A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis
In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficien...
Uložené v:
| Vydané v: | Applied sciences Ročník 15; číslo 15; s. 8454 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.08.2025
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach. |
|---|---|
| AbstractList | In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach. |
| Audience | Academic |
| Author | Zhao, Fuqing Zhang, Jianlin Xu, Tianpeng Liang, Haoming |
| Author_xml | – sequence: 1 givenname: Haoming orcidid: 0009-0008-4594-5733 surname: Liang fullname: Liang, Haoming – sequence: 2 givenname: Fuqing surname: Zhao fullname: Zhao, Fuqing – sequence: 3 givenname: Tianpeng orcidid: 0009-0000-4816-7852 surname: Xu fullname: Xu, Tianpeng – sequence: 4 givenname: Jianlin surname: Zhang fullname: Zhang, Jianlin |
| BookMark | eNpNkU9P3DAQxa2KSqXAiS9gqccq1P_iJMddoBRpKy7lbI2d8eIl2KkdEPvta7pVhX3w6On5p5l5n8lRTBEJOefsQsqBfYN55i1ve9WqD-RYsE43UvHu6F39iZyVsmP1DFz2nB0Ts6JXiDPdIOQY4ra5yuEFI11P4B6bdXqla4zu4QnyI73BiBmWkCL9ictDGulLAHr9Ok-pyinv6QbiWBzMSFcRpn0J5ZR89DAVPPv3npD779e_Ln80m7ub28vVpnFSy6XRzgnlOWutBz50WggPg7Badqi4GG2Hmttets6iGj3Tg65eFF0rrQJtR3lCbg_cMcHOzDnUjvcmQTB_hZS3BvIS3IRGKyGkY4N2aJXqbQ-gUWDrpHPocaisLwfWnNPvZyyL2aXnXAcqRoq6acH6jlfXxcG1hQoN0aclg6t3xKfgajQ-VH3V10j00PE37NfDB5dTKRn9_zY5M28JmncJyj-c7I7P |
| Cites_doi | 10.1007/978-3-319-91341-4 10.1007/978-3-030-29414-4_9 10.1016/j.swevo.2018.06.010 10.1162/evco_a_00236 10.1145/1570256.1570333 10.1007/978-3-031-30229-9_27 10.1137/23M1599744 10.1007/s11075-021-01221-7 10.21105/joss.02173 10.3390/a14020040 10.1145/3299904.3340308 10.1109/ICDS62089.2024.10756341 10.1145/3205651.3205747 10.1145/3512290.3528834 10.1162/evco_a_00367 10.1007/978-3-031-14714-2_1 10.1016/j.ecoinf.2010.12.003 10.1162/evco_a_00341 10.1109/TPWRS.2018.2874173 10.1016/j.swevo.2024.101669 10.1162/evco_a_00262 10.1145/3512290.3528832 10.1145/3319619.3326890 10.1145/2001576.2001690 10.1109/TEVC.2005.863628 10.1145/2739480.2754642 10.1109/CEC.2014.6900240 10.1007/s10472-013-9341-2 10.1145/3512290.3528712 10.3390/a14030078 10.1162/evco_a_00260 10.1016/j.jmva.2018.03.010 10.1109/CEC.2009.4983112 10.1007/978-3-030-58115-2_10 10.1162/evco_a_00242 10.1007/978-3-031-14714-2_41 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app15158454 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_64223c096ceb448b8aa6e2e5c3ccefe9 A851569719 10_3390_app15158454 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c363t-6cc24f105bfa197622fa92b637e412db7e61b835cbe4df0696105e2753b4a6bd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:09:13 EDT 2025 Wed Aug 13 11:40:51 EDT 2025 Tue Nov 04 18:12:38 EST 2025 Sat Nov 29 07:20:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-6cc24f105bfa197622fa92b637e412db7e61b835cbe4df0696105e2753b4a6bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-4816-7852 0009-0008-4594-5733 |
| OpenAccessLink | https://doaj.org/article/64223c096ceb448b8aa6e2e5c3ccefe9 |
| PQID | 3239020871 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64223c096ceb448b8aa6e2e5c3ccefe9 proquest_journals_3239020871 gale_infotracacademiconefile_A851569719 crossref_primary_10_3390_app15158454 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Opara (ref_43) 2019; 44 ref_14 ref_36 Shchetinin (ref_42) 2018; 34 ref_13 ref_33 Glanz (ref_37) 2018; 167 ref_30 Akimoto (ref_40) 2020; 28 ref_19 ref_18 ref_17 ref_16 ref_38 Herbold (ref_44) 2020; 5 Mersmann (ref_12) 2013; 69 Gallagher (ref_11) 2006; 10 Paszke (ref_31) 2019; 32 Li (ref_2) 2013; 7 (ref_10) 2020; 28 ref_25 ref_24 (ref_39) 2022; 90 ref_23 ref_45 ref_22 ref_21 ref_41 Kerschke (ref_20) 2019; 27 ref_1 ref_3 Seiler (ref_34) 2025; 8 ref_29 ref_28 ref_26 ref_9 Li (ref_32) 2011; 6 ref_8 Kerschke (ref_7) 2019; 27 Zhu (ref_15) 2024; 90 ref_5 Prager (ref_27) 2023; 32 Cheng (ref_35) 2025; 63 ref_4 ref_6 |
| References_xml | – ident: ref_36 doi: 10.1007/978-3-319-91341-4 – ident: ref_38 doi: 10.1007/978-3-030-29414-4_9 – volume: 44 start-page: 546 year: 2019 ident: ref_43 article-title: Differential Evolution: A survey of theoretical analyses publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.06.010 – ident: ref_3 – volume: 27 start-page: 99 year: 2019 ident: ref_7 article-title: Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning publication-title: Evol. Comput. doi: 10.1162/evco_a_00236 – ident: ref_30 doi: 10.1145/1570256.1570333 – ident: ref_23 doi: 10.1007/978-3-031-30229-9_27 – volume: 63 start-page: 625 year: 2025 ident: ref_35 article-title: Interpolation, approximation, and controllability of deep neural networks publication-title: SIAM J. Control Optim. doi: 10.1137/23M1599744 – volume: 90 start-page: 1043 year: 2022 ident: ref_39 article-title: Convergence of the Nelder-Mead method publication-title: Numer. Algorithms doi: 10.1007/s11075-021-01221-7 – volume: 5 start-page: 2173 year: 2020 ident: ref_44 article-title: Autorank: A python package for automated ranking of classifiers publication-title: J. Open Source Softw. doi: 10.21105/joss.02173 – ident: ref_13 doi: 10.3390/a14020040 – ident: ref_24 doi: 10.1145/3299904.3340308 – volume: 7 start-page: 8 year: 2013 ident: ref_2 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – ident: ref_45 doi: 10.1109/ICDS62089.2024.10756341 – ident: ref_16 doi: 10.1145/3205651.3205747 – ident: ref_18 – ident: ref_25 doi: 10.1145/3512290.3528834 – volume: 8 start-page: 1 year: 2025 ident: ref_34 article-title: Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single-Objective and Multiobjective Continuous Optimization Problems publication-title: Evol. Comput. doi: 10.1162/evco_a_00367 – ident: ref_9 doi: 10.1007/978-3-031-14714-2_1 – ident: ref_6 – volume: 6 start-page: 228 year: 2011 ident: ref_32 article-title: A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2010.12.003 – volume: 32 start-page: 211 year: 2023 ident: ref_27 article-title: Pflacco: Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems in Python publication-title: Evol. Comput. doi: 10.1162/evco_a_00341 – volume: 34 start-page: 1182 year: 2018 ident: ref_42 article-title: On the construction of linear approximations of line flow constraints for AC optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2874173 – ident: ref_4 – volume: 90 start-page: 101669 year: 2024 ident: ref_15 article-title: A hierarchical reinforcement learning-aware hyper-heuristic algorithm with fitness landscape analysis publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101669 – ident: ref_33 – volume: 28 start-page: 379 year: 2020 ident: ref_10 article-title: Generating new space-filling test instances for continuous black-box optimization publication-title: Evol. Comput. doi: 10.1162/evco_a_00262 – ident: ref_8 doi: 10.1145/3512290.3528832 – ident: ref_26 doi: 10.1145/3319619.3326890 – ident: ref_28 doi: 10.1145/2001576.2001690 – volume: 10 start-page: 590 year: 2006 ident: ref_11 article-title: A general-purpose tunable landscape generator publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.863628 – volume: 32 start-page: 452 year: 2019 ident: ref_31 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_41 – ident: ref_29 doi: 10.1145/2739480.2754642 – ident: ref_14 doi: 10.1109/CEC.2014.6900240 – volume: 69 start-page: 151 year: 2013 ident: ref_12 article-title: A novel feature-based approach to characterize algorithm performance for the traveling salesperson problem publication-title: Ann. Math. Artif. Intell. doi: 10.1007/s10472-013-9341-2 – ident: ref_5 doi: 10.1145/3512290.3528712 – ident: ref_1 doi: 10.3390/a14030078 – ident: ref_22 – volume: 28 start-page: 405 year: 2020 ident: ref_40 article-title: Diagonal acceleration for covariance matrix adaptation evolution strategies publication-title: Evol. Comput. doi: 10.1162/evco_a_00260 – volume: 167 start-page: 31 year: 2018 ident: ref_37 article-title: An expectation–maximization algorithm for the matrix normal distribution with an application in remote sensing publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2018.03.010 – ident: ref_19 doi: 10.1109/CEC.2009.4983112 – ident: ref_21 doi: 10.1007/978-3-030-58115-2_10 – volume: 27 start-page: 3 year: 2019 ident: ref_20 article-title: Automated algorithm selection: Survey and perspectives publication-title: Evol. Comput. doi: 10.1162/evco_a_00242 – ident: ref_17 doi: 10.1007/978-3-031-14714-2_41 |
| SSID | ssj0000913810 |
| Score | 2.3262644 |
| Snippet | In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 8454 |
| SubjectTerms | algorithm selection problem Algorithms Analysis benchmarking functions Benchmarks black-box optimization Deep learning exploratory landscape analysis Machine learning Methods Neural networks Optimization algorithms |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxQxFH_BxYMcFFDDCpIeSNTDhOnHdGdOZFcgmADZgxo8NW2ng4Swu86uhD-f9zpdxIOeuM5MJ01-fZ997_cA9gq0203hKP_ldaYaUWdVqWtUhmXhUCPmNl60fz8dnJ-XFxfVOLVHz1NZ5VInRkXdsT1T3TYq4f166iljvi8FxuoiR2__YPYroxlSdNeaBmo8g1Ui3sp7sDr-cjb-8ZBzIQ7Mkuddm57EP9AtMVn0UhXqL8MU-fv_paWj6Tl-9bSbXoeXyQVlw-7MbMBKmGzC2iNiwk3YSCI_Zx8TL_Wn12CG7DCEGUuUrJfZYUuqksUcYDaa3rERrvl5Y9tr1q0i0NlZnFHNbq8s6wr-4r0-O6UeY6q-YktelDfw7fjo6-eTLM1nyLzUcpFRybVq0EFzjeXo1gjR2Eo4LQdBcUG8zZo79PC8C6pucl2hq1YEgQGSU1a7Wr6F3mQ6CVvAdM0tuaaS11JZ76ySluc110XFg7W-D3tLcMyso-EwGL4QhuYRhn0YEXAPnxB3dnwwbS9NEkWDEZeQHkM3HxwGp660VgcRCi-9D02o-vCBYDck4YvWepsaFXCnxJVlhuikFroacPxyZwm7SaI_N39Qfvf_19vwQtAw4VhNuAO9Rfs7vIfn_nZxNW9309m9BzKT_yE priority: 102 providerName: ProQuest |
| Title | A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis |
| URI | https://www.proquest.com/docview/3239020871 https://doaj.org/article/64223c096ceb448b8aa6e2e5c3ccefe9 |
| Volume | 15 |
| WOSCitedRecordID | wos001548995400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB2hlEM5oAJFBCjaA1LpwcL74Y19TBqiViJRVLUVPa1212tAiICcgPj5zKwdFA4VF462vNJoxjvzZnfmDcBxhnG7yhydf3mdqEqUSZHrEp1hnjn0iKmNF-1_z3uTSX5xUUxXRn1RTVhDD9wo7hTxsZAegbYPDlMJl1urgwiZl96HKsTWvbRXrCRT0QcXnKirmoY8iXk93QdT7M5Vpl6FoMjU_z9_HIPM6BNstuiQ9RuptmAtzLZhY4UzcBu22t04ZyctZfS3HTB9NgzhnrVsqZfJsCYvxuLxXDK4e2IDXHN1a-sb1qwie7BxHB_NHq8ta2rx4pU7O6f2XyqMYkvKks_wZ3T2-_uPpB2dkHip5SKhamhVIXZyleWIOISobCGclr2guCBKZc0dgi_vgiqrVBeIorIgMHdxympXyl3ozO5mYQ-YLrkl1Ch5KZX1zippeVpynRU8WOu7cLzUprlvGDIMZhakdLOi9C4MSNMvnxCtdXyBxjatsc1bxu7CV7KToc23qK23bQ8BSko0VqaP-DHTRY_jl4dLU5p2V86NFCiUSDFH3H8PaQ7go6BpwLEc8BA6i_ohfIF1_7i4ntdH8GFwNpn-Ooo_Jj5Nf46n_54BauvoxA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4AC0gAgX2UAQcLLwPb-wDQgmhatQkyqGgctrurtelQiTBCQX-FL-RGT9KOcCtB65-yY_P33yzO_sNwG6CcbtIHI1_eR2pQuRRluocyTBNHDJibKuJ9vfj3nSaHh1lsw342a6FobLKlhMros4XnsbIX0qB2bmIUd-_Xn6JqGsUza62LTRqWByEH98wZVu9Gg3x-z4VYu_t4Zv9qOkqEHmp5TqiQmFVoKxwheUYjIUobCaclr2guCC3Yc0d6hLvgsqLWGcoMJIgUNY7ZbXLJV73CmwqBHvcgc3ZaDL7cD6qQy6bKY_rhYAS75jmoUkzpCpRf4S-qkPA3-JAFdz2bv1vr-U23GxkNOvXuN-CjTDfhhsXzBW3YauhrRV73nhrv7gDps-GISxZYyt7Eg1LontWjWNGg8V3NsBzPn625SdWn0XAZZOqzzY7O7WsLlqsahPYmNZJUwUZa71d7sK7S3nse9CZL-bhPjCdc0vyWvJcKuudVdLyOOc6yXiw1ndht_38ZllbiRhMwQgl5gJKujAgaJwfQv7f1YZFeWIaOjGYNQrpMf30wWGC7VJrdRAh8dL7UISsC88IWIZYal1ab5vFFnin5Pdl-ii0E531OB650wLLNPS1Mr9R9eDfu5_Atf3DydiMR9ODh3BdUHPkqjpyBzrr8mt4BFf92fp0VT5u_hQGx5eNwl-OllA3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4aHULbAdhgojDAhyHgEC22Ezc5INTSVUwrVYUA7WZsxxkTou3SMuCv8et4L3HGOMBtB66JHTnJ5_e-Zz9_D2AvRb9dppbWv5yKklIUUZ6pAo1hllq0iLGpN9o_jHuTSXZ8nE_X4Gd7FobSKlubWBvqYu5ojXxfCozORYz8fr8MaRHT4ejl4iyiClK009qW02ggcuR_fMPwbfnicIj_-okQo4N3r15HocJA5KSSq4iShpMSKYYtDUfHLERpcmGV7PmEC1IeVtwiR3HWJ0UZqxzJRuoFUnybGGULic-9Bus9iUFPB9YHB5Pp24sVHlLczHjcHAqUOHrakyb-kCVp8ocbrKsF_M0n1I5udOt__kS34Wag16zfzIctWPOzbdi8JLq4DVvBnC3Zs6C5_fwO6D4ber9gQW72JBpW5AZYvb4ZDebf2QD7fPpiqs-s6UWAZm_q-tvs_NSwJpmxzllgYzo_TZllrNV8uQvvr-S1d6Azm8_8PWCq4IZot-SFTIyzJpGGxwVXac69Ma4Ley0U9KKRGNEYmhFi9CXEdGFAMLloQrrg9YV5daKDmdEYTQrpMCx13mLgbTNjlBc-ddI5X_q8C08JZJqs16oyzoRDGDhS0gHTfSTgqcp7HFvutiDTwawt9W-E3f_37cdwA6Gnx4eTowewIahmcp00uQudVfXVP4Tr7nx1uqwehUnD4ONVg_AXHURY0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning-Driven+Black-Box+Benchmark+Generation+Method+via+Exploratory+Landscape+Analysis&rft.jtitle=Applied+sciences&rft.au=Liang%2C+Haoming&rft.au=Zhao%2C+Fuqing&rft.au=Xu%2C+Tianpeng&rft.au=Zhang%2C+Jianlin&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=15&rft_id=info:doi/10.3390%2Fapp15158454&rft.externalDocID=A851569719 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |