabra
– sequence: 4
  givenname: Alessandra
  surname: Russo
  fullname: Russo, Alessandra
  organization: Imperial College London
BookMark eNp9kE1Lw0AQQBepYFv9A54KHmV1drf7EW9SjAqhHqrnZZOdSEqa1N0E6b83GkHw0NNc3psZ3oxMmrZBQi4Z3DAAfRsZJMmSAucUFNeGqhMyZVILClLJCZmCMZIqxuUZmcW4BQCujJqS6zRdb7K7RYroadqGTxf8Yo19cDXdHHZ5W1fFIkMXGgzn5LR0dcSL3zknb-nD6-qJZi-Pz6v7jBZCiY5q4JCwUoLjDpzHpACjhF9Kr3LHZK4lovE5E6VhS-ENqjzh4EqUstTOcTEnV-PefWg_eoyd3bZ9aIaTlmvNDGMG9ECZkSpCG2PA0hZV57qqbbrgqtoysN9p7JjGDmnsTxqrBpX_U_eh2rlwOC6JUYoD3Lxj-PvqiPUFfwF2Hg
CitedBy_id crossref_primary_10_1007_s10994_024_06610_2
crossref_primary_10_3233_NAI_240712
crossref_primary_10_4204_EPTCS_416_6
Cites_doi 10.1007/s10994-014-5471-y
10.1007/s10994-006-5833-1
10.1007/s10994-021-05946-3
10.1016/j.artint.2018.03.005
10.1613/jair.5714
10.1016/j.patcog.2020.107256
10.1007/BF03037089
10.1016/j.inffus.2021.05.008
10.1017/CBO9781139342124
10.1088/0954-898X_6_3_011
10.1145/502807.502810
10.1109/5.726791
10.1016/j.fss.2006.06.016
10.21105/joss.00786
10.1609/aaai.v34i04.5962
10.1609/aaai.v35i6.16639
10.1007/978-1-4684-2001-2_9
10.24963/ijcai.2020/243
10.24963/ijcai.2017/221
10.24963/ijcai.2021/254
10.1145/2939672.2939874
10.1609/aaai.v34i03.5678
10.1007/978-3-030-31423-1_6
10.1609/aaai.v34i04.6015
10.1109/CVPR.2009.5206537
10.1017/S1471068413000689
10.1007/978-3-540-28650-9_4
10.1007/3-540-56602-3_144
10.1109/DSAA.2018.00018
10.1007/978-1-4020-9409-5
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-022-06278-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 569
ExternalDocumentID 10_1007_s10994_022_06278_6
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911NF-16-3-0001
  funderid: http://dx.doi.org/10.13039/100006754
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-702091f50a2a0ade9c0863d45d6ba15b75ee8db13f8143d8e6b920afe55f7aa23
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950575300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 02:16:32 EST 2025
Sat Nov 29 01:43:29 EST 2025
Tue Nov 18 20:33:34 EST 2025
Fri Feb 21 02:44:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Neural-symbolic learning
Inductive logic programming
Distributional shift
Logic-based machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-702091f50a2a0ade9c0863d45d6ba15b75ee8db13f8143d8e6b920afe55f7aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0715-964X
OpenAccessLink https://link.springer.com/10.1007/s10994-022-06278-6
PQID 2771811807
PQPubID 54194
PageCount 55
ParticipantIDs proquest_journals_2771811807
crossref_citationtrail_10_1007_s10994_022_06278_6
crossref_primary_10_1007_s10994_022_06278_6
springer_journals_10_1007_s10994_022_06278_6
PublicationCentury 2000
PublicationDate 20230200
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References López-Cifuentes, Escudero-Viñolo, Bescós (CR29) 2020; 102
CR39
CR38
CR35
CR34
CR33
CR32
CR31
CR2
CR4
CR3
CR6
Mackay (CR30) 1995; 6
CR5
CR8
CR7
CR49
CR48
CR47
CR46
Gelfond, Kahl (CR16) 2014
CR45
CR44
CR43
CR41
CR40
Law, Russo, Broda (CR27) 2018; 259
Richardson, Domingos (CR42) 2006; 62
Evans, Grefenstette (CR13) 2018; 61
Muggleton, Lin, Tamaddoni-Nezhad (CR37) 2015; 100
CR18
CR17
CR15
CR12
CR11
CR10
Hüllermeier, Waegeman (CR19) 2021; 110
CR54
Flaminio, Marchioni (CR14) 2006; 157
CR53
CR52
LeCun, Bottou, Bengio, Haffner (CR28) 1998; 86
CR51
Abdar, Pourpanah, Hussain, Rezazadegan, Liu, Ghavamzadeh, Fieguth, Cao, Khosravi, Acharya, Makarenkov, Nahavandi (CR1) 2021; 76
CR50
Muggleton (CR36) 1991; 8
Dantsin, Eiter, Gottlob, Voronkov (CR9) 2001; 33
CR25
Law, Russo, Broda (CR26) 2018; 7
CR24
CR23
CR22
CR21
CR20
6278_CR20
R Evans (6278_CR13) 2018; 61
M Gelfond (6278_CR16) 2014
6278_CR3
6278_CR4
6278_CR2
6278_CR7
6278_CR8
6278_CR5
6278_CR6
6278_CR23
6278_CR24
6278_CR21
6278_CR22
M Richardson (6278_CR42) 2006; 62
6278_CR25
6278_CR31
M Abdar (6278_CR1) 2021; 76
6278_CR34
6278_CR35
6278_CR32
6278_CR33
6278_CR38
6278_CR39
S Muggleton (6278_CR36) 1991; 8
6278_CR41
6278_CR40
A López-Cifuentes (6278_CR29) 2020; 102
E Dantsin (6278_CR9) 2001; 33
M Law (6278_CR26) 2018; 7
6278_CR45
T Flaminio (6278_CR14) 2006; 157
6278_CR46
6278_CR43
6278_CR44
6278_CR49
6278_CR47
6278_CR48
Y LeCun (6278_CR28) 1998; 86
6278_CR52
6278_CR53
6278_CR50
6278_CR51
M Law (6278_CR27) 2018; 259
DJC Mackay (6278_CR30) 1995; 6
E Hüllermeier (6278_CR19) 2021; 110
6278_CR18
SH Muggleton (6278_CR37) 2015; 100
6278_CR12
6278_CR10
6278_CR54
6278_CR11
6278_CR17
6278_CR15
References_xml – ident: CR45
– ident: CR22
– ident: CR49
– ident: CR4
– ident: CR39
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  end-page: 73
  ident: CR37
  article-title: Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  end-page: 136
  ident: CR42
  article-title: Markov logic networks
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– ident: CR51
– ident: CR12
– volume: 110
  start-page: 457
  issue: 3
  year: 2021
  end-page: 506
  ident: CR19
  article-title: Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods
  publication-title: Machine Learning
  doi: 10.1007/s10994-021-05946-3
– volume: 259
  start-page: 110
  year: 2018
  end-page: 146
  ident: CR27
  article-title: The complexity and generality of learning answer set programs
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: CR35
– ident: CR54
– ident: CR8
– ident: CR25
– volume: 61
  start-page: 1
  year: 2018
  end-page: 64
  ident: CR13
  article-title: Learning explanatory rules from noisy data
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– ident: CR21
– ident: CR46
– ident: CR15
– ident: CR50
– ident: CR11
– ident: CR32
– volume: 102
  year: 2020
  ident: CR29
  article-title: Álvaro García-Martín: Semantic-aware scene recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107256
– ident: CR5
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  end-page: 318
  ident: CR36
  article-title: Inductive logic programming
  publication-title: New Generation Computing
  doi: 10.1007/BF03037089
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  ident: CR1
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.05.008
– ident: CR2
– ident: CR53
– year: 2014
  ident: CR16
  publication-title: Knowledge representation, reasoning, and the design of intelligent agents: The answer-set programming approach
  doi: 10.1017/CBO9781139342124
– volume: 7
  start-page: 57
  year: 2018
  end-page: 76
  ident: CR26
  article-title: Inductive learning of answer set programs from noisy examples
  publication-title: Advances in Cognitive Systems
– ident: CR10
– ident: CR33
– ident: CR6
– ident: CR40
– ident: CR23
– volume: 6
  start-page: 469
  issue: 3
  year: 1995
  end-page: 505
  ident: CR30
  article-title: Probable networks and plausible predictions—A review of practical bayesian methods for supervised neural networks
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X_6_3_011
– ident: CR44
– volume: 33
  start-page: 374
  issue: 3
  year: 2001
  end-page: 425
  ident: CR9
  article-title: Complexity and expressive power of logic programming
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/502807.502810
– ident: CR48
– ident: CR3
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR28
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR31
– ident: CR34
– volume: 157
  start-page: 3125
  year: 2006
  end-page: 3144
  ident: CR14
  article-title: T-norm based logics with an independent involutive negation
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2006.06.016
– ident: CR7
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 6278_CR51
– volume-title: Knowledge representation, reasoning, and the design of intelligent agents: The answer-set programming approach
  year: 2014
  ident: 6278_CR16
  doi: 10.1017/CBO9781139342124
– volume: 33
  start-page: 374
  issue: 3
  year: 2001
  ident: 6278_CR9
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/502807.502810
– ident: 6278_CR39
– ident: 6278_CR35
  doi: 10.21105/joss.00786
– volume: 7
  start-page: 57
  year: 2018
  ident: 6278_CR26
  publication-title: Advances in Cognitive Systems
– ident: 6278_CR23
– ident: 6278_CR46
– ident: 6278_CR5
– ident: 6278_CR33
  doi: 10.1609/aaai.v34i04.5962
– volume: 8
  start-page: 295
  issue: 4
  year: 1991
  ident: 6278_CR36
  publication-title: New Generation Computing
  doi: 10.1007/BF03037089
– volume: 157
  start-page: 3125
  year: 2006
  ident: 6278_CR14
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2006.06.016
– ident: 6278_CR50
  doi: 10.1609/aaai.v35i6.16639
– ident: 6278_CR10
– ident: 6278_CR20
  doi: 10.1007/978-1-4684-2001-2_9
– ident: 6278_CR31
– ident: 6278_CR53
  doi: 10.24963/ijcai.2020/243
– ident: 6278_CR12
  doi: 10.24963/ijcai.2017/221
– ident: 6278_CR52
– volume: 61
  start-page: 1
  year: 2018
  ident: 6278_CR13
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– ident: 6278_CR38
– ident: 6278_CR7
  doi: 10.24963/ijcai.2021/254
– ident: 6278_CR22
  doi: 10.1145/2939672.2939874
– ident: 6278_CR2
– volume: 102
  year: 2020
  ident: 6278_CR29
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107256
– ident: 6278_CR6
– ident: 6278_CR25
  doi: 10.1609/aaai.v34i03.5678
– ident: 6278_CR45
– ident: 6278_CR24
  doi: 10.1007/978-3-030-31423-1_6
– ident: 6278_CR47
  doi: 10.1609/aaai.v34i04.6015
– volume: 6
  start-page: 469
  issue: 3
  year: 1995
  ident: 6278_CR30
  publication-title: Network: Computation in Neural Systems
  doi: 10.1088/0954-898X_6_3_011
– volume: 259
  start-page: 110
  year: 2018
  ident: 6278_CR27
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: 6278_CR40
  doi: 10.1109/CVPR.2009.5206537
– ident: 6278_CR18
– ident: 6278_CR34
– ident: 6278_CR15
– volume: 76
  start-page: 243
  year: 2021
  ident: 6278_CR1
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.05.008
– ident: 6278_CR11
– ident: 6278_CR21
– ident: 6278_CR48
– ident: 6278_CR44
– ident: 6278_CR3
  doi: 10.1017/S1471068413000689
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 6278_CR37
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– ident: 6278_CR41
  doi: 10.1007/978-3-540-28650-9_4
– ident: 6278_CR49
  doi: 10.1007/3-540-56602-3_144
– ident: 6278_CR54
– ident: 6278_CR17
  doi: 10.1109/DSAA.2018.00018
– volume: 110
  start-page: 457
  issue: 3
  year: 2021
  ident: 6278_CR19
  publication-title: Machine Learning
  doi: 10.1007/s10994-021-05946-3
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  ident: 6278_CR42
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 6278_CR28
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: 6278_CR32
  doi: 10.1007/978-1-4020-9409-5
– ident: 6278_CR4
– ident: 6278_CR8
– ident: 6278_CR43
SSID ssj0002686
Score 2.510914
Snippet Logic-based machine learning aims to learn general, interpretable knowledge in a data-efficient manner. However, labelled data must be specified in a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 515
SubjectTerms Artificial Intelligence
Computer Science
Control
Impact analysis
Logic
Machine Learning
Mechatronics
Natural Language Processing (NLP)
Neural networks
Robotics
Simulation and Modeling
Special issue on Learning and Reasoning
Unstructured data
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7RzYMX5ydOp_TgbQb7laTxIiorHqQMp7BbSZsEhNnNbgr-e5MuXVFwF89tQ3ia9yt58zwAFzxzlVLYQ4QyQ6rNhTYpyhEVMqIqyEmI80psgiZJNB6zod1wm9u2ytonVo5aTHOzR37lU-1FDV8ZvZm9I6MaZU5XrYTGJrQNU5le5-27QTJ8Wvlin1Raj9qUMDKx3F6bsZfnKlpcXYwZqt4IkZ-hqck3fx2RVpEn7vx3zruwY3NO53a5SPZgQxb70Kn1HBxr3gfQj-Nk9HjtxDqioXhamoZax7B38Akafb1lhkLYqQhZZXkIL_Hg-f4BWTEFlAckWCCq80LmKexyn7tcSJbrYiYQIRYk4x7OKJYyEpkXqEinUCKSJGO-y5XEWFHO_eAIWsW0kMfg6BJPYJyFUpc_YRhKJpkOcVyokClXu8sueDWOaW6Zxo3gxSRtOJIN9qnGPq2wT0kX-qtvZkuejbVv92rAU2tz87RBuwuX9S9rHv892sn60U5h22jML1u1e9BalB_yDLbyz8XrvDy3K-4b7ZTZJQ
  priority: 102
  providerName: ProQuest
Title FFNSL: Feed-Forward Neural-Symbolic Learner
URI https://link.springer.com/article/10.1007/s10994-022-06278-6
https://www.proquest.com/docview/2771811807
Volume 112
WOSCitedRecordID wos000950575300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-4zYMX5ydO5-jB2wz0K0njTWVFUEtxKsNLSZsEhLnJNgX_e5Os3VRU0EsuTUJ5yfsi7_1-AEc8d5VS2EOEMgOqzYVWKcoRFTKiKihIiAtLNkGTJBoMWFo2hU2ravfqSdJa6g_NbhbGVidPBlo3QqQGDWzQZkyO3r9f2F-fWH5HrT4YGf9dtsp8v8dnd7SMMb88i1pvEzf_958bsF5Gl87p_DpswoocbUGzYm5wSkXehm4cJ_2rEyfWvgvF44kpnXUMTgcfov7bU27Agh0LvSonO3AX927PL1BJm4CKgAQzRHUEyDyFXe5zlwvJCp22BCLEguTcwznFUkYi9wIV6WBJRJLkzHe5khgryrkf7EJ9NB7JPXB0MicwzkOpE50wDCWTTDszLlTIlKsNYwu8SnpZUWKKG2qLYbZEQzbSyLQ0MiuNjLSgu1jzPEfU-HV2uzqUrNSuaeZT7VENdh1twXF1CMvPP--2_7fpB7Bm2OXnRdptqM8mL_IQVovX2eN00oHGWS9JbzpQu6RIj9d-qscUP3TsfXwHTdzSUQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL3IKOjGtzg6ahe60mAfebSCiK-iOBbxAe5q2iQg6IzOjMr8lN_oTad1UNCdC9dtQ-m5OffcJjkXYF1mrjGGeYSLyJpqS4VTSkgilA6FCXJOWV40mxBJEt7eRhcj8F6dhbHbKitOLIhatXP7j3zbF8ii1q9M7D09E9s1yq6uVi00BmFxpvtvWLJ1d0-PEN8N34-Prw9PSNlVgOQBD3pEoECKPMNc6UtXKh3lqOoDRZnimfRYJpjWocq8wISoJVSoeRb5rjSaMSOktEYHSPmjNKCc1WD04Di5uPzkfp8XvSVx6jJitUN5TKc8rFfY8GLxZ62BQ8K_psKhvv22JFtkunjqv32jaZgsNbWzP5gEMzCiW7MwVfWrcEr6moPNOE6umjtOjBmbxO2O3TDsWHcS-UCu-o-ZtUh2CsNZ3ZmHmz955QWotdotvQgOlrCKsYxqLO8opTrSEaZwqQyNjIvpoA5ehVual07qtqHHQzr0gLZYp4h1WmCd8jpsfj7zNPAR-fXuRgVwWnJKNx2iW4etKkSGl38eben30dZg_OT6vJk2T5OzZZjwUcUNtqU3oNbrvOgVGMtfe_fdzmoZ7Q7c_XXwfADkiDbA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS8NAEB2kinjxW6xWzUFPdWm-djcRRMQaFEspqCBe4ia7C0JtNa1K_5q_ztk0sSjorQfPSZaQNzvzJjvzBmBfJLbWmjqE8dCIaguJW4oLwqUKuPZS5tM0HzbB2-3g7i7szMBH2QtjyipLn5g7atlPzT_yhsvRixq9Mt7QRVlEpxmdPL8QM0HKnLSW4zTGJnKlRu-Yvg2OL5uI9YHrRuc3ZxekmDBAUo95Q8KRLIWOprZwhS2kClNk-J70qWSJcGjCqVKBTBxPB8grZKBYErq20IpSzYUwogfo_me5zwJTTtah919RwGX5lEncxJQYFlE07BRte7kgL6aBRiQ4IOx7UJww3R-Hs3nMi5b-89dahsWCaVun462xAjOqtwpL5RQLq3Bqa1CPovZ168iKMI6TqJ-ZMmLLaJaILrkePSVGONnKZWhVtg63U3nlDaj0-j21CRYmtpLSxFeY9Pm-r0IVYmAXUvuhtjFIVMEpMYzTQl_djPnoxhNlaIN7jLjHOe4xq0L965nnsbrIn3fXSrDjwtMM4gnSVTgszWVy-ffVtv5ebQ_m0WLi1mX7ahsWXKR241r1GlSG2avagbn0bfg4yHZzs7fgYdqW8wmjJT5V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FFNSL%3A+Feed-Forward+Neural-Symbolic+Learner&rft.jtitle=Machine+learning&rft.au=Cunnington%2C+Daniel&rft.au=Law%2C+Mark&rft.au=Lobo%2C+Jorge&rft.au=Russo%2C+Alessandra&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=112&rft.issue=2&rft.spage=515&rft.epage=569&rft_id=info:doi/10.1007%2Fs10994-022-06278-6&rft.externalDocID=10_1007_s10994_022_06278_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon