A graph-based CNN-LSTM stock price prediction algorithm with leading indicators

In today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by investors to arrange funds reasonably, for example, savings, bank financial products, bonds, stocks, commodity spots, real estate, gold, art, a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia systems Ročník 29; číslo 3; s. 1751 - 1770
Hlavní autori: Wu, Jimmy Ming-Tai, Li, Zhongcui, Herencsar, Norbert, Vo, Bay, Lin, Jerry Chun-Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Predmet:
ISSN:0942-4962, 1432-1882
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by investors to arrange funds reasonably, for example, savings, bank financial products, bonds, stocks, commodity spots, real estate, gold, art, and many others. Wealth management tools manage and assign families, individuals, enterprises, and institutions to achieve the purpose of increasing and maintaining value to accelerate asset growth. Among them, in investment and financial management, people’s favorite product of investment often stocks, because the stock market has great advantages and charm, especially compared with other investment methods. More and more scholars have developed methods of prediction from multiple angles for the stock market. According to the feature of financial time series and the task of price prediction, this article proposes a new framework structure to achieve a more accurate prediction of the stock price, which combines Convolution Neural Network (CNN) and Long–Short-Term Memory Neural Network (LSTM). This new method is aptly named stock sequence array convolutional LSTM (SACLSTM). It constructs a sequence array of historical data and its leading indicators (options and futures), and uses the array as the input image of the CNN framework, and extracts certain feature vectors through the convolutional layer and the layer of pooling, and as the input vector of LSTM, and takes ten stocks in U.S.A and Taiwan as the experimental data. Compared with previous methods, the prediction performance of the proposed algorithm in this article leads to better results when compared directly.
AbstractList In today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by investors to arrange funds reasonably, for example, savings, bank financial products, bonds, stocks, commodity spots, real estate, gold, art, and many others. Wealth management tools manage and assign families, individuals, enterprises, and institutions to achieve the purpose of increasing and maintaining value to accelerate asset growth. Among them, in investment and financial management, people’s favorite product of investment often stocks, because the stock market has great advantages and charm, especially compared with other investment methods. More and more scholars have developed methods of prediction from multiple angles for the stock market. According to the feature of financial time series and the task of price prediction, this article proposes a new framework structure to achieve a more accurate prediction of the stock price, which combines Convolution Neural Network (CNN) and Long–Short-Term Memory Neural Network (LSTM). This new method is aptly named stock sequence array convolutional LSTM (SACLSTM). It constructs a sequence array of historical data and its leading indicators (options and futures), and uses the array as the input image of the CNN framework, and extracts certain feature vectors through the convolutional layer and the layer of pooling, and as the input vector of LSTM, and takes ten stocks in U.S.A and Taiwan as the experimental data. Compared with previous methods, the prediction performance of the proposed algorithm in this article leads to better results when compared directly.
Author Vo, Bay
Wu, Jimmy Ming-Tai
Herencsar, Norbert
Lin, Jerry Chun-Wei
Li, Zhongcui
Author_xml – sequence: 1
  givenname: Jimmy Ming-Tai
  surname: Wu
  fullname: Wu, Jimmy Ming-Tai
  organization: Shandong University of Science and Technology
– sequence: 2
  givenname: Zhongcui
  surname: Li
  fullname: Li, Zhongcui
  organization: Shandong University of Science and Technology
– sequence: 3
  givenname: Norbert
  surname: Herencsar
  fullname: Herencsar, Norbert
  organization: Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology
– sequence: 4
  givenname: Bay
  surname: Vo
  fullname: Vo, Bay
  organization: Faculty of Information Technology, Ho Chi Minh City University of Technology
– sequence: 5
  givenname: Jerry Chun-Wei
  orcidid: 0000-0001-8768-9709
  surname: Lin
  fullname: Lin, Jerry Chun-Wei
  email: jerrylin@ieee.org
  organization: Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F87Wb3WIpfUO3Beg7ZbHabut3UJKX4701dQfDQywyB95nMPBMw6l1vALgm-JZgLO4CxhnDCFOC0jMr0OEMjAlnFJGioCMwxiWniJc5vQCTEDYYE5EzPAbLGWy92q1RpYKp4fz1FS3eVi8wRKc_4M5bbVI1tdXRuh6qrnXexvUWHlKFnVG17Vto-xRQ0flwCc4b1QVz9dun4P3hfjV_Qovl4_N8tkCa5Syi3BRCmIoJXtCK15TkzHBBidaG8Uw0WpU5EUxzpkpeVYyRssGmNjUpM9w0NZuCm2HuzrvPvQlRbtze9-lLyWiW85LigqdUMaS0dyF400htozpeEr2ynSRYHvXJQZ9M-uSPPnlIKP2HJhlb5b9OQ2yAQgr3rfF_W52gvgFXBYRg
CitedBy_id crossref_primary_10_1007_s10489_025_06462_w
crossref_primary_10_3390_math11163603
crossref_primary_10_1007_s41066_022_00338_x
crossref_primary_10_1016_j_hcc_2025_100316
crossref_primary_10_1007_s00500_022_07714_4
crossref_primary_10_4018_JOEUC_355709
crossref_primary_10_1007_s42521_025_00149_0
crossref_primary_10_1080_23270012_2025_2512518
crossref_primary_10_1109_JIOT_2021_3085714
crossref_primary_10_1007_s13042_025_02740_8
crossref_primary_10_1007_s10614_025_10934_z
crossref_primary_10_1007_s11042_024_19793_6
crossref_primary_10_1007_s42979_023_02507_4
crossref_primary_10_1051_itmconf_20224403033
crossref_primary_10_1177_18724981241309455
crossref_primary_10_1016_j_asoc_2024_111847
crossref_primary_10_1016_j_eswa_2024_125073
crossref_primary_10_1016_j_neucom_2025_131104
crossref_primary_10_1142_S0218488525500187
crossref_primary_10_1016_j_jenvman_2024_120131
crossref_primary_10_1134_S1054661822040058
crossref_primary_10_1177_18724981251319207
crossref_primary_10_1007_s11042_023_17062_6
crossref_primary_10_1177_14727978241293238
crossref_primary_10_1016_j_cie_2023_109450
crossref_primary_10_4018_IJDWM_309957
crossref_primary_10_3390_electronics11213588
crossref_primary_10_1002_for_3190
crossref_primary_10_1109_ACCESS_2023_3309007
crossref_primary_10_1155_2021_7632052
crossref_primary_10_1016_j_dajour_2025_100633
crossref_primary_10_1016_j_eswa_2024_123966
crossref_primary_10_3390_ijfs12030061
crossref_primary_10_1142_S0129156425403171
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1186_s40537_021_00485_z
crossref_primary_10_1007_s00521_025_11502_0
crossref_primary_10_1108_MABR_04_2024_0035
crossref_primary_10_1016_j_pacfin_2025_102905
crossref_primary_10_1016_j_ribaf_2022_101747
crossref_primary_10_1016_j_procs_2024_09_062
crossref_primary_10_1016_j_knosys_2024_112733
crossref_primary_10_3390_en14113030
crossref_primary_10_1016_j_cie_2025_111159
crossref_primary_10_1007_s11042_023_17620_y
crossref_primary_10_1007_s42452_025_07244_2
crossref_primary_10_3390_polym16182607
crossref_primary_10_1051_itmconf_20224403060
crossref_primary_10_3390_math12111677
crossref_primary_10_1038_s41598_025_01120_0
crossref_primary_10_4018_IJITSA_384593
crossref_primary_10_1155_2021_7510641
crossref_primary_10_1007_s11356_025_36634_7
crossref_primary_10_1109_ACCESS_2023_3330156
crossref_primary_10_1140_epjds_s13688_024_00517_7
crossref_primary_10_1155_2021_6706345
crossref_primary_10_3390_jrfm17070293
crossref_primary_10_1109_JIOT_2024_3376748
crossref_primary_10_3390_app13127104
crossref_primary_10_1155_2023_9963940
crossref_primary_10_1007_s13132_024_02108_3
crossref_primary_10_1007_s41870_023_01474_6
crossref_primary_10_1177_00368504241236557
crossref_primary_10_3390_app14135906
crossref_primary_10_1007_s10614_023_10464_6
crossref_primary_10_1007_s10462_022_10265_7
crossref_primary_10_1109_TKDE_2025_3566111
crossref_primary_10_1109_ACCESS_2022_3199008
crossref_primary_10_7717_peerj_cs_2865
crossref_primary_10_1016_j_knosys_2025_114283
crossref_primary_10_21015_vtse_v11i2_1571
crossref_primary_10_3390_land14010126
crossref_primary_10_3389_fenrg_2023_1228256
crossref_primary_10_1007_s11042_022_12390_5
crossref_primary_10_1080_0013791X_2024_2328526
crossref_primary_10_1016_j_eswa_2025_128779
crossref_primary_10_1186_s40537_024_00908_7
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_1109_TAI_2024_3408129
crossref_primary_10_1109_TCSS_2024_3450291
crossref_primary_10_4018_JOEUC_340383
crossref_primary_10_1016_j_iot_2024_101455
crossref_primary_10_3390_electronics11040611
crossref_primary_10_1007_s13132_024_01939_4
crossref_primary_10_1007_s10489_024_05838_8
crossref_primary_10_1108_JFRA_06_2024_0384
crossref_primary_10_3390_math13111885
crossref_primary_10_1007_s10462_022_10291_5
crossref_primary_10_1016_j_inffus_2024_102616
Cites_doi 10.1016/j.knosys.2018.10.034
10.1016/j.knosys.2020.106218
10.1007/s12652-020-01826-1
10.1016/j.eswa.2013.06.071
10.1016/j.ejor.2017.11.054
10.1109/CEC.2013.6557680
10.1007/s10115-019-01353-2
10.1162/neco.1997.9.8.1735
10.1007/978-3-319-73600-6_15
10.1016/j.dss.2013.02.006
10.1016/j.asoc.2018.05.018
10.1002/spe.2915
10.1016/S1352-2310(97)00447-0
10.1016/j.knosys.2017.09.023
10.1109/NOMS.2018.8406199
10.1109/FG.2017.82
10.1007/11760191_68
10.1007/978-981-10-6463-0_31
10.1016/j.knosys.2020.106548
10.1016/S0957-4174(00)00027-0
10.3390/pr7110845
10.18653/v1/N16-1112
10.1016/j.eswa.2016.09.027
10.1016/j.ins.2020.07.001
10.1109/5.726791
10.1109/ICASSP.2013.6638947
10.5120/8282-1278
10.1007/978-981-15-3308-2_64
10.1109/IJCNN.2017.7966019
10.1109/BigData.2015.7364089
10.1007/s11227-017-2228-y
10.1007/978-3-319-93803-5_58
10.1016/j.knosys.2017.03.018
10.1016/j.eswa.2019.03.029
10.1016/j.patrec.2017.09.013
10.1007/s00521-020-05377-6
10.1371/journal.pone.0180944
10.1016/0261-5606(92)90048-3
10.1016/j.physa.2018.11.061
10.1109/IJCNN.1992.287183
10.1080/00036849200000020
10.3390/app9214514
10.1162/neco.1989.1.2.270
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s00530-021-00758-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-1882
EndPage 1770
ExternalDocumentID 10_1007_s00530_021_00758_w
GrantInformation_xml – fundername: Western Norway University Of Applied Sciences
GroupedDBID --Z
-4Z
-59
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
85S
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YIN
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-6e877eb37482b4d2163e4721cce3457fca96173c43a94bb3319f0eded1950ffd3
IEDL.DBID RSV
ISICitedReferencesCount 155
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000620453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0942-4962
IngestDate Sun Nov 30 05:06:11 EST 2025
Sat Nov 29 03:45:57 EST 2025
Tue Nov 18 22:14:18 EST 2025
Fri Feb 21 02:43:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Long–short-term memory neural network
Leading indicators
Stock price prediction
Convolution neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-6e877eb37482b4d2163e4721cce3457fca96173c43a94bb3319f0eded1950ffd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8768-9709
OpenAccessLink https://link.springer.com/10.1007/s00530-021-00758-w
PQID 3256492084
PQPubID 2043725
PageCount 20
ParticipantIDs proquest_journals_3256492084
crossref_citationtrail_10_1007_s00530_021_00758_w
crossref_primary_10_1007_s00530_021_00758_w
springer_journals_10_1007_s00530_021_00758_w
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Multimedia systems
PublicationTitleAbbrev Multimedia Systems
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BabaNKozakiMAn intelligent forecasting system of stock price using neural networksInt. Jt. Conf. Neural Netw.1992137137710.1109/IJCNN.1992.287183
HoseinzadeEHaratizadehSCnnpred: Cnn-based stock market prediction using a diverse set of variablesExpert Syst. Appl.201912927328510.1016/j.eswa.2019.03.029
GardnerMWDorlingSArtificial neural networks (the multilayer perceptron)a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0
ChenCHLuCYLinCBAn intelligence approach for group stock portfolio optimization with a trading mechanismKnowl. Inf. Syst.202062128731610.1007/s10115-019-01353-2
Cui, Y., Wang, S., Li, J.: Lstm neural reordering feature for statistical machine translation. arXiv preprint. arXiv:151200177 (2015)
Di PersioLHoncharOArtificial neural networks architectures for stock price prediction: comparisons and applicationsInt. J. Circ. Syst. Signal Process.2016102016403413
TsaiHHWuMEWuWHThe information content of implied volatility skew: evidence on Taiwan stock index optionsData Sci. Pattern Recogn.2017114853
Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang, Y., et al.: Ese: Efficient speech recognition engine with sparse lstm on fpga. In: ACM/SIGDA international symposium on field-programmable gate arrays, pp. 75–84 (2017)
Nelson, D.M., Pereira, A.C., de Oliveira, R.A.: Stock market’s price movement prediction with lstm neural networks. In: The international joint conference on neural networks, pp. 1419–1426 (2017)
Wu, J.M.T., Tsai, M.H., Xiao, S.H., Liaw, Y.P.: A deep neural network electrocardiogram analysis framework for left ventricular hypertrophy prediction. J. Ambient Intell. Humaniz. Comput. pp. 1–17 (2020). https://doi.org/10.1007/s12652-020-01826-1
HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735
ZhaoZZhangXZhouHLiCGongMWangYHetnerec: Heterogeneous network embedding based recommendationKnowl. Based Syst.202020410621810.1016/j.knosys.2020.106218
Siripurapu, A.: Convolutional networks for stock trading. Stanford Univ Dep Comput Sci, pp. 1–6 (2014)
Rani, S., Sikka, G.: Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52(15), 1–9 (2012)
BaoWYueJRaoYA deep learning framework for financial time series using stacked autoencoders and long-short term memoryPloS One2017127e018094410.1371/journal.pone.0180944
Wu, J.M.T., Li, Z., Lin, J.C.W., Pirouz, M.: A new convolution neural network model for stock price prediction. In: International conference on genetic and evolutionary computing, pp. 581–585 (2019)
PanJSHuPChuSCNovel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind powerProcesses201971184510.3390/pr7110845
Wu, J.M.T., Wu, M.E., Hung, P.J., Hassan, M.M., Fortino, G.: Convert index trading to option strategies via lstm architecture. Neural Comput. Appl. pp. 1–18 (2020)
FischerTKraussCDeep learning with long short-term memory networks for financial market predictionsEur. J. Oper. Res.20182702654669380710310.1016/j.ejor.2017.11.0541403.91387
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
Khaidem, L., Saha, S., Dey, S.R.: Predicting the direction of stock market prices using random forest. arXiv preprint. arXiv:160500003 (2016)
HuPPanJSChuSCChaiQWLiuTLiZCNew hybrid algorithms for prediction of daily load of power networkAppl. Sci.2019921451410.3390/app9214514
Yong, B.X., Rahim, M.R.A., Abdullah, A.S.: A stock market trading system using deep neural network. In: Asian simulation conference, Springer, pp. 356–364 (2017)
ChenCHYuCHA series-based group stock portfolio optimization approach using the grouping genetic algorithm with symbolic aggregate approximationsKnowl. Based Syst.201712514616310.1016/j.knosys.2017.03.018
Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: Twenty-fourth international joint conference on artificial intelligence (2015)
TaylorMPAllenHThe use of technical analysis in the foreign exchange marketJ. Int. Money Finance199211330431410.1016/0261-5606(92)90048-3
Chen, K., Zhou, Y., Dai, F.: A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE International conference on big data, pp. 2823–2824 (2015)
GhoshABoseSMajiGDebnathNSenSStock price prediction using lstm on indian share marketInt. Conf. Comput. Appl. Ind. Eng.201963101110
Wu, J.M.T., Li, Z., Srivastava, G., Tasi, M.H., Lin, J.C.W.: A graph-based convolutional neural network stock price prediction with leading indicators. Pract. Exp. Softw. (2020). https://doi.org/10.1002/spe.2915
Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International conference on acoustics, speech and signal processing, pp. 6645–6649 (2013)
ZhuCYinJLiQA stock decision support system based on dbnsJ. Comput. Inf. Syst.2014102883893
Krollner, B., Vanstone, B.J., Finnie, G.R.: Financial time series forecasting with machine learning techniques: a survey. In: ESANN, pp. 25–30 (2010)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint. arXiv:14126980 (2014)
Zhang, X., Chen, Y., Yang, J.Y.: Stock index forecasting using pso based selective neural network ensemble. In: IC-AI, pp. 260–264 (2007)
PangXZhouYWangPLinWChangVAn innovative neural network approach for stock market predictionJ. Supercomput.20207632098211810.1007/s11227-017-2228-y
Lin, J.C.W., Shao, Y., Djenouri, Y., Yun, U.: Asrnn: A recurrent neural network with an attention model for sequence labeling. Knowl. Based Syst. Vol. 212, p. 106548 (2020)
KinghornPZhangLShaoLA hierarchical and regional deep learning architecture for image description generationPattern Recogn. Lett.2019119778510.1016/j.patrec.2017.09.013
Garcia Garcia, A., Orts Escolano, S., Oprea, S., Villena Martinez, V., Garcia Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint. arXiv:170406857 (2017)
LongWLuZCuiLDeep learning-based feature engineering for stock price movement predictionKnowl. Based Syst.201916416317310.1016/j.knosys.2018.10.034
GunduzHYaslanYCataltepeZIntraday prediction of borsa istanbul using convolutional neural networks and feature correlationsKnowl. Based Syst.201713713814810.1016/j.knosys.2017.09.023
WilliamsRJZipserDA learning algorithm for continually running fully recurrent neural networksNeural Comput.19891227028010.1162/neco.1989.1.2.270
Gui, D., Zhong, Sh., Ming, Z.: Implicit affective video tagging using pupillary response. In: International conference on multimedia modeling, pp. 165–176 (2018)
CaiXHuSLinXFeature extraction using restricted boltzmann machine for stock price predictionIEEE Int. Conf. Comput. Sci. Autom. Eng.201238083
CaoJLiZLiJFinancial time series forecasting model based on ceemdan and lstmPhys. A Stat. Mech. Appl.201951912713910.1016/j.physa.2018.11.061
de OliveiraFANobreCNZarateLEApplying artificial neural networks to prediction of stock price and improvement of the directional prediction index-case study of petr4, petrobras, brazilExpert Syst. Appl.201340187596760610.1016/j.eswa.2013.06.071
Zhang, X., Tan, Y.: Deep stock ranker: a lstm neural network model for stock selection. In: International conference on data mining and big data, pp. 614–623 (2018)
KjKimHanIGenetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price indexExpert Syst. Appl.200019212513210.1016/S0957-4174(00)00027-0
Kuo, S.Y., Kuo, C., Chou, Y.H.: Dynamic stock trading system based on quantum-inspired tabu search algorithm. In: IEEE congress on evolutionary computation, pp. 1029–1036 (2013)
ZhaoZZhouHLiCTangJZengQDeepemlan: deep embedding learning for attributed networksInf. Sci.2021543382397413090510.1016/j.ins.2020.07.001
ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst. Appl.20176712613910.1016/j.eswa.2016.09.027
Chen, Q.a., Li, C.D.: Comparison of forecasting performance of ar, star and ann models on the chinese stock market index. In: International symposium on neural networks, pp. 464–470 (2006)
Azzouni, A., Pujolle, G.: A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint. arXiv:170505690 (2017)
Jiang, H., Learned-Miller, E.: Face detection with the faster r-cnn. In: IEEE international conference on automatic face and gesture recognition, pp. 650–657 (2017)
Chen, C.H., Hsieh, C.Y.: Actionable stock portfolio mining by using genetic algorithms. J. Inf. Sci. Eng. 32(6), 1657–1678 (2016)
Bahmani-OskooeeMSohrabianAStock prices and the effective exchange rate of the dollarAppl. Econ.199224445946410.1080/00036849200000020
HagenauMLiebmannMNeumannDAutomated news reading: stock price prediction based on financial news using context-capturing featuresDecis. Support Syst.201355368569710.1016/j.dss.2013.02.006
758_CR22
758_CR23
JS Pan (758_CR10) 2019; 7
758_CR20
E Hoseinzade (758_CR33) 2019; 129
X Zhong (758_CR2) 2017; 67
Z Zhao (758_CR15) 2020; 204
P Hu (758_CR9) 2019; 9
758_CR27
W Long (758_CR7) 2019; 164
MP Taylor (758_CR45) 1992; 11
Kim Kj (758_CR5) 2000; 19
W Bao (758_CR31) 2017; 12
758_CR11
758_CR55
758_CR56
758_CR14
758_CR51
Y LeCun (758_CR24) 1998; 86
758_CR53
758_CR6
758_CR8
758_CR16
X Pang (758_CR43) 2020; 76
H Gunduz (758_CR3) 2017; 137
Z Zhao (758_CR21) 2021; 543
758_CR50
758_CR44
758_CR46
758_CR47
758_CR40
758_CR42
HH Tsai (758_CR39) 2017; 1
N Baba (758_CR18) 1992; 1
FA de Oliveira (758_CR19) 2013; 40
MW Gardner (758_CR17) 1998; 32
A Ghosh (758_CR36) 2019; 63
758_CR48
758_CR49
758_CR1
X Cai (758_CR29) 2012; 3
M Hagenau (758_CR4) 2013; 55
758_CR34
758_CR35
CH Chen (758_CR13) 2017; 125
J Cao (758_CR54) 2019; 519
T Fischer (758_CR28) 2018; 270
758_CR37
758_CR38
L Di Persio (758_CR32) 2016; 10
CH Chen (758_CR12) 2020; 62
RJ Williams (758_CR25) 1989; 1
M Bahmani-Oskooee (758_CR41) 1992; 24
S Hochreiter (758_CR26) 1997; 9
C Zhu (758_CR30) 2014; 10
P Kinghorn (758_CR52) 2019; 119
References_xml – reference: Lin, J.C.W., Shao, Y., Djenouri, Y., Yun, U.: Asrnn: A recurrent neural network with an attention model for sequence labeling. Knowl. Based Syst. Vol. 212, p. 106548 (2020)
– reference: HagenauMLiebmannMNeumannDAutomated news reading: stock price prediction based on financial news using context-capturing featuresDecis. Support Syst.201355368569710.1016/j.dss.2013.02.006
– reference: Wu, J.M.T., Li, Z., Srivastava, G., Tasi, M.H., Lin, J.C.W.: A graph-based convolutional neural network stock price prediction with leading indicators. Pract. Exp. Softw. (2020). https://doi.org/10.1002/spe.2915
– reference: de OliveiraFANobreCNZarateLEApplying artificial neural networks to prediction of stock price and improvement of the directional prediction index-case study of petr4, petrobras, brazilExpert Syst. Appl.201340187596760610.1016/j.eswa.2013.06.071
– reference: Zhang, X., Tan, Y.: Deep stock ranker: a lstm neural network model for stock selection. In: International conference on data mining and big data, pp. 614–623 (2018)
– reference: PanJSHuPChuSCNovel parallel heterogeneous meta-heuristic and its communication strategies for the prediction of wind powerProcesses201971184510.3390/pr7110845
– reference: ZhaoZZhangXZhouHLiCGongMWangYHetnerec: Heterogeneous network embedding based recommendationKnowl. Based Syst.202020410621810.1016/j.knosys.2020.106218
– reference: HoseinzadeEHaratizadehSCnnpred: Cnn-based stock market prediction using a diverse set of variablesExpert Syst. Appl.201912927328510.1016/j.eswa.2019.03.029
– reference: Krollner, B., Vanstone, B.J., Finnie, G.R.: Financial time series forecasting with machine learning techniques: a survey. In: ESANN, pp. 25–30 (2010)
– reference: Wu, J.M.T., Tsai, M.H., Xiao, S.H., Liaw, Y.P.: A deep neural network electrocardiogram analysis framework for left ventricular hypertrophy prediction. J. Ambient Intell. Humaniz. Comput. pp. 1–17 (2020). https://doi.org/10.1007/s12652-020-01826-1
– reference: Jiang, H., Learned-Miller, E.: Face detection with the faster r-cnn. In: IEEE international conference on automatic face and gesture recognition, pp. 650–657 (2017)
– reference: Chen, Q.a., Li, C.D.: Comparison of forecasting performance of ar, star and ann models on the chinese stock market index. In: International symposium on neural networks, pp. 464–470 (2006)
– reference: BabaNKozakiMAn intelligent forecasting system of stock price using neural networksInt. Jt. Conf. Neural Netw.1992137137710.1109/IJCNN.1992.287183
– reference: KinghornPZhangLShaoLA hierarchical and regional deep learning architecture for image description generationPattern Recogn. Lett.2019119778510.1016/j.patrec.2017.09.013
– reference: ZhongXEnkeDForecasting daily stock market return using dimensionality reductionExpert Syst. Appl.20176712613910.1016/j.eswa.2016.09.027
– reference: Ding, X., Zhang, Y., Liu, T., Duan, J.: Deep learning for event-driven stock prediction. In: Twenty-fourth international joint conference on artificial intelligence (2015)
– reference: Rani, S., Sikka, G.: Recent techniques of clustering of time series data: a survey. Int. J. Comput. Appl. 52(15), 1–9 (2012)
– reference: Garcia Garcia, A., Orts Escolano, S., Oprea, S., Villena Martinez, V., Garcia Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint. arXiv:170406857 (2017)
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
– reference: GardnerMWDorlingSArtificial neural networks (the multilayer perceptron)a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0
– reference: Gui, D., Zhong, Sh., Ming, Z.: Implicit affective video tagging using pupillary response. In: International conference on multimedia modeling, pp. 165–176 (2018)
– reference: Siripurapu, A.: Convolutional networks for stock trading. Stanford Univ Dep Comput Sci, pp. 1–6 (2014)
– reference: ZhuCYinJLiQA stock decision support system based on dbnsJ. Comput. Inf. Syst.2014102883893
– reference: CaoJLiZLiJFinancial time series forecasting model based on ceemdan and lstmPhys. A Stat. Mech. Appl.201951912713910.1016/j.physa.2018.11.061
– reference: Khaidem, L., Saha, S., Dey, S.R.: Predicting the direction of stock market prices using random forest. arXiv preprint. arXiv:160500003 (2016)
– reference: Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural networks. In: IEEE International conference on acoustics, speech and signal processing, pp. 6645–6649 (2013)
– reference: LongWLuZCuiLDeep learning-based feature engineering for stock price movement predictionKnowl. Based Syst.201916416317310.1016/j.knosys.2018.10.034
– reference: Yong, B.X., Rahim, M.R.A., Abdullah, A.S.: A stock market trading system using deep neural network. In: Asian simulation conference, Springer, pp. 356–364 (2017)
– reference: Wu, J.M.T., Wu, M.E., Hung, P.J., Hassan, M.M., Fortino, G.: Convert index trading to option strategies via lstm architecture. Neural Comput. Appl. pp. 1–18 (2020)
– reference: ChenCHYuCHA series-based group stock portfolio optimization approach using the grouping genetic algorithm with symbolic aggregate approximationsKnowl. Based Syst.201712514616310.1016/j.knosys.2017.03.018
– reference: Di PersioLHoncharOArtificial neural networks architectures for stock price prediction: comparisons and applicationsInt. J. Circ. Syst. Signal Process.2016102016403413
– reference: Azzouni, A., Pujolle, G.: A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint. arXiv:170505690 (2017)
– reference: TsaiHHWuMEWuWHThe information content of implied volatility skew: evidence on Taiwan stock index optionsData Sci. Pattern Recogn.2017114853
– reference: FischerTKraussCDeep learning with long short-term memory networks for financial market predictionsEur. J. Oper. Res.20182702654669380710310.1016/j.ejor.2017.11.0541403.91387
– reference: Chen, C.H., Hsieh, C.Y.: Actionable stock portfolio mining by using genetic algorithms. J. Inf. Sci. Eng. 32(6), 1657–1678 (2016)
– reference: ZhaoZZhouHLiCTangJZengQDeepemlan: deep embedding learning for attributed networksInf. Sci.2021543382397413090510.1016/j.ins.2020.07.001
– reference: GunduzHYaslanYCataltepeZIntraday prediction of borsa istanbul using convolutional neural networks and feature correlationsKnowl. Based Syst.201713713814810.1016/j.knosys.2017.09.023
– reference: TaylorMPAllenHThe use of technical analysis in the foreign exchange marketJ. Int. Money Finance199211330431410.1016/0261-5606(92)90048-3
– reference: Bahmani-OskooeeMSohrabianAStock prices and the effective exchange rate of the dollarAppl. Econ.199224445946410.1080/00036849200000020
– reference: HuPPanJSChuSCChaiQWLiuTLiZCNew hybrid algorithms for prediction of daily load of power networkAppl. Sci.2019921451410.3390/app9214514
– reference: Chen, K., Zhou, Y., Dai, F.: A lstm-based method for stock returns prediction: A case study of china stock market. In: IEEE International conference on big data, pp. 2823–2824 (2015)
– reference: Kuo, S.Y., Kuo, C., Chou, Y.H.: Dynamic stock trading system based on quantum-inspired tabu search algorithm. In: IEEE congress on evolutionary computation, pp. 1029–1036 (2013)
– reference: Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao, S., Wang, Y., et al.: Ese: Efficient speech recognition engine with sparse lstm on fpga. In: ACM/SIGDA international symposium on field-programmable gate arrays, pp. 75–84 (2017)
– reference: Nelson, D.M., Pereira, A.C., de Oliveira, R.A.: Stock market’s price movement prediction with lstm neural networks. In: The international joint conference on neural networks, pp. 1419–1426 (2017)
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735
– reference: Zhang, X., Chen, Y., Yang, J.Y.: Stock index forecasting using pso based selective neural network ensemble. In: IC-AI, pp. 260–264 (2007)
– reference: ChenCHLuCYLinCBAn intelligence approach for group stock portfolio optimization with a trading mechanismKnowl. Inf. Syst.202062128731610.1007/s10115-019-01353-2
– reference: Wu, J.M.T., Li, Z., Lin, J.C.W., Pirouz, M.: A new convolution neural network model for stock price prediction. In: International conference on genetic and evolutionary computing, pp. 581–585 (2019)
– reference: KjKimHanIGenetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price indexExpert Syst. Appl.200019212513210.1016/S0957-4174(00)00027-0
– reference: BaoWYueJRaoYA deep learning framework for financial time series using stacked autoencoders and long-short term memoryPloS One2017127e018094410.1371/journal.pone.0180944
– reference: WilliamsRJZipserDA learning algorithm for continually running fully recurrent neural networksNeural Comput.19891227028010.1162/neco.1989.1.2.270
– reference: Cui, Y., Wang, S., Li, J.: Lstm neural reordering feature for statistical machine translation. arXiv preprint. arXiv:151200177 (2015)
– reference: GhoshABoseSMajiGDebnathNSenSStock price prediction using lstm on indian share marketInt. Conf. Comput. Appl. Ind. Eng.201963101110
– reference: CaiXHuSLinXFeature extraction using restricted boltzmann machine for stock price predictionIEEE Int. Conf. Comput. Sci. Autom. Eng.201238083
– reference: PangXZhouYWangPLinWChangVAn innovative neural network approach for stock market predictionJ. Supercomput.20207632098211810.1007/s11227-017-2228-y
– reference: Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint. arXiv:14126980 (2014)
– ident: 758_CR55
– volume: 164
  start-page: 163
  year: 2019
  ident: 758_CR7
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.10.034
– ident: 758_CR51
– volume: 204
  start-page: 106218
  year: 2020
  ident: 758_CR15
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106218
– ident: 758_CR23
  doi: 10.1007/s12652-020-01826-1
– volume: 40
  start-page: 7596
  issue: 18
  year: 2013
  ident: 758_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.071
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 758_CR28
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– ident: 758_CR8
– volume: 3
  start-page: 80
  year: 2012
  ident: 758_CR29
  publication-title: IEEE Int. Conf. Comput. Sci. Autom. Eng.
– ident: 758_CR6
  doi: 10.1109/CEC.2013.6557680
– volume: 62
  start-page: 287
  issue: 1
  year: 2020
  ident: 758_CR12
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-019-01353-2
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 758_CR26
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 758_CR53
  doi: 10.1007/978-3-319-73600-6_15
– volume: 55
  start-page: 685
  issue: 3
  year: 2013
  ident: 758_CR4
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2013.02.006
– ident: 758_CR47
  doi: 10.1016/j.asoc.2018.05.018
– ident: 758_CR56
  doi: 10.1002/spe.2915
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 758_CR17
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
– volume: 137
  start-page: 138
  year: 2017
  ident: 758_CR3
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.09.023
– ident: 758_CR40
– ident: 758_CR38
  doi: 10.1109/NOMS.2018.8406199
– ident: 758_CR46
  doi: 10.1109/FG.2017.82
– ident: 758_CR16
  doi: 10.1007/11760191_68
– ident: 758_CR22
  doi: 10.1007/978-981-10-6463-0_31
– ident: 758_CR34
– ident: 758_CR49
  doi: 10.1016/j.knosys.2020.106548
– volume: 19
  start-page: 125
  issue: 2
  year: 2000
  ident: 758_CR5
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(00)00027-0
– volume: 7
  start-page: 845
  issue: 11
  year: 2019
  ident: 758_CR10
  publication-title: Processes
  doi: 10.3390/pr7110845
– ident: 758_CR50
  doi: 10.18653/v1/N16-1112
– volume: 67
  start-page: 126
  year: 2017
  ident: 758_CR2
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.027
– volume: 543
  start-page: 382
  year: 2021
  ident: 758_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.07.001
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 758_CR24
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 758_CR14
  doi: 10.1109/ICASSP.2013.6638947
– volume: 1
  start-page: 48
  issue: 1
  year: 2017
  ident: 758_CR39
  publication-title: Data Sci. Pattern Recogn.
– ident: 758_CR1
  doi: 10.5120/8282-1278
– ident: 758_CR20
– ident: 758_CR35
  doi: 10.1007/978-981-15-3308-2_64
– volume: 63
  start-page: 101
  year: 2019
  ident: 758_CR36
  publication-title: Int. Conf. Comput. Appl. Ind. Eng.
– ident: 758_CR44
  doi: 10.1109/IJCNN.2017.7966019
– volume: 10
  start-page: 403
  issue: 2016
  year: 2016
  ident: 758_CR32
  publication-title: Int. J. Circ. Syst. Signal Process.
– ident: 758_CR27
  doi: 10.1109/BigData.2015.7364089
– volume: 76
  start-page: 2098
  issue: 3
  year: 2020
  ident: 758_CR43
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2228-y
– ident: 758_CR37
  doi: 10.1007/978-3-319-93803-5_58
– volume: 125
  start-page: 146
  year: 2017
  ident: 758_CR13
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.03.018
– volume: 10
  start-page: 883
  issue: 2
  year: 2014
  ident: 758_CR30
  publication-title: J. Comput. Inf. Syst.
– volume: 129
  start-page: 273
  year: 2019
  ident: 758_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.029
– volume: 119
  start-page: 77
  year: 2019
  ident: 758_CR52
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.09.013
– ident: 758_CR48
  doi: 10.1007/s00521-020-05377-6
– volume: 12
  start-page: e0180944
  issue: 7
  year: 2017
  ident: 758_CR31
  publication-title: PloS One
  doi: 10.1371/journal.pone.0180944
– volume: 11
  start-page: 304
  issue: 3
  year: 1992
  ident: 758_CR45
  publication-title: J. Int. Money Finance
  doi: 10.1016/0261-5606(92)90048-3
– volume: 519
  start-page: 127
  year: 2019
  ident: 758_CR54
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.11.061
– volume: 1
  start-page: 371
  year: 1992
  ident: 758_CR18
  publication-title: Int. Jt. Conf. Neural Netw.
  doi: 10.1109/IJCNN.1992.287183
– volume: 24
  start-page: 459
  issue: 4
  year: 1992
  ident: 758_CR41
  publication-title: Appl. Econ.
  doi: 10.1080/00036849200000020
– ident: 758_CR42
– ident: 758_CR11
– volume: 9
  start-page: 4514
  issue: 21
  year: 2019
  ident: 758_CR9
  publication-title: Appl. Sci.
  doi: 10.3390/app9214514
– volume: 1
  start-page: 270
  issue: 2
  year: 1989
  ident: 758_CR25
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
SSID ssj0017630
Score 2.6696856
Snippet In today’s society, investment wealth management has become a mainstream of the contemporary era. Investment wealth management refers to the use of funds by...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1751
SubjectTerms Algorithms
Arrays
Artificial neural networks
Business cycles
Computer Communication Networks
Computer Graphics
Computer Science
Corporate profits
Cryptology
Data Storage Representation
Deep learning
Discriminant analysis
Expected values
Financial instruments
Financial management
Genetic algorithms
Investments
Investors
Multimedia Information Systems
Neural networks
Operating Systems
Real estate
Role of Deep Learning Models & Analytics in Industrial Multimedia Environment
Securities markets
Special Issue Paper
Stock exchanges
Stock prices
Time series
Trends
SummonAdditionalLinks – databaseName: Engineering Database (subscription)
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8UPXgRPyOKpgdv2jjWjrUnQ4jGA04TMOG2bF2rRgRkU_59-7oOoolcvOyyrVv66-v77PshdM4pTzImPRK0dGIcFEoJ9xNJPGnMOS5VyDLLWtILo4gPh-LRBdxyV1ZZ7Yl2o84mEmLkV9ToZiZ8j7Pr6QcB1ijIrjoKjXW0AV0SWrZ0r7_IIhjZsTEWwXzCRNt3h2bs0TlYfR6BAgXQmpzMfyqmpbX5K0Fq9c5t_b9_vIO2ncWJO-US2UVraryH6hWbA3bCvY8eOth2ryag2DLcjSLS6w_usbEO5RueQvMhc4W8DmCJk9Gz-Vjx8o4hlItHZTE-hhS4BEc-P0BPtzeD7h1xdAtE0jYtSFvxMDS-dci4n7LMN5aaYsZBlFJRFoRaJsKYO1QymgiWptQIr_ZUpjJgktU6o4eoNp6M1RHCWoQ6FYEWltHayLyWIg106Gvb8J42UKua61i6XuRAiTGKF12ULT6xwSe2-MTzBrpYvDMtO3GsfLpZgRI7qczjJSINdFnBurz992jHq0c7QVvAQl9WkDVRrZh9qlO0Kb-K13x2ZtfkN1FA5Sw
  priority: 102
  providerName: ProQuest
Title A graph-based CNN-LSTM stock price prediction algorithm with leading indicators
URI https://link.springer.com/article/10.1007/s00530-021-00758-w
https://www.proquest.com/docview/3256492084
Volume 29
WOSCitedRecordID wos000620453500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017630
  issn: 0942-4962
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgcODC-BSDUeXADSKVJl2S45g2IQFlYgMhLlWbJoAYY9oG-_skWVsEAiS45NI0quy4tmPnPYADTniSUenj8FgnJkEhBPMgkdiXJpzjUjGaOdaScxZF_PZWdPNLYZOi270oSbo_dXnZze4XH9uWAuvnOJ4twlJo0WZsjt67KWsHxmLcyYqgAaaiEeRXZb5f47M7-ogxv5RFnbfpVP_3nWuwmkeXqDnfDuuwoIYbUC2YG1BuyJtw2UQOqRpbJ5ahVhTh817_AplIUD6hkQUaMqOt4Vi9oWRw_zJ-nD48I3tsiwbzxntky93SJu2TLbjutPutU5xTK2BJGmSKG4ozZvJoRnmQ0iwwUZmiJhmUUhEaMi0TYUIbIilJBE1TYgxV-ypTmWWN1Toj21AZvgzVDiAtmE5FqIVjrzb2raVIQ80C7cDtSQ2OCwnHMscdt_QXg7hETHYSi43EYiexeFaDw_Kd0Rx149fZ9UJxcW6Bk5iYWI6KwOe0BkeFoj4e_7za7t-m78GKZaCfd4_VoTIdv6p9WJZv08fJ2IOlk3bUvfJg8YxhzzaW9szYDe88t2ffAWF84DE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH4CNgkuMMYQBQY-wGlYC7bT2IdpQgwEogSkdRLaJUsce5tWSqFl1f6p_Y17z0labdK4ceCSS2JLjj-_n37vA9jRUuelshGP932ODoqUXIvc8siiOaetS1QZWEs6SZrqqytzOQO_m1oYulbZyMQgqMsbSzHytxJ1szIi0ur94JYTaxRlVxsKjQoWZ-7XGF224bvTD7i_u0IcH3UPT3jNKsCtbMsRbzudJOhCJkqLQpUCDRKn0A-y1kkVJ97mBrW6tErmRhWFRIz6yJWuJMJU70uJ887CM6VERIwJl_HnSdYCz2qI6RgluDJtURfphFI9QnvE6UIEaWnNx38rwql1-09CNui546Wn9odewGJtUbOD6ggsw4zrv4Slhq2C1cJrBS4OWOjOzUlxl-wwTXnnY_ecofVrf7ABNVfCJ-WtCKss733FxY2-XTMKVbNeVWzAKMVvKVAxfAWfHmVZqzDXv-m7NWDeJL4wsTeBsRtlmremiH0ifGjoL1uw3-xtZute60T50csmXaIDHjLEQxbwkI1b8GYyZlB1Gnnw680GBFktdYbZFAEt2GtgNH39_9nWH55tG-ZPuuedrHOanm3AAgJfVrflNmFudHfvXsNz-3P0fXi3Fc4Dgy-PDa8_hYRCAQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQYiF8hSFAh7YwCKNncYeq0IFogTES2xR4thQUdqqDfTvYztJCwiQEEuWOFZ059N953t8APuMsCihwsFeTUU6QCEEMzcS2BEazjEhfZpY1pK2HwTs4YFffejit9XuRUoy62kwU5p66dEgUUeTxjdzdhxsyguMz2N4PAtzVEcypqjr-uZ-kkfQ1mNvWTh1MeV1N2-b-X6Pz65pije_pEit52mV___Py7CUo07UyI7JCszI3iqUC0YHlBv4Glw2kJ1gjY1zS1AzCHD75vYCaYQontHADCDST5PbMfpEUfexP-ykTy_IXOeiblaQj0waXJhgfrQOd62T2-YpzikXsCB1kuK6ZL6v42ufMjemiavRmqQ6SBRCEur5SkRcQx4iKIk4jWOiDVg5MpGJYZNVKiEbUOr1e3ITkOK-irmnuGW11navBI895bvKDr0nFagV0g5FPo_c0GJ0w8kkZSuxUEsstBILxxU4mHwzyKZx_Lq6WigxzC1zFBKN8Sh3HUYrcFgobfr65922_rZ8Dxaujlth-yw434ZFQ1KfFZhVoZQOX-UOzIu3tDMa7toD-w6QaeeX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graph-based+CNN-LSTM+stock+price+prediction+algorithm+with+leading+indicators&rft.jtitle=Multimedia+systems&rft.au=Wu%2C+Jimmy+Ming-Tai&rft.au=Li%2C+Zhongcui&rft.au=Herencsar%2C+Norbert&rft.au=Vo%2C+Bay&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-4962&rft.eissn=1432-1882&rft.volume=29&rft.issue=3&rft.spage=1751&rft.epage=1770&rft_id=info:doi/10.1007%2Fs00530-021-00758-w&rft.externalDocID=10_1007_s00530_021_00758_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-4962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-4962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-4962&client=summon