An improved teaching-learning-based optimization for constrained evolutionary optimization

•An efficient subpopulation strategy is designed to increase the diversity of the teacher phase.•A novel ranking differential vector strategy is presented to promote the convergence of the learner phase.•A dynamic weighted sum is formulated to achieve the tradeoff between constraints and objective f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 456; s. 131 - 144
Hlavní autori: Wang, Bing-Chuan, Li, Han-Xiong, Feng, Yun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.08.2018
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •An efficient subpopulation strategy is designed to increase the diversity of the teacher phase.•A novel ranking differential vector strategy is presented to promote the convergence of the learner phase.•A dynamic weighted sum is formulated to achieve the tradeoff between constraints and objective function.•A simple yet effective restart strategy is presented to settle complicated constraints. When extending a global optimization technique for constrained optimization, we must balance not only diversity and convergence but also constraints and objective function. Based on these two criteria, the famous teaching-learning-based optimization (TLBO) is improved for constrained optimization. To balance diversity and convergence, an efficient subpopulation based teacher phase is designed to enhance diversity, while a ranking-differential-vector-based learner phase is proposed to promote convergence. In addition, how to select the teacher in the teacher phase and how to rank two solutions in the learner phase have a significant impact on the tradeoff between constraints and objective function. To address this issue, a dynamic weighted sum is formulated. Furthermore, a simple yet effective restart strategy is proposed to settle complicated constraints. By adopting the ε constraint-handling technique as the constraint-handling technique, a constrained optimization evolutionary algorithm, i.e., improved TLBO (ITLBO), is proposed. Experiments on a broad range of benchmark test functions reveal that ITLBO shows better or at least competitive performance against other constrained TLBOs and some other constrained optimization evolutionary algorithms.
AbstractList •An efficient subpopulation strategy is designed to increase the diversity of the teacher phase.•A novel ranking differential vector strategy is presented to promote the convergence of the learner phase.•A dynamic weighted sum is formulated to achieve the tradeoff between constraints and objective function.•A simple yet effective restart strategy is presented to settle complicated constraints. When extending a global optimization technique for constrained optimization, we must balance not only diversity and convergence but also constraints and objective function. Based on these two criteria, the famous teaching-learning-based optimization (TLBO) is improved for constrained optimization. To balance diversity and convergence, an efficient subpopulation based teacher phase is designed to enhance diversity, while a ranking-differential-vector-based learner phase is proposed to promote convergence. In addition, how to select the teacher in the teacher phase and how to rank two solutions in the learner phase have a significant impact on the tradeoff between constraints and objective function. To address this issue, a dynamic weighted sum is formulated. Furthermore, a simple yet effective restart strategy is proposed to settle complicated constraints. By adopting the ε constraint-handling technique as the constraint-handling technique, a constrained optimization evolutionary algorithm, i.e., improved TLBO (ITLBO), is proposed. Experiments on a broad range of benchmark test functions reveal that ITLBO shows better or at least competitive performance against other constrained TLBOs and some other constrained optimization evolutionary algorithms.
Author Wang, Bing-Chuan
Li, Han-Xiong
Feng, Yun
Author_xml – sequence: 1
  givenname: Bing-Chuan
  orcidid: 0000-0002-5750-0984
  surname: Wang
  fullname: Wang, Bing-Chuan
  email: bingcwang3-c@my.cityu.edu.hk
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
– sequence: 2
  givenname: Han-Xiong
  surname: Li
  fullname: Li, Han-Xiong
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Yun
  surname: Feng
  fullname: Feng, Yun
  organization: Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
BookMark eNp9kMtOwzAQRS1UJNrCB7DrDySMH3EcsaoqXhISG9iwsVx7Aq5Su7JDJfh6EsoGFl3NaO6c0dw7I5MQAxJySaGkQOXVpvQhlwyoKkGUoPgJmVJVs0Kyhk7IFIBBAayqzsgs5w0AiFrKKXldhoXf7lLco1v0aOy7D29FhyaFsVmbPMzjrvdb_2V6H8OijWlhY8h9Mj4MIu5j9zEqJn3-2Twnp63pMl781jl5ub15Xt0Xj093D6vlY2G55H0hUbE1lxVvasladJKBUM7WXIE0FCsByrEWLG9dZRpDhVBWGM6lcI1jouFzQg93bYo5J2z1Lvnt8I2moMdw9EYP4egxHA1CD-EMTP2Psb7_-Xq01R0lrw8kDpb2HpPO1mOw6HxC22sX_RH6G_bPgzY
CitedBy_id crossref_primary_10_1109_TCSS_2019_2915615
crossref_primary_10_1109_TSMC_2018_2876335
crossref_primary_10_1007_s40747_022_00965_6
crossref_primary_10_1155_2022_2221762
crossref_primary_10_1016_j_knosys_2019_07_007
crossref_primary_10_3389_fphy_2020_00259
crossref_primary_10_1016_j_asoc_2022_109392
crossref_primary_10_1016_j_ins_2019_06_030
crossref_primary_10_1016_j_ins_2021_12_067
crossref_primary_10_2478_amns_2024_0767
crossref_primary_10_1007_s10586_024_04698_8
crossref_primary_10_1155_2022_1190174
crossref_primary_10_1007_s11071_025_11366_y
crossref_primary_10_1016_j_ins_2021_03_055
crossref_primary_10_1109_TCYB_2020_3013950
crossref_primary_10_1109_TCYB_2020_3042853
crossref_primary_10_1016_j_ins_2019_05_065
crossref_primary_10_1007_s00158_021_03010_1
crossref_primary_10_1109_TCSS_2023_3323400
crossref_primary_10_1109_TSMC_2023_3281550
crossref_primary_10_1109_ACCESS_2020_3040647
crossref_primary_10_1016_j_ins_2019_07_076
crossref_primary_10_3390_a12050094
crossref_primary_10_1007_s10479_019_03339_3
crossref_primary_10_1007_s10462_023_10613_1
crossref_primary_10_1016_j_asoc_2023_110963
crossref_primary_10_1371_journal_pone_0276577
crossref_primary_10_1016_j_eswa_2023_120530
crossref_primary_10_1016_j_ins_2021_06_064
crossref_primary_10_1016_j_asoc_2021_108016
crossref_primary_10_1109_TII_2020_3038949
crossref_primary_10_1109_TSMC_2023_3344382
Cites_doi 10.1016/j.ins.2014.05.033
10.1016/j.swevo.2011.10.001
10.1016/j.enconman.2017.04.054
10.1109/TEVC.2010.2093582
10.1109/TPWRS.2012.2208273
10.1016/j.ins.2013.06.011
10.1109/TCYB.2014.2298916
10.1016/j.ins.2012.11.009
10.1142/S0129065714500087
10.1016/j.swevo.2011.11.003
10.1145/2480741.2480752
10.1109/TSMCB.2006.883271
10.1016/j.ins.2016.03.023
10.1109/TCYB.2014.2334692
10.1016/j.asoc.2017.08.020
10.1016/j.compchemeng.2017.01.024
10.1016/j.ijepes.2015.05.036
10.1109/TCBB.2007.070202
10.1016/j.asoc.2013.07.009
10.1016/j.ins.2014.02.056
10.1016/j.ins.2014.11.026
10.2528/PIERB13030709
10.1016/j.ins.2016.02.054
10.1016/j.ins.2017.01.038
10.1007/s00500-014-1286-9
10.1007/s10462-009-9137-2
10.1016/j.ins.2017.02.055
10.1007/s00500-008-0357-1
10.1016/j.ijepes.2013.04.011
10.1016/j.ins.2014.03.038
10.1016/j.ins.2018.01.038
10.1016/j.compstruc.2012.12.011
10.1007/s10845-014-0918-3
10.1016/j.engappai.2016.12.014
10.1016/j.ins.2011.08.006
10.1109/TCYB.2015.2493239
10.1016/j.ins.2014.11.001
10.1016/j.ins.2017.09.053
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.04.083
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 144
ExternalDocumentID 10_1016_j_ins_2018_04_083
S0020025518303542
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-6e82b36539762fed62048dc73806a1e5408d2f0c3fd5a9a1448c4a3364d9d2493
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434742800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 22:12:23 EST 2025
Sat Nov 29 06:25:06 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TLBO
Constraints
Tradeoff
Diversity
Objective function
Constrained optimization
Convergence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-6e82b36539762fed62048dc73806a1e5408d2f0c3fd5a9a1448c4a3364d9d2493
ORCID 0000-0002-5750-0984
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ins_2018_04_083
crossref_citationtrail_10_1016_j_ins_2018_04_083
elsevier_sciencedirect_doi_10_1016_j_ins_2018_04_083
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Biswas, Kundu, Das, Vasilakos (bib0007) 2013
Rao, Savsani, Vakharia (bib0033) 2012; 183
Wang, Cai (bib0040) 2012; 16
Yu, While, Reynolds, Wang, Wang (bib0046) 2017; 99
Rao, Patel (bib0032) 2012; 3
Neri, Cotta (bib0026) 2012; 2
Cheng, Zhang, Neri (bib0012) 2013; 247
Degertekin, Hayalioglu (bib0016) 2013; 119
Zhang, Liu, Meng, Yang, Vasilakos (bib0048) 2017; 394
Yu, Wang, Wang (bib0045) 2016; 27
Saha, Datta, Deb (bib0034) 2010
Kundu, Das, Vasilakos, Biswas (bib0019) 2015; 19
Trivedi, Srinivasan, Biswas, Reindl (bib0037) 2016; 354
Zamli, Din, Baharom, Ahmed (bib0047) 2017; 59
Yu, Chen, Wang, Wang (bib0043) 2017; 145
Shao, Pi, Shao (bib0035) 2017; 61
Wang, Wang, Li, Yen (bib0041) 2016; 46
Zheng, Zhang, Tang, Zheng (bib0049) 2017; 399
Biswas, Eita, Das, Vasilakos (bib0005) 2014
Wang, Li, Li, Wang (bib0039) 2018
Takahama, Sakai (bib0036) 2010
Niknam, Azizipanah-Abarghooee, Aghaei (bib0029) 2013; 28
Das, Biswas, Kundu (bib0014) 2013; 13
Poikolainen, Neri, Caraffini (bib0031) 2015; 297
Bose, Biswas, Vasilakos, Laha (bib0008) 2014; 281
Neri, Tirronen (bib0027) 2010; 33
Banerjee, Maity, Chanda (bib0001) 2015; 73
Neri, Toivanen, Cascella, Ong (bib0028) 2007; 4
Biswas, Bose, Das, Kundu (bib0004) 2013; 52
Pan, Wang, Guo, Wu (bib0030) 2018; 436
Baykasoğlu, Hamzadayi, Köse (bib0002) 2014; 276
Gong, Cai, Liang (bib0017) 2015; 45
Iacca, Caraffini, Neri (bib0018) 2014; 24
Zou, Wang, Hei, Chen, Yang (bib0050) 2014; 273
Caponio, Neri, Tirronen (bib0010) 2009; 13
Biswas, Kundu, Bose, Das (bib0006) 2012
Yu, Wang, Wang (bib0044) 2016; 352
Mallipeddi, Suganthan (bib0022) 2010; 24
Waghmare (bib0038) 2013; 229
Chen, Zou, Li, Wang, Li (bib0011) 2015; 297
Liang, Shang, Li (bib0021) 2010
Bhattacharjee, Bhattacharya, Dey (bib0003) 2014; 21
Črepinšek, Liu, Mernik (bib0013) 2013; 45
Wu, Shen, Li, Chen, Lin, Suganthan (bib0042) 2018; 423
Mezura-Montes, Coello (bib0024) 2011; 1
Mezura-Montes, Velez-Koeppel (bib0025) 2010
Liang, Runarsson, Mezura-Montes, Clerc, Suganthan, Coello, Deb (bib0020) 2006; 41
Caponio, Cascella, Neri, Salvatore, Sumner (bib0009) 2007; 37
Mandal, Roy (bib0023) 2013; 53
Das, Biswas, Panigrahi, Kundu, Basu (bib0015) 2014; 44
Liang (10.1016/j.ins.2018.04.083_bib0021) 2010
Yu (10.1016/j.ins.2018.04.083_bib0043) 2017; 145
Caponio (10.1016/j.ins.2018.04.083_bib0009) 2007; 37
Biswas (10.1016/j.ins.2018.04.083_bib0005) 2014
Liang (10.1016/j.ins.2018.04.083_bib0020) 2006; 41
Pan (10.1016/j.ins.2018.04.083_bib0030) 2018; 436
Neri (10.1016/j.ins.2018.04.083_bib0027) 2010; 33
Poikolainen (10.1016/j.ins.2018.04.083_bib0031) 2015; 297
Wu (10.1016/j.ins.2018.04.083_bib0042) 2018; 423
Chen (10.1016/j.ins.2018.04.083_bib0011) 2015; 297
Zou (10.1016/j.ins.2018.04.083_bib0050) 2014; 273
Iacca (10.1016/j.ins.2018.04.083_bib0018) 2014; 24
Niknam (10.1016/j.ins.2018.04.083_bib0029) 2013; 28
Banerjee (10.1016/j.ins.2018.04.083_bib0001) 2015; 73
Wang (10.1016/j.ins.2018.04.083_bib0039) 2018
Biswas (10.1016/j.ins.2018.04.083_bib0006) 2012
Mezura-Montes (10.1016/j.ins.2018.04.083_bib0024) 2011; 1
Biswas (10.1016/j.ins.2018.04.083_bib0004) 2013; 52
Cheng (10.1016/j.ins.2018.04.083_bib0012) 2013; 247
Rao (10.1016/j.ins.2018.04.083_bib0033) 2012; 183
Wang (10.1016/j.ins.2018.04.083_bib0040) 2012; 16
Rao (10.1016/j.ins.2018.04.083_bib0032) 2012; 3
Waghmare (10.1016/j.ins.2018.04.083_bib0038) 2013; 229
Zamli (10.1016/j.ins.2018.04.083_bib0047) 2017; 59
Gong (10.1016/j.ins.2018.04.083_bib0017) 2015; 45
Kundu (10.1016/j.ins.2018.04.083_bib0019) 2015; 19
Neri (10.1016/j.ins.2018.04.083_bib0028) 2007; 4
Zheng (10.1016/j.ins.2018.04.083_bib0049) 2017; 399
Neri (10.1016/j.ins.2018.04.083_bib0026) 2012; 2
Črepinšek (10.1016/j.ins.2018.04.083_bib0013) 2013; 45
Baykasoğlu (10.1016/j.ins.2018.04.083_bib0002) 2014; 276
Degertekin (10.1016/j.ins.2018.04.083_bib0016) 2013; 119
Mezura-Montes (10.1016/j.ins.2018.04.083_bib0025) 2010
Yu (10.1016/j.ins.2018.04.083_bib0045) 2016; 27
Saha (10.1016/j.ins.2018.04.083_bib0034) 2010
Bhattacharjee (10.1016/j.ins.2018.04.083_bib0003) 2014; 21
Das (10.1016/j.ins.2018.04.083_bib0014) 2013; 13
Mallipeddi (10.1016/j.ins.2018.04.083_bib0022) 2010; 24
Yu (10.1016/j.ins.2018.04.083_bib0046) 2017; 99
Mandal (10.1016/j.ins.2018.04.083_bib0023) 2013; 53
Zhang (10.1016/j.ins.2018.04.083_bib0048) 2017; 394
Shao (10.1016/j.ins.2018.04.083_bib0035) 2017; 61
Trivedi (10.1016/j.ins.2018.04.083_bib0037) 2016; 354
Das (10.1016/j.ins.2018.04.083_bib0015) 2014; 44
Wang (10.1016/j.ins.2018.04.083_bib0041) 2016; 46
Caponio (10.1016/j.ins.2018.04.083_bib0010) 2009; 13
Biswas (10.1016/j.ins.2018.04.083_bib0007) 2013
Takahama (10.1016/j.ins.2018.04.083_bib0036) 2010
Bose (10.1016/j.ins.2018.04.083_bib0008) 2014; 281
Yu (10.1016/j.ins.2018.04.083_bib0044) 2016; 352
References_xml – volume: 21
  start-page: 870
  year: 2014
  ident: bib0003
  article-title: Teaching-learning-based optimization for different economic dispatch problems
  publication-title: Sc. Iranica. Trans. D Comput. Sci. Eng. Electr.
– volume: 4
  start-page: 264
  year: 2007
  end-page: 278
  ident: bib0028
  article-title: An adaptive multimeme algorithm for designing HIV multidrug therapies
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 27
  start-page: 831
  year: 2016
  end-page: 843
  ident: bib0045
  article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
  publication-title: J. Intell. Manuf.
– volume: 273
  start-page: 112
  year: 2014
  end-page: 131
  ident: bib0050
  article-title: Teaching–learning-based optimization with dynamic group strategy for global optimization
  publication-title: Inf. Sci. (Ny)
– volume: 37
  start-page: 28
  year: 2007
  end-page: 41
  ident: bib0009
  article-title: A fast adaptive memetic algorithm for online and offline control design of PMSM drives
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– start-page: 467
  year: 2012
  end-page: 475
  ident: bib0006
  article-title: Cooperative co-evolutionary teaching-learning based algorithm with a modified exploration strategy for large scale global optimization
  publication-title: Proceedings of the International Conference on Swarm, Evolutionary, and Memetic Computing
– volume: 53
  start-page: 123
  year: 2013
  end-page: 134
  ident: bib0023
  article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 16
  start-page: 117
  year: 2012
  end-page: 134
  ident: bib0040
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1076
  year: 2014
  end-page: 1083
  ident: bib0005
  article-title: Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0025
  article-title: Elitist artificial bee colony for constrained real-parameter optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 59
  start-page: 35
  year: 2017
  end-page: 50
  ident: bib0047
  article-title: Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites
  publication-title: Eng. Appl. Artif. Intell.
– volume: 61
  start-page: 193
  year: 2017
  end-page: 210
  ident: bib0035
  article-title: An extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling problem
  publication-title: Appl. Soft. Comput.
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib0036
  article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 46
  start-page: 2938
  year: 2016
  end-page: 2952
  ident: bib0041
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Trans. Cybern.
– volume: 423
  start-page: 172
  year: 2018
  end-page: 186
  ident: bib0042
  article-title: Ensemble of differential evolution variants
  publication-title: Inf. Sci. (Ny)
– volume: 41
  year: 2006
  ident: bib0020
  article-title: Problem definitions and evaluation criteria for the CEC special session on constrained real-parameter optimization
  publication-title: J. Appl. Mech.
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0021
  article-title: Coevolutionary comprehensive learning particle swarm optimizer
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 45
  start-page: 35
  year: 2013
  ident: bib0013
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 13
  start-page: 4676
  year: 2013
  end-page: 4694
  ident: bib0014
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft. Comput.
– volume: 352
  start-page: 61
  year: 2016
  end-page: 78
  ident: bib0044
  article-title: Constrained optimization based on improved teaching–learning-based optimization algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 399
  start-page: 13
  year: 2017
  end-page: 29
  ident: bib0049
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci. (Ny)
– volume: 99
  start-page: 314
  year: 2017
  end-page: 324
  ident: bib0046
  article-title: Cyclic scheduling for an ethylene cracking furnace system using diversity learning teaching-learning-based optimization
  publication-title: Comput. Chem. Eng.
– volume: 45
  start-page: 716
  year: 2015
  end-page: 727
  ident: bib0017
  article-title: Adaptive ranking mutation operator based differential evolution for constrained optimization
  publication-title: IEEE Trans. Cybern.
– volume: 297
  start-page: 216
  year: 2015
  end-page: 235
  ident: bib0031
  article-title: Cluster-based population initialization for differential evolution frameworks
  publication-title: Inf. Sci. (Ny)
– volume: 276
  start-page: 204
  year: 2014
  end-page: 218
  ident: bib0002
  article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling cases
  publication-title: Inf. Sci. (Ny)
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib0033
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci. (Ny)
– volume: 297
  start-page: 171
  year: 2015
  end-page: 190
  ident: bib0011
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Inf. Sci. (Ny)
– volume: 24
  year: 2010
  ident: bib0022
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: bib0043
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
– volume: 394
  start-page: 273
  year: 2017
  end-page: 298
  ident: bib0048
  article-title: Vector coevolving particle swarm optimization algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 229
  start-page: 159
  year: 2013
  end-page: 169
  ident: bib0038
  article-title: Comments on a note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 28
  start-page: 749
  year: 2013
  end-page: 763
  ident: bib0029
  article-title: A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 19
  start-page: 637
  year: 2015
  end-page: 659
  ident: bib0019
  article-title: A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maximization of wireless sensor networks
  publication-title: Soft Comput.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0026
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol. Comput.
– start-page: 1115
  year: 2013
  end-page: 1122
  ident: bib0007
  article-title: Teaching and learning best differential evolution with self adaptation for real parameter optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 1
  start-page: 173
  year: 2011
  end-page: 194
  ident: bib0024
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 52
  start-page: 185
  year: 2013
  end-page: 205
  ident: bib0004
  article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays
  publication-title: Prog. Electromagn. Res. B
– volume: 44
  start-page: 1884
  year: 2014
  end-page: 1897
  ident: bib0015
  article-title: A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization
  publication-title: IEEE Trans. Cybern.
– volume: 119
  start-page: 177
  year: 2013
  end-page: 188
  ident: bib0016
  article-title: Sizing truss structures using teaching-learning-based optimization
  publication-title: Comput. Struct.
– volume: 24
  start-page: 1450008
  year: 2014
  ident: bib0018
  article-title: Multi-strategy coevolving aging particle optimization
  publication-title: Int. J. Neural. Syst.
– volume: 281
  start-page: 443
  year: 2014
  end-page: 461
  ident: bib0008
  article-title: Optimal filter design using an improved artificial bee colony algorithm
  publication-title: Inf. Sci. (Ny)
– volume: 247
  start-page: 72
  year: 2013
  end-page: 93
  ident: bib0012
  article-title: Enhancing distributed differential evolution with multicultural migration for global numerical optimization
  publication-title: Inf. Sci. (Ny)
– volume: 73
  start-page: 456
  year: 2015
  end-page: 464
  ident: bib0001
  article-title: Teaching learning based optimization for economic load dispatch problem considering valve point loading effect
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 3
  start-page: 535
  year: 2012
  end-page: 560
  ident: bib0032
  article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 13
  start-page: 811
  year: 2009
  ident: bib0010
  article-title: Super-fit control adaptation in memetic differential evolution frameworks
  publication-title: Soft Comput.
– year: 2018
  ident: bib0039
  article-title: Composite differential evolution for constrained evolutionary optimization
  publication-title: Proceedings of the IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 436
  start-page: 441
  year: 2018
  end-page: 465
  ident: bib0030
  article-title: A diversity enhanced multiobjective particle swarm optimization
  publication-title: Inf. Sci. (Ny)
– volume: 354
  start-page: 275
  year: 2016
  end-page: 300
  ident: bib0037
  article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem
  publication-title: Inf. Sci. (Ny)
– start-page: 1
  year: 2010
  end-page: 8
  ident: bib0034
  article-title: Hybrid gradient projection based genetic algorithms for constrained optimization
  publication-title: Proceedings of the IEEE Congress on Evolutionary Computation (CEC)
– volume: 33
  start-page: 61
  year: 2010
  end-page: 106
  ident: bib0027
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
– volume: 281
  start-page: 443
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0008
  article-title: Optimal filter design using an improved artificial bee colony algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.05.033
– volume: 1
  start-page: 173
  issue: 4
  year: 2011
  ident: 10.1016/j.ins.2018.04.083_bib0024
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.10.001
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0043
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.054
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0036
  article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation
– volume: 16
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2018.04.083_bib0040
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093582
– volume: 28
  start-page: 749
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0029
  article-title: A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2208273
– volume: 247
  start-page: 72
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0012
  article-title: Enhancing distributed differential evolution with multicultural migration for global numerical optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2013.06.011
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0025
  article-title: Elitist artificial bee colony for constrained real-parameter optimization
– volume: 44
  start-page: 1884
  issue: 10
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0015
  article-title: A spatially informative optic flow model of bee colony with saccadic flight strategy for global optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2298916
– year: 2018
  ident: 10.1016/j.ins.2018.04.083_bib0039
  article-title: Composite differential evolution for constrained evolutionary optimization
– volume: 229
  start-page: 159
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0038
  article-title: Comments on a note on teaching–learning-based optimization algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2012.11.009
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0034
  article-title: Hybrid gradient projection based genetic algorithms for constrained optimization
– start-page: 1076
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0005
  article-title: Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization
– start-page: 467
  year: 2012
  ident: 10.1016/j.ins.2018.04.083_bib0006
  article-title: Cooperative co-evolutionary teaching-learning based algorithm with a modified exploration strategy for large scale global optimization
– start-page: 1115
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0007
  article-title: Teaching and learning best differential evolution with self adaptation for real parameter optimization
– volume: 24
  start-page: 1450008
  issue: 01
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0018
  article-title: Multi-strategy coevolving aging particle optimization
  publication-title: Int. J. Neural. Syst.
  doi: 10.1142/S0129065714500087
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.ins.2018.04.083_bib0026
  article-title: Memetic algorithms and memetic computing optimization: a literature review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.11.003
– volume: 41
  issue: 8
  year: 2006
  ident: 10.1016/j.ins.2018.04.083_bib0020
  article-title: Problem definitions and evaluation criteria for the CEC special session on constrained real-parameter optimization
  publication-title: J. Appl. Mech.
– volume: 45
  start-page: 35
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0013
  article-title: Exploration and exploitation in evolutionary algorithms: a survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2480741.2480752
– start-page: 1
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0021
  article-title: Coevolutionary comprehensive learning particle swarm optimizer
– volume: 37
  start-page: 28
  issue: 1
  year: 2007
  ident: 10.1016/j.ins.2018.04.083_bib0009
  article-title: A fast adaptive memetic algorithm for online and offline control design of PMSM drives
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2006.883271
– volume: 354
  start-page: 275
  year: 2016
  ident: 10.1016/j.ins.2018.04.083_bib0037
  article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.03.023
– volume: 45
  start-page: 716
  issue: 4
  year: 2015
  ident: 10.1016/j.ins.2018.04.083_bib0017
  article-title: Adaptive ranking mutation operator based differential evolution for constrained optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2334692
– volume: 61
  start-page: 193
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0035
  article-title: An extended teaching-learning based optimization algorithm for solving no-wait flow shop scheduling problem
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2017.08.020
– volume: 99
  start-page: 314
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0046
  article-title: Cyclic scheduling for an ethylene cracking furnace system using diversity learning teaching-learning-based optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.01.024
– volume: 73
  start-page: 456
  year: 2015
  ident: 10.1016/j.ins.2018.04.083_bib0001
  article-title: Teaching learning based optimization for economic load dispatch problem considering valve point loading effect
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.05.036
– volume: 4
  start-page: 264
  issue: 2
  year: 2007
  ident: 10.1016/j.ins.2018.04.083_bib0028
  article-title: An adaptive multimeme algorithm for designing HIV multidrug therapies
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2007.070202
– volume: 13
  start-page: 4676
  issue: 12
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0014
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2013.07.009
– volume: 276
  start-page: 204
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0002
  article-title: Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: flow shop and job shop scheduling cases
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.02.056
– volume: 3
  start-page: 535
  issue: 4
  year: 2012
  ident: 10.1016/j.ins.2018.04.083_bib0032
  article-title: An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 297
  start-page: 216
  year: 2015
  ident: 10.1016/j.ins.2018.04.083_bib0031
  article-title: Cluster-based population initialization for differential evolution frameworks
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.11.026
– volume: 52
  start-page: 185
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0004
  article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays
  publication-title: Prog. Electromagn. Res. B
  doi: 10.2528/PIERB13030709
– volume: 24
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0022
– volume: 352
  start-page: 61
  year: 2016
  ident: 10.1016/j.ins.2018.04.083_bib0044
  article-title: Constrained optimization based on improved teaching–learning-based optimization algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2016.02.054
– volume: 394
  start-page: 273
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0048
  article-title: Vector coevolving particle swarm optimization algorithm
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2017.01.038
– volume: 19
  start-page: 637
  issue: 3
  year: 2015
  ident: 10.1016/j.ins.2018.04.083_bib0019
  article-title: A modified differential evolution-based combined routing and sleep scheduling scheme for lifetime maximization of wireless sensor networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1286-9
– volume: 33
  start-page: 61
  issue: 1–2
  year: 2010
  ident: 10.1016/j.ins.2018.04.083_bib0027
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9137-2
– volume: 21
  start-page: 870
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0003
  article-title: Teaching-learning-based optimization for different economic dispatch problems
  publication-title: Sc. Iranica. Trans. D Comput. Sci. Eng. Electr.
– volume: 399
  start-page: 13
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0049
  article-title: Differential evolution powered by collective information
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2017.02.055
– volume: 13
  start-page: 811
  issue: 8–9
  year: 2009
  ident: 10.1016/j.ins.2018.04.083_bib0010
  article-title: Super-fit control adaptation in memetic differential evolution frameworks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0357-1
– volume: 53
  start-page: 123
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0023
  article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.04.011
– volume: 273
  start-page: 112
  year: 2014
  ident: 10.1016/j.ins.2018.04.083_bib0050
  article-title: Teaching–learning-based optimization with dynamic group strategy for global optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.03.038
– volume: 436
  start-page: 441
  year: 2018
  ident: 10.1016/j.ins.2018.04.083_bib0030
  article-title: A diversity enhanced multiobjective particle swarm optimization
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.01.038
– volume: 119
  start-page: 177
  year: 2013
  ident: 10.1016/j.ins.2018.04.083_bib0016
  article-title: Sizing truss structures using teaching-learning-based optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.12.011
– volume: 27
  start-page: 831
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2018.04.083_bib0045
  article-title: An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0918-3
– volume: 59
  start-page: 35
  year: 2017
  ident: 10.1016/j.ins.2018.04.083_bib0047
  article-title: Fuzzy adaptive teaching learning-based optimization strategy for the problem of generating mixed strength t-way test suites
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.014
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2018.04.083_bib0033
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2011.08.006
– volume: 46
  start-page: 2938
  issue: 12
  year: 2016
  ident: 10.1016/j.ins.2018.04.083_bib0041
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2493239
– volume: 297
  start-page: 171
  year: 2015
  ident: 10.1016/j.ins.2018.04.083_bib0011
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2014.11.001
– volume: 423
  start-page: 172
  year: 2018
  ident: 10.1016/j.ins.2018.04.083_bib0042
  article-title: Ensemble of differential evolution variants
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2017.09.053
SSID ssj0004766
Score 2.425453
Snippet •An efficient subpopulation strategy is designed to increase the diversity of the teacher phase.•A novel ranking differential vector strategy is presented to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Constrained optimization
Constraints
Convergence
Diversity
Objective function
TLBO
Tradeoff
Title An improved teaching-learning-based optimization for constrained evolutionary optimization
URI https://dx.doi.org/10.1016/j.ins.2018.04.083
Volume 456
WOSCitedRecordID wos000434742800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYdyQJS24i0fqh5aWYrXieMclxUIOKAeqBp6ibx2QouKF-1L-_MZx05ioFvBoZdolbUn3p3JzDf2PBD6JHhU0qqfECnBRYlppolMVUUSUJZMjSivlKqbTaQXFyLPs2_-oH1atxNIjRHLZXb3X1kN94DZNnX2BexuicIN-AxMhyuwHa7PYvzA2NTHyXgBUHLmYyWJbw5xTazV0l_HoChufQZmHWioLEy03SLgy3Lh12cD6sKRIZD1aUw1AW9FW3T-w-9BH9kHDn_Ng7Af1yNbGpLDxOsOh7oJV3MT7kJQ0cbAdVkBEbH-SahZ4yTUjdSre2dmqSv7-ESDu82EG3A7bDF1KupCtK7XzcNq2Y-sWBtb2ISt3RRAorAkiigugMRrtNZPkwyU4drg7Dg_79JnU3ek3fyE5vC7DgN8tI6_w5cAklxuog3vS-CBk4F36FVpttB6UGFyCx34vBT8GQccw16jv0c_BwY30oJXSAsOZQADERxICw6l5cHID-j7yfHl8JT4dhtEMc5mhJeiP2K2VDEYyKrUtlOB0CplIuKSlgDthe5XkWKVTmQmgYFCxZIxHutMgxfPPqKeGZtyG2GeAQqMldJcwxAqRQKgJwXXPJJSjjTfQVHzLxbK16K3y_5TrOTeDvrSTrlzhVj-NThuWFP4d8AhxALEbPW03Zc8Yw-97V6EfdSbTeblAXqjFrPf08mhl7F7XNGXLg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+teaching-learning-based+optimization+for+constrained+evolutionary+optimization&rft.jtitle=Information+sciences&rft.au=Wang%2C+Bing-Chuan&rft.au=Li%2C+Han-Xiong&rft.au=Feng%2C+Yun&rft.date=2018-08-01&rft.issn=0020-0255&rft.volume=456&rft.spage=131&rft.epage=144&rft_id=info:doi/10.1016%2Fj.ins.2018.04.083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2018_04_083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon