A Reflected Forward-Backward Splitting Method for Monotone Inclusions Involving Lipschitzian Operators

In this paper, we propose a novel splitting method for finding a zero point of the sum of two monotone operators where one of them is Lipschizian. The weak convergence the method is proved in real Hilbert spaces. Applying the proposed method to composite monotone inclusions involving parallel sums y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis Jg. 29; H. 1; S. 163 - 174
Hauptverfasser: Cevher, Volkan, Vũ, Bằng Công
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.03.2021
Springer Nature B.V
Schlagworte:
ISSN:1877-0533, 1877-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel splitting method for finding a zero point of the sum of two monotone operators where one of them is Lipschizian. The weak convergence the method is proved in real Hilbert spaces. Applying the proposed method to composite monotone inclusions involving parallel sums yields a new primal-dual splitting which is different from the existing methods. Connections to existing works are clearly stated. We also provide an application of the proposed method to the image denoising by the total variation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1877-0533
1877-0541
DOI:10.1007/s11228-020-00542-4