A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis

In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficien...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 15; číslo 15; s. 8454
Hlavní autori: Liang, Haoming, Zhao, Fuqing, Xu, Tianpeng, Zhang, Jianlin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2025
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach.
AbstractList In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach.
Audience Academic
Author Zhao, Fuqing
Zhang, Jianlin
Xu, Tianpeng
Liang, Haoming
Author_xml – sequence: 1
  givenname: Haoming
  orcidid: 0009-0008-4594-5733
  surname: Liang
  fullname: Liang, Haoming
– sequence: 2
  givenname: Fuqing
  surname: Zhao
  fullname: Zhao, Fuqing
– sequence: 3
  givenname: Tianpeng
  orcidid: 0009-0000-4816-7852
  surname: Xu
  fullname: Xu, Tianpeng
– sequence: 4
  givenname: Jianlin
  surname: Zhang
  fullname: Zhang, Jianlin
BookMark eNpNkU9P3DAQxa2KSqXAiS9gqccq1P_iJMddoBRpKy7lbI2d8eIl2KkdEPvta7pVhX3w6On5p5l5n8lRTBEJOefsQsqBfYN55i1ve9WqD-RYsE43UvHu6F39iZyVsmP1DFz2nB0Ts6JXiDPdIOQY4ra5yuEFI11P4B6bdXqla4zu4QnyI73BiBmWkCL9ictDGulLAHr9Ok-pyinv6QbiWBzMSFcRpn0J5ZR89DAVPPv3npD779e_Ln80m7ub28vVpnFSy6XRzgnlOWutBz50WggPg7Badqi4GG2Hmttets6iGj3Tg65eFF0rrQJtR3lCbg_cMcHOzDnUjvcmQTB_hZS3BvIS3IRGKyGkY4N2aJXqbQ-gUWDrpHPocaisLwfWnNPvZyyL2aXnXAcqRoq6acH6jlfXxcG1hQoN0aclg6t3xKfgajQ-VH3V10j00PE37NfDB5dTKRn9_zY5M28JmncJyj-c7I7P
Cites_doi 10.1007/978-3-319-91341-4
10.1007/978-3-030-29414-4_9
10.1016/j.swevo.2018.06.010
10.1162/evco_a_00236
10.1145/1570256.1570333
10.1007/978-3-031-30229-9_27
10.1137/23M1599744
10.1007/s11075-021-01221-7
10.21105/joss.02173
10.3390/a14020040
10.1145/3299904.3340308
10.1109/ICDS62089.2024.10756341
10.1145/3205651.3205747
10.1145/3512290.3528834
10.1162/evco_a_00367
10.1007/978-3-031-14714-2_1
10.1016/j.ecoinf.2010.12.003
10.1162/evco_a_00341
10.1109/TPWRS.2018.2874173
10.1016/j.swevo.2024.101669
10.1162/evco_a_00262
10.1145/3512290.3528832
10.1145/3319619.3326890
10.1145/2001576.2001690
10.1109/TEVC.2005.863628
10.1145/2739480.2754642
10.1109/CEC.2014.6900240
10.1007/s10472-013-9341-2
10.1145/3512290.3528712
10.3390/a14030078
10.1162/evco_a_00260
10.1016/j.jmva.2018.03.010
10.1109/CEC.2009.4983112
10.1007/978-3-030-58115-2_10
10.1162/evco_a_00242
10.1007/978-3-031-14714-2_41
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app15158454
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_64223c096ceb448b8aa6e2e5c3ccefe9
A851569719
10_3390_app15158454
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-6cc24f105bfa197622fa92b637e412db7e61b835cbe4df0696105e2753b4a6bd3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:09:13 EDT 2025
Wed Aug 13 11:40:51 EDT 2025
Tue Nov 04 18:12:38 EST 2025
Sat Nov 29 07:20:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-6cc24f105bfa197622fa92b637e412db7e61b835cbe4df0696105e2753b4a6bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-4816-7852
0009-0008-4594-5733
OpenAccessLink https://doaj.org/article/64223c096ceb448b8aa6e2e5c3ccefe9
PQID 3239020871
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_64223c096ceb448b8aa6e2e5c3ccefe9
proquest_journals_3239020871
gale_infotracacademiconefile_A851569719
crossref_primary_10_3390_app15158454
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Opara (ref_43) 2019; 44
ref_14
ref_36
Shchetinin (ref_42) 2018; 34
ref_13
ref_33
Glanz (ref_37) 2018; 167
ref_30
Akimoto (ref_40) 2020; 28
ref_19
ref_18
ref_17
ref_16
ref_38
Herbold (ref_44) 2020; 5
Mersmann (ref_12) 2013; 69
Gallagher (ref_11) 2006; 10
Paszke (ref_31) 2019; 32
Li (ref_2) 2013; 7
(ref_10) 2020; 28
ref_25
ref_24
(ref_39) 2022; 90
ref_23
ref_45
ref_22
ref_21
ref_41
Kerschke (ref_20) 2019; 27
ref_1
ref_3
Seiler (ref_34) 2025; 8
ref_29
ref_28
ref_26
ref_9
Li (ref_32) 2011; 6
ref_8
Kerschke (ref_7) 2019; 27
Zhu (ref_15) 2024; 90
ref_5
Prager (ref_27) 2023; 32
Cheng (ref_35) 2025; 63
ref_4
ref_6
References_xml – ident: ref_36
  doi: 10.1007/978-3-319-91341-4
– ident: ref_38
  doi: 10.1007/978-3-030-29414-4_9
– volume: 44
  start-page: 546
  year: 2019
  ident: ref_43
  article-title: Differential Evolution: A survey of theoretical analyses
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.06.010
– ident: ref_3
– volume: 27
  start-page: 99
  year: 2019
  ident: ref_7
  article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00236
– ident: ref_30
  doi: 10.1145/1570256.1570333
– ident: ref_23
  doi: 10.1007/978-3-031-30229-9_27
– volume: 63
  start-page: 625
  year: 2025
  ident: ref_35
  article-title: Interpolation, approximation, and controllability of deep neural networks
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/23M1599744
– volume: 90
  start-page: 1043
  year: 2022
  ident: ref_39
  article-title: Convergence of the Nelder-Mead method
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-021-01221-7
– volume: 5
  start-page: 2173
  year: 2020
  ident: ref_44
  article-title: Autorank: A python package for automated ranking of classifiers
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02173
– ident: ref_13
  doi: 10.3390/a14020040
– ident: ref_24
  doi: 10.1145/3299904.3340308
– volume: 7
  start-page: 8
  year: 2013
  ident: ref_2
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– ident: ref_45
  doi: 10.1109/ICDS62089.2024.10756341
– ident: ref_16
  doi: 10.1145/3205651.3205747
– ident: ref_18
– ident: ref_25
  doi: 10.1145/3512290.3528834
– volume: 8
  start-page: 1
  year: 2025
  ident: ref_34
  article-title: Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single-Objective and Multiobjective Continuous Optimization Problems
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00367
– ident: ref_9
  doi: 10.1007/978-3-031-14714-2_1
– ident: ref_6
– volume: 6
  start-page: 228
  year: 2011
  ident: ref_32
  article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2010.12.003
– volume: 32
  start-page: 211
  year: 2023
  ident: ref_27
  article-title: Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00341
– volume: 34
  start-page: 1182
  year: 2018
  ident: ref_42
  article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2874173
– ident: ref_4
– volume: 90
  start-page: 101669
  year: 2024
  ident: ref_15
  article-title: A hierarchical reinforcement learning-aware hyper-heuristic algorithm with fitness landscape analysis
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101669
– ident: ref_33
– volume: 28
  start-page: 379
  year: 2020
  ident: ref_10
  article-title: Generating new space-filling test instances for continuous black-box optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00262
– ident: ref_8
  doi: 10.1145/3512290.3528832
– ident: ref_26
  doi: 10.1145/3319619.3326890
– ident: ref_28
  doi: 10.1145/2001576.2001690
– volume: 10
  start-page: 590
  year: 2006
  ident: ref_11
  article-title: A general-purpose tunable landscape generator
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.863628
– volume: 32
  start-page: 452
  year: 2019
  ident: ref_31
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_41
– ident: ref_29
  doi: 10.1145/2739480.2754642
– ident: ref_14
  doi: 10.1109/CEC.2014.6900240
– volume: 69
  start-page: 151
  year: 2013
  ident: ref_12
  article-title: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-013-9341-2
– ident: ref_5
  doi: 10.1145/3512290.3528712
– ident: ref_1
  doi: 10.3390/a14030078
– ident: ref_22
– volume: 28
  start-page: 405
  year: 2020
  ident: ref_40
  article-title: Diagonal acceleration for covariance matrix adaptation evolution strategies
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00260
– volume: 167
  start-page: 31
  year: 2018
  ident: ref_37
  article-title: An expectation–maximization algorithm for the matrix normal distribution with an application in remote sensing
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2018.03.010
– ident: ref_19
  doi: 10.1109/CEC.2009.4983112
– ident: ref_21
  doi: 10.1007/978-3-030-58115-2_10
– volume: 27
  start-page: 3
  year: 2019
  ident: ref_20
  article-title: Automated algorithm selection: Survey and perspectives
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00242
– ident: ref_17
  doi: 10.1007/978-3-031-14714-2_41
SSID ssj0000913810
Score 2.3262644
Snippet In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8454
SubjectTerms algorithm selection problem
Algorithms
Analysis
benchmarking functions
Benchmarks
black-box optimization
Deep learning
exploratory landscape analysis
Machine learning
Methods
Neural networks
Optimization algorithms
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxFH_BxYMcFFDDCpIeSNTDhOnHdGdOZFcgmADZgxo8NW2ng4Swu86uhD-f9zpdxIOeuM5MJ01-fZ997_cA9gq0203hKP_ldaYaUWdVqWtUhmXhUCPmNl60fz8dnJ-XFxfVOLVHz1NZ5VInRkXdsT1T3TYq4f166iljvi8FxuoiR2__YPYroxlSdNeaBmo8g1Ui3sp7sDr-cjb-8ZBzIQ7Mkuddm57EP9AtMVn0UhXqL8MU-fv_paWj6Tl-9bSbXoeXyQVlw-7MbMBKmGzC2iNiwk3YSCI_Zx8TL_Wn12CG7DCEGUuUrJfZYUuqksUcYDaa3rERrvl5Y9tr1q0i0NlZnFHNbq8s6wr-4r0-O6UeY6q-YktelDfw7fjo6-eTLM1nyLzUcpFRybVq0EFzjeXo1gjR2Eo4LQdBcUG8zZo79PC8C6pucl2hq1YEgQGSU1a7Wr6F3mQ6CVvAdM0tuaaS11JZ76ySluc110XFg7W-D3tLcMyso-EwGL4QhuYRhn0YEXAPnxB3dnwwbS9NEkWDEZeQHkM3HxwGp660VgcRCi-9D02o-vCBYDck4YvWepsaFXCnxJVlhuikFroacPxyZwm7SaI_N39Qfvf_19vwQtAw4VhNuAO9Rfs7vIfn_nZxNW9309m9BzKT_yE
  priority: 102
  providerName: ProQuest
Title A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis
URI https://www.proquest.com/docview/3239020871
https://doaj.org/article/64223c096ceb448b8aa6e2e5c3ccefe9
Volume 15
WOSCitedRecordID wos001548995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB2hlEM5oAJFBCjaA1LpwcL74Y19TBqiViJRVLUVPa1212tAiICcgPj5zKwdFA4VF462vNJoxjvzZnfmDcBxhnG7yhydf3mdqEqUSZHrEp1hnjn0iKmNF-1_z3uTSX5xUUxXRn1RTVhDD9wo7hTxsZAegbYPDlMJl1urgwiZl96HKsTWvbRXrCRT0QcXnKirmoY8iXk93QdT7M5Vpl6FoMjU_z9_HIPM6BNstuiQ9RuptmAtzLZhY4UzcBu22t04ZyctZfS3HTB9NgzhnrVsqZfJsCYvxuLxXDK4e2IDXHN1a-sb1qwie7BxHB_NHq8ta2rx4pU7O6f2XyqMYkvKks_wZ3T2-_uPpB2dkHip5SKhamhVIXZyleWIOISobCGclr2guCBKZc0dgi_vgiqrVBeIorIgMHdxympXyl3ozO5mYQ-YLrkl1Ch5KZX1zippeVpynRU8WOu7cLzUprlvGDIMZhakdLOi9C4MSNMvnxCtdXyBxjatsc1bxu7CV7KToc23qK23bQ8BSko0VqaP-DHTRY_jl4dLU5p2V86NFCiUSDFH3H8PaQ7go6BpwLEc8BA6i_ohfIF1_7i4ntdH8GFwNpn-Ooo_Jj5Nf46n_54BauvoxA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UAQcLLwPb-wDQgmhatQkyqGgctrurtelQiTBCQX-FL-RGT9KOcCtB65-yY_P33yzO_sNwG6CcbtIHI1_eR2pQuRRluocyTBNHDJibKuJ9vfj3nSaHh1lsw342a6FobLKlhMros4XnsbIX0qB2bmIUd-_Xn6JqGsUza62LTRqWByEH98wZVu9Gg3x-z4VYu_t4Zv9qOkqEHmp5TqiQmFVoKxwheUYjIUobCaclr2guCC3Yc0d6hLvgsqLWGcoMJIgUNY7ZbXLJV73CmwqBHvcgc3ZaDL7cD6qQy6bKY_rhYAS75jmoUkzpCpRf4S-qkPA3-JAFdz2bv1vr-U23GxkNOvXuN-CjTDfhhsXzBW3YauhrRV73nhrv7gDps-GISxZYyt7Eg1LontWjWNGg8V3NsBzPn625SdWn0XAZZOqzzY7O7WsLlqsahPYmNZJUwUZa71d7sK7S3nse9CZL-bhPjCdc0vyWvJcKuudVdLyOOc6yXiw1ndht_38ZllbiRhMwQgl5gJKujAgaJwfQv7f1YZFeWIaOjGYNQrpMf30wWGC7VJrdRAh8dL7UISsC88IWIZYal1ab5vFFnin5Pdl-ii0E531OB650wLLNPS1Mr9R9eDfu5_Atf3DydiMR9ODh3BdUHPkqjpyBzrr8mt4BFf92fp0VT5u_hQGx5eNwl-OllA3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aHULbAdhgojDAhyHgEC22Ezc5INTSVUwrVYUA7WZsxxkTou3SMuCv8et4L3HGOMBtB66JHTnJ5_e-Zz9_D2AvRb9dppbWv5yKklIUUZ6pAo1hllq0iLGpN9o_jHuTSXZ8nE_X4Gd7FobSKlubWBvqYu5ojXxfCozORYz8fr8MaRHT4ejl4iyiClK009qW02ggcuR_fMPwbfnicIj_-okQo4N3r15HocJA5KSSq4iShpMSKYYtDUfHLERpcmGV7PmEC1IeVtwiR3HWJ0UZqxzJRuoFUnybGGULic-9Bus9iUFPB9YHB5Pp24sVHlLczHjcHAqUOHrakyb-kCVp8ocbrKsF_M0n1I5udOt__kS34Wag16zfzIctWPOzbdi8JLq4DVvBnC3Zs6C5_fwO6D4ber9gQW72JBpW5AZYvb4ZDebf2QD7fPpiqs-s6UWAZm_q-tvs_NSwJpmxzllgYzo_TZllrNV8uQvvr-S1d6Azm8_8PWCq4IZot-SFTIyzJpGGxwVXac69Ma4Ley0U9KKRGNEYmhFi9CXEdGFAMLloQrrg9YV5daKDmdEYTQrpMCx13mLgbTNjlBc-ddI5X_q8C08JZJqs16oyzoRDGDhS0gHTfSTgqcp7HFvutiDTwawt9W-E3f_37cdwA6Gnx4eTowewIahmcp00uQudVfXVP4Tr7nx1uqwehUnD4ONVg_AXHURY0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Driven+Black-Box+Benchmark+Generation+Method+via+Exploratory+Landscape+Analysis&rft.jtitle=Applied+sciences&rft.au=Liang%2C+Haoming&rft.au=Zhao%2C+Fuqing&rft.au=Xu%2C+Tianpeng&rft.au=Zhang%2C+Jianlin&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Fapp15158454&rft.externalDocID=A851569719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon