A diversity metric for population-based metaheuristic algorithms

In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 586; S. 192 - 208
Hauptverfasser: Osuna-Enciso, Valentín, Cuevas, Erik, Morales Castañeda, Bernardo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.03.2022
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a guide. However, this procedure has two drawbacks: its computational cost and its effectiveness to represent the actual diversity of the population. This paper proposes a DM for real-coded candidate solutions. The approach utilizes surrogate hypervolumes to calculate the spatial distribution of the individuals in the population. In a comparison against five DM reported in the literature, our proposal achieves comparable results in terms of stability, sensitivity, and robustness in the presence of outliers, without significant increases in the computational cost.
AbstractList In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a guide. However, this procedure has two drawbacks: its computational cost and its effectiveness to represent the actual diversity of the population. This paper proposes a DM for real-coded candidate solutions. The approach utilizes surrogate hypervolumes to calculate the spatial distribution of the individuals in the population. In a comparison against five DM reported in the literature, our proposal achieves comparable results in terms of stability, sensitivity, and robustness in the presence of outliers, without significant increases in the computational cost.
Author Cuevas, Erik
Osuna-Enciso, Valentín
Morales Castañeda, Bernardo
Author_xml – sequence: 1
  givenname: Valentín
  surname: Osuna-Enciso
  fullname: Osuna-Enciso, Valentín
  organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
– sequence: 2
  givenname: Erik
  surname: Cuevas
  fullname: Cuevas, Erik
  organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
– sequence: 3
  givenname: Bernardo
  surname: Morales Castañeda
  fullname: Morales Castañeda, Bernardo
  organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
BookMark eNp9kMtuwjAQRa2KSgXaD-guP5B0xiZOUDdFqC8JqZt2bTn2pBiFGNkGib9vKF11weou5p6R7pmwUe97YuweoUBA-bApXB8LDhwLxAIqccXGWFc8l3yOIzYG4JADL8sbNolxAwCzSsoxe1pk1h0oRJeO2ZZScCZrfch2frfvdHK-zxsdyZ5uek374GIaKrr79sGl9TbesutWd5Hu_nLKvl6eP5dv-erj9X25WOVGSJFyaWph53xW1oRCVoJsK8oKEBvNLTc1tnUjS2MBtORtS8A5WMvtTBjNpQUxZXj-a4KPMVCrdsFtdTgqBHVSoDZqUKBOChSiGhQMTPWPMS79jkpBu-4i-XgmaZh0cBRUNI56Q9YFMklZ7y7QP3bDeSg
CitedBy_id crossref_primary_10_1016_j_physa_2024_129831
crossref_primary_10_1109_TII_2024_3514155
crossref_primary_10_1016_j_rineng_2025_106551
crossref_primary_10_1007_s12065_025_01035_9
crossref_primary_10_1007_s11047_023_09950_5
crossref_primary_10_3390_biomimetics8040355
crossref_primary_10_1038_s41598_023_35863_5
crossref_primary_10_1007_s12293_025_00469_z
crossref_primary_10_1016_j_asoc_2022_109255
crossref_primary_10_1016_j_ins_2022_08_021
crossref_primary_10_3390_math10121963
crossref_primary_10_1007_s10878_024_01189_9
crossref_primary_10_1038_s41598_024_75123_8
crossref_primary_10_1007_s10586_025_05416_8
crossref_primary_10_1016_j_ins_2023_119656
crossref_primary_10_1007_s41870_024_02030_6
crossref_primary_10_1007_s10586_025_05121_6
crossref_primary_10_1016_j_asoc_2023_110492
crossref_primary_10_1007_s11227_023_05529_0
crossref_primary_10_1016_j_swevo_2024_101829
crossref_primary_10_1016_j_engappai_2024_109750
crossref_primary_10_1016_j_engappai_2025_111760
crossref_primary_10_1016_j_swevo_2024_101705
crossref_primary_10_1007_s12293_023_00400_4
crossref_primary_10_1016_j_eswa_2023_122732
crossref_primary_10_3390_math11102340
crossref_primary_10_1016_j_eswa_2023_120112
crossref_primary_10_1016_j_eswa_2025_129524
crossref_primary_10_1016_j_swevo_2024_101822
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_1016_j_ins_2023_03_138
crossref_primary_10_1007_s10462_025_11319_2
crossref_primary_10_1007_s11581_024_05999_z
crossref_primary_10_1016_j_matcom_2024_08_004
crossref_primary_10_1016_j_jocs_2022_101903
crossref_primary_10_1016_j_eswa_2024_124646
crossref_primary_10_1016_j_isatra_2023_05_005
crossref_primary_10_1109_ACCESS_2022_3198987
crossref_primary_10_1016_j_jnca_2024_104048
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1016_j_asoc_2024_111394
crossref_primary_10_1016_j_engappai_2023_106989
crossref_primary_10_1038_s41598_025_98112_x
crossref_primary_10_1109_ACCESS_2024_3403089
crossref_primary_10_3390_math12233676
crossref_primary_10_3934_math_2025667
crossref_primary_10_1016_j_eswa_2023_122942
crossref_primary_10_1016_j_engappai_2023_107001
crossref_primary_10_1007_s42235_023_00400_7
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1016_j_eswa_2024_124112
crossref_primary_10_1007_s10462_023_10602_4
crossref_primary_10_1038_s41598_025_01299_2
crossref_primary_10_1016_j_engappai_2024_109298
crossref_primary_10_1007_s00521_024_10327_7
crossref_primary_10_1007_s10586_025_05429_3
crossref_primary_10_1016_j_eswa_2023_122677
crossref_primary_10_1088_1757_899X_1237_1_012011
Cites_doi 10.1145/3067695.3082528
10.1016/j.engappai.2013.06.014
10.1080/01621459.1990.10476223
10.1109/TCYB.2014.2339495
10.1007/978-3-319-72550-5_3
10.1007/s00521-018-3592-0
10.1007/BF02827615
10.1016/j.asoc.2017.04.044
10.1007/978-3-642-16773-7_32
10.1016/j.cor.2009.02.010
10.1137/0220065
10.1016/j.ins.2019.03.049
10.1109/4235.585888
10.1162/evco.2009.17.4.17402
10.1016/j.asoc.2017.04.029
10.1016/j.ins.2010.12.004
10.1186/s12859-020-03630-2
10.1145/3067695.3082529
10.1145/2480741.2480752
10.1016/j.swevo.2017.11.002
10.1016/j.ins.2015.09.056
10.1109/TCYB.2014.2316552
10.1108/K-11-2013-0241
10.1007/978-3-642-38703-6_2
10.1109/TEVC.2011.2170075
10.1016/j.asoc.2015.10.048
10.1145/2463372.2463495
10.3233/FI-1998-35123403
10.1007/978-3-642-15461-4_5
10.1007/s00500-019-04240-8
10.1016/j.asoc.2019.105599
10.1007/s00500-008-0303-2
10.1016/S0305-0548(02)00229-0
10.1016/j.enconman.2018.12.022
10.1007/s00500-016-2166-2
10.1007/s40747-019-0102-7
10.3390/app11156676
10.1016/j.ins.2021.09.058
10.1080/08839514.2019.1683977
10.1007/978-3-642-29353-5_43
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.11.073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 208
ExternalDocumentID 10_1016_j_ins_2021_11_073
S0020025521011956
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-6c83d92458e13673edf357011ba2d2c81f8b65cd00a62ffe0220dd2d43ca26d03
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794186300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 19:49:11 EST 2025
Sat Nov 29 07:30:20 EST 2025
Fri Feb 23 02:41:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Diversity metric
Metaheuristic algorithm
Exploration–exploitation balance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-6c83d92458e13673edf357011ba2d2c81f8b65cd00a62ffe0220dd2d43ca26d03
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ins_2021_11_073
crossref_citationtrail_10_1016_j_ins_2021_11_073
elsevier_sciencedirect_doi_10_1016_j_ins_2021_11_073
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References M.Y.S. Hussain A., Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator, Complex and Intelligent Systems 6 (2020) 1–14.
Xu, Zhang (b0040) 2014
Ben Guedria (b0165) 2016; 40
G. Leguizamón, C. Coello, An alternative aco r algorithm for continuous optimization problems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6234 LNCS (2010) 48–59.
Corriveau, Guilbault, Tahan, Sabourin (b0220) 2012; 16
Lynn, Ali, Suganthan (b0080) 2018; 39
J.L. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Brooks/Cole, 2011, iSBN-13: 978-0-538-73352-6.
R.J. Pendharkar P.C., An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification, Computers and Operations Research 31 (2004) 481–498.
Herrera, Lozano (b0235) 1996
Shuhao, Shoubao, Li (b0160) 2015; 44
Yang, Li, Cai, Guan (b0185) 2015; 45
Back, Hammel, Schwefel (b0010) 1997; 1
Demšar (b0240) 2006; 7
Squillero, Tonda (b0030) 2016; 329
L.K. Hansheng L., Balance between exploration and exploitation in genetic search, Wuhan Univ. J. Nat. Sci. 4 (1999) 28–32.
T.Y. Liu J., Zheng S., The improvement on controlling exploration and exploitation of firework algorithm, in: Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, Vol. 7928, 2013, pp. 11–23. doi:10.1007/978-3-642-38703-6_2.
C.S. Hussain K., Salleh M.N.M., On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput and Applic 31 (2019) 7665–7683.
M. Gaudesi, G. Squillero, A. Tonda, An efficient distance metric for linear genetic programming, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, Association for Computing Machinery, New York, NY, USA, 2013, p. 925–932.
S.A., ype-2 fuzzy logic control of trade-off between exploration and exploitation properties of genetic algorithms, in: Swarm and Evolutionary Computation. EC 2012, SIDE 2012. Lecture Notes in Computer Science, Vol. 7269, 2012, pp. 368–376. doi:10.1007/978-3-642-29353-5_43.
Terrell (b0225) 1990; 85
L. Salas-Morera, L. García-Hernández, C. Carmona-Muñoz, A multi-user interactive coral reef optimization algorithm for considering expert knowledge in the unequal area facility layout problem, Applied Sciences (Switzerland) 11 (15).
Beume (b0205) 2009; 17
S.H.R. Rezaei F., Guaspso: a new approach to hold a better exploration-exploitation balance in pso algorithm, Soft Computing 24 (2020) 4855–4875.
A. Bartoli, A. De Lorenzo, E. Medvet, G. Squillero, Multi-level diversity promotion strategies for grammar-guided genetic programming, Applied Soft Computing Journal 83.
G.M. Lin L., Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing 13 (2009) 157–168.
C. Li, J. Sun, V. Palade, Diversity-guided lamarckian random drift particle swarm optimization for flexible ligand docking, BMC Bioinformatics 21 (1).
Overmars, Yap (b0215) 1991; 20
Wineberg, Oppacher (b0200) 2003; 2724
Yousri, Allam, Eteiba, Suganthan (b0085) 2019; 182
V.F. Kuyu Y.C., Advanced metaheuristic algorithms on solving multimodal functions: Experimental analyses and performance evaluations, Arch Computat Methods Eng 1 (2021) 1–13.
dos Santos Coelho, Richter, Mariani, Askarzadeh (b0175) 2016
Lacevic, Amaldi (b0210) 2011; 181
Wang, Liao, Zhou, Cai (b0140) 2014; 44
Eiben, Schippers (b0025) 1998; 35
Tilahun (b0190) 2017; 59
Bansal (b0015) 2019; 33
Sharma, Pant (b0180) 2017; 21
M. Lukovic, Y. Tian, W. Matusik, Diversity-guided multi-objective bayesian optimization with batch evaluations, Vol. 2020-December, 2020.
Salleh, Hussain, Cheng, Shi, Muhammad, Ullah, Naseem (b0045) 2018; 700
Eftimov, Korošec (b0020) 2019; 489
Sagban, Ku-Mahamud, Shahbani Abu Bakar (b0170) 2017
Kononova, Caraffini, Bäck (b0005) 2021; 581
Lozano (b0090) 2010; 37
Ji, Ye, Zhou, Yin, Shen (b0145) 2017; 57
C.S. Noa Vargas Y., Particle swarm optimization with resets - improving the balance between exploration and exploitation, in: Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science, Vol. 6438, 2010, pp. 371–381. doi:10.1007/978-3-642-16773-7_32.
A. Benbassat, Y. Shafet, A simple bucketing based approach to diversity maintenance, in: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1559–1564.
M. Crepinsek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Computing Surveys 45 (3).
Lim, Mat Isa (b0135) 2013; 26
T. Gabor, L. Belzner, Genealogical distance as a diversity estimate in evolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1572–1577.
10.1016/j.ins.2021.11.073_b0150
10.1016/j.ins.2021.11.073_b0195
Squillero (10.1016/j.ins.2021.11.073_b0030) 2016; 329
10.1016/j.ins.2021.11.073_b0070
Shuhao (10.1016/j.ins.2021.11.073_b0160) 2015; 44
Wineberg (10.1016/j.ins.2021.11.073_b0200) 2003; 2724
Eftimov (10.1016/j.ins.2021.11.073_b0020) 2019; 489
dos Santos Coelho (10.1016/j.ins.2021.11.073_b0175) 2016
Yousri (10.1016/j.ins.2021.11.073_b0085) 2019; 182
Xu (10.1016/j.ins.2021.11.073_b0040) 2014
Lim (10.1016/j.ins.2021.11.073_b0135) 2013; 26
Corriveau (10.1016/j.ins.2021.11.073_b0220) 2012; 16
Terrell (10.1016/j.ins.2021.11.073_b0225) 1990; 85
10.1016/j.ins.2021.11.073_b0115
10.1016/j.ins.2021.11.073_b0035
10.1016/j.ins.2021.11.073_b0110
10.1016/j.ins.2021.11.073_b0155
10.1016/j.ins.2021.11.073_b0075
10.1016/j.ins.2021.11.073_b0230
Herrera (10.1016/j.ins.2021.11.073_b0235) 1996
10.1016/j.ins.2021.11.073_b0060
Ben Guedria (10.1016/j.ins.2021.11.073_b0165) 2016; 40
Back (10.1016/j.ins.2021.11.073_b0010) 1997; 1
Bansal (10.1016/j.ins.2021.11.073_b0015) 2019; 33
10.1016/j.ins.2021.11.073_b0105
10.1016/j.ins.2021.11.073_b0100
10.1016/j.ins.2021.11.073_b0065
10.1016/j.ins.2021.11.073_b0095
10.1016/j.ins.2021.11.073_b0050
Ji (10.1016/j.ins.2021.11.073_b0145) 2017; 57
Sharma (10.1016/j.ins.2021.11.073_b0180) 2017; 21
Lacevic (10.1016/j.ins.2021.11.073_b0210) 2011; 181
Salleh (10.1016/j.ins.2021.11.073_b0045) 2018; 700
Overmars (10.1016/j.ins.2021.11.073_b0215) 1991; 20
Tilahun (10.1016/j.ins.2021.11.073_b0190) 2017; 59
Eiben (10.1016/j.ins.2021.11.073_b0025) 1998; 35
Wang (10.1016/j.ins.2021.11.073_b0140) 2014; 44
10.1016/j.ins.2021.11.073_b0055
Yang (10.1016/j.ins.2021.11.073_b0185) 2015; 45
10.1016/j.ins.2021.11.073_b0130
Lynn (10.1016/j.ins.2021.11.073_b0080) 2018; 39
Kononova (10.1016/j.ins.2021.11.073_b0005) 2021; 581
Demšar (10.1016/j.ins.2021.11.073_b0240) 2006; 7
Lozano (10.1016/j.ins.2021.11.073_b0090) 2010; 37
10.1016/j.ins.2021.11.073_b0125
Sagban (10.1016/j.ins.2021.11.073_b0170) 2017
Beume (10.1016/j.ins.2021.11.073_b0205) 2009; 17
10.1016/j.ins.2021.11.073_b0245
10.1016/j.ins.2021.11.073_b0120
References_xml – volume: 20
  start-page: 1034
  year: 1991
  end-page: 1045
  ident: b0215
  article-title: New upper bounds in klee’s measure problem
  publication-title: SIAM Journal on Computing
– volume: 57
  start-page: 504
  year: 2017
  end-page: 516
  ident: b0145
  article-title: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry
  publication-title: Applied Soft Computing Journal
– reference: M. Lukovic, Y. Tian, W. Matusik, Diversity-guided multi-objective bayesian optimization with batch evaluations, Vol. 2020-December, 2020.
– volume: 40
  start-page: 455
  year: 2016
  end-page: 467
  ident: b0165
  article-title: Improved accelerated pso algorithm for mechanical engineering optimization problems
  publication-title: Applied Soft Computing Journal
– volume: 85
  start-page: 470
  year: 1990
  end-page: 477
  ident: b0225
  article-title: The maximal smoothing principle in density estimation
  publication-title: Journal of the American Statistical Association
– reference: A. Benbassat, Y. Shafet, A simple bucketing based approach to diversity maintenance, in: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1559–1564.
– reference: S.H.R. Rezaei F., Guaspso: a new approach to hold a better exploration-exploitation balance in pso algorithm, Soft Computing 24 (2020) 4855–4875.
– reference: J.L. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Brooks/Cole, 2011, iSBN-13: 978-0-538-73352-6.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0240
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– reference: M.Y.S. Hussain A., Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator, Complex and Intelligent Systems 6 (2020) 1–14.
– volume: 16
  start-page: 695
  year: 2012
  end-page: 710
  ident: b0220
  article-title: Review and study of genotypic diversity measures for real-coded representations
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: T. Gabor, L. Belzner, Genealogical distance as a diversity estimate in evolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1572–1577.
– volume: 44
  start-page: 2792
  year: 2014
  end-page: 2805
  ident: b0140
  article-title: Differential evolution enhanced with multiobjective sorting-based mutation operators
  publication-title: IEEE Transactions on Cybernetics
– volume: 35
  start-page: 35
  year: 1998
  end-page: 50
  ident: b0025
  article-title: On evolutionary exploration and exploitation
  publication-title: Fundamenta Informaticae
– volume: 17
  start-page: 477
  year: 2009
  end-page: 492
  ident: b0205
  article-title: S-metric calculation by considering dominated hypervolume as klee’s measure problem
  publication-title: Evol. Comput.
– reference: L. Salas-Morera, L. García-Hernández, C. Carmona-Muñoz, A multi-user interactive coral reef optimization algorithm for considering expert knowledge in the unequal area facility layout problem, Applied Sciences (Switzerland) 11 (15).
– reference: L.K. Hansheng L., Balance between exploration and exploitation in genetic search, Wuhan Univ. J. Nat. Sci. 4 (1999) 28–32.
– volume: 182
  start-page: 546
  year: 2019
  end-page: 563
  ident: b0085
  article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants
  publication-title: Energy Conversion and Management
– volume: 1
  start-page: 3
  year: 1997
  end-page: 17
  ident: b0010
  article-title: Evolutionary computation: comments on the history and current state
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 59
  start-page: 104
  year: 2017
  end-page: 114
  ident: b0190
  article-title: Prey predator hyperheuristic
  publication-title: Applied Soft Computing Journal
– volume: 329
  start-page: 782
  year: 2016
  end-page: 799
  ident: b0030
  article-title: Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization
  publication-title: Information Sciences
– volume: 21
  start-page: 6085
  year: 2017
  end-page: 6104
  ident: b0180
  article-title: Shuffled artificial bee colony algorithm
  publication-title: Soft Computing
– start-page: 95
  year: 1996
  end-page: 125
  ident: b0235
  article-title: Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in
  publication-title: Genetic Algorithms and Soft Computing, Physica-Verlag
– volume: 44
  start-page: 43
  year: 2015
  end-page: 56
  ident: b0160
  article-title: A simple diversity guided firefly algorithm
  publication-title: Kybernetes
– start-page: 8633
  year: 2014
  end-page: 8638
  ident: b0040
  article-title: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis
  publication-title: in: Proceedings of the 33rd Chinese Control Conference
– volume: 39
  start-page: 24
  year: 2018
  end-page: 35
  ident: b0080
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm and Evolutionary Computation
– volume: 45
  start-page: 302
  year: 2015
  end-page: 315
  ident: b0185
  article-title: Differential evolution with auto-enhanced population diversity
  publication-title: IEEE Transactions on Cybernetics
– reference: G. Leguizamón, C. Coello, An alternative aco r algorithm for continuous optimization problems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6234 LNCS (2010) 48–59.
– reference: M. Crepinsek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Computing Surveys 45 (3).
– volume: 700
  start-page: 24
  year: 2018
  end-page: 32
  ident: b0045
  article-title: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis
  publication-title: Advances in Intelligent Systems and Computing
– volume: 26
  start-page: 2327
  year: 2013
  end-page: 2348
  ident: b0135
  article-title: Two-layer particle swarm optimization with intelligent division of labor
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 1
  year: 2016
  ident: b0175
  article-title: Modified crow search approach applied to electromagnetic optimization
  publication-title: 2016 IEEE Conference on Electromagnetic Field Computation (CEFC)
– reference: R.J. Pendharkar P.C., An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification, Computers and Operations Research 31 (2004) 481–498.
– reference: C.S. Noa Vargas Y., Particle swarm optimization with resets - improving the balance between exploration and exploitation, in: Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science, Vol. 6438, 2010, pp. 371–381. doi:10.1007/978-3-642-16773-7_32.
– reference: S.A., ype-2 fuzzy logic control of trade-off between exploration and exploitation properties of genetic algorithms, in: Swarm and Evolutionary Computation. EC 2012, SIDE 2012. Lecture Notes in Computer Science, Vol. 7269, 2012, pp. 368–376. doi:10.1007/978-3-642-29353-5_43.
– reference: M. Gaudesi, G. Squillero, A. Tonda, An efficient distance metric for linear genetic programming, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, Association for Computing Machinery, New York, NY, USA, 2013, p. 925–932.
– start-page: 139
  year: 2017
  end-page: 143
  ident: b0170
  article-title: Unified strategy for intensification and diversification balance in aco metaheuristic
  publication-title: 2017 8th International Conference on Information Technology (ICIT)
– volume: 33
  start-page: 1199
  year: 2019
  end-page: 1265
  ident: b0015
  article-title: A comparative study of nature-inspired metaheuristic algorithms in search of near-to-optimal golomb rulers for the fwm crosstalk elimination in wdm systems
  publication-title: Applied Artificial Intelligence
– reference: V.F. Kuyu Y.C., Advanced metaheuristic algorithms on solving multimodal functions: Experimental analyses and performance evaluations, Arch Computat Methods Eng 1 (2021) 1–13.
– volume: 37
  start-page: 481
  year: 2010
  end-page: 497
  ident: b0090
  article-title: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report
  publication-title: Computers and Operations Research
– reference: G.M. Lin L., Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing 13 (2009) 157–168.
– reference: C. Li, J. Sun, V. Palade, Diversity-guided lamarckian random drift particle swarm optimization for flexible ligand docking, BMC Bioinformatics 21 (1).
– volume: 181
  start-page: 2316
  year: 2011
  end-page: 2339
  ident: b0210
  article-title: Ectropy of diversity measures for populations in euclidean space
  publication-title: Information Sciences
– volume: 2724
  start-page: 1493
  year: 2003
  end-page: 1504
  ident: b0200
  article-title: The underlying similarity of diversity measures used in evolutionary computation
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– reference: C.S. Hussain K., Salleh M.N.M., On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput and Applic 31 (2019) 7665–7683.
– reference: A. Bartoli, A. De Lorenzo, E. Medvet, G. Squillero, Multi-level diversity promotion strategies for grammar-guided genetic programming, Applied Soft Computing Journal 83.
– volume: 581
  start-page: 587
  year: 2021
  end-page: 604
  ident: b0005
  article-title: Differential evolution outside the box
  publication-title: Information Sciences
– volume: 489
  start-page: 255
  year: 2019
  end-page: 273
  ident: b0020
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Information Sciences
– reference: T.Y. Liu J., Zheng S., The improvement on controlling exploration and exploitation of firework algorithm, in: Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, Vol. 7928, 2013, pp. 11–23. doi:10.1007/978-3-642-38703-6_2.
– ident: 10.1016/j.ins.2021.11.073_b0150
  doi: 10.1145/3067695.3082528
– volume: 26
  start-page: 2327
  issue: 10
  year: 2013
  ident: 10.1016/j.ins.2021.11.073_b0135
  article-title: Two-layer particle swarm optimization with intelligent division of labor
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.06.014
– volume: 2724
  start-page: 1493
  year: 2003
  ident: 10.1016/j.ins.2021.11.073_b0200
  article-title: The underlying similarity of diversity measures used in evolutionary computation
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2021.11.073_b0175
  article-title: Modified crow search approach applied to electromagnetic optimization
– volume: 85
  start-page: 470
  issue: 410
  year: 1990
  ident: 10.1016/j.ins.2021.11.073_b0225
  article-title: The maximal smoothing principle in density estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10476223
– volume: 45
  start-page: 302
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2021.11.073_b0185
  article-title: Differential evolution with auto-enhanced population diversity
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2339495
– volume: 700
  start-page: 24
  year: 2018
  ident: 10.1016/j.ins.2021.11.073_b0045
  article-title: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-3-319-72550-5_3
– ident: 10.1016/j.ins.2021.11.073_b0245
– ident: 10.1016/j.ins.2021.11.073_b0095
  doi: 10.1007/s00521-018-3592-0
– ident: 10.1016/j.ins.2021.11.073_b0060
  doi: 10.1007/BF02827615
– volume: 59
  start-page: 104
  year: 2017
  ident: 10.1016/j.ins.2021.11.073_b0190
  article-title: Prey predator hyperheuristic
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.04.044
– ident: 10.1016/j.ins.2021.11.073_b0065
  doi: 10.1007/978-3-642-16773-7_32
– volume: 37
  start-page: 481
  year: 2010
  ident: 10.1016/j.ins.2021.11.073_b0090
  article-title: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2009.02.010
– volume: 20
  start-page: 1034
  issue: 6
  year: 1991
  ident: 10.1016/j.ins.2021.11.073_b0215
  article-title: New upper bounds in klee’s measure problem
  publication-title: SIAM Journal on Computing
  doi: 10.1137/0220065
– ident: 10.1016/j.ins.2021.11.073_b0230
– volume: 489
  start-page: 255
  year: 2019
  ident: 10.1016/j.ins.2021.11.073_b0020
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.03.049
– volume: 1
  start-page: 3
  issue: 1
  year: 1997
  ident: 10.1016/j.ins.2021.11.073_b0010
  article-title: Evolutionary computation: comments on the history and current state
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585888
– start-page: 139
  year: 2017
  ident: 10.1016/j.ins.2021.11.073_b0170
  article-title: Unified strategy for intensification and diversification balance in aco metaheuristic
– volume: 17
  start-page: 477
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2021.11.073_b0205
  article-title: S-metric calculation by considering dominated hypervolume as klee’s measure problem
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2009.17.4.17402
– volume: 57
  start-page: 504
  year: 2017
  ident: 10.1016/j.ins.2021.11.073_b0145
  article-title: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.04.029
– volume: 181
  start-page: 2316
  issue: 11
  year: 2011
  ident: 10.1016/j.ins.2021.11.073_b0210
  article-title: Ectropy of diversity measures for populations in euclidean space
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.12.004
– ident: 10.1016/j.ins.2021.11.073_b0110
  doi: 10.1186/s12859-020-03630-2
– start-page: 95
  year: 1996
  ident: 10.1016/j.ins.2021.11.073_b0235
  article-title: Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in
  publication-title: Genetic Algorithms and Soft Computing, Physica-Verlag
– ident: 10.1016/j.ins.2021.11.073_b0195
  doi: 10.1145/3067695.3082529
– ident: 10.1016/j.ins.2021.11.073_b0130
  doi: 10.1145/2480741.2480752
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.ins.2021.11.073_b0240
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 39
  start-page: 24
  year: 2018
  ident: 10.1016/j.ins.2021.11.073_b0080
  article-title: Population topologies for particle swarm optimization and differential evolution
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.11.002
– volume: 329
  start-page: 782
  year: 2016
  ident: 10.1016/j.ins.2021.11.073_b0030
  article-title: Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.09.056
– volume: 44
  start-page: 2792
  issue: 12
  year: 2014
  ident: 10.1016/j.ins.2021.11.073_b0140
  article-title: Differential evolution enhanced with multiobjective sorting-based mutation operators
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2316552
– volume: 44
  start-page: 43
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2021.11.073_b0160
  article-title: A simple diversity guided firefly algorithm
  publication-title: Kybernetes
  doi: 10.1108/K-11-2013-0241
– ident: 10.1016/j.ins.2021.11.073_b0050
  doi: 10.1007/978-3-642-38703-6_2
– volume: 16
  start-page: 695
  issue: 5
  year: 2012
  ident: 10.1016/j.ins.2021.11.073_b0220
  article-title: Review and study of genotypic diversity measures for real-coded representations
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2170075
– volume: 40
  start-page: 455
  year: 2016
  ident: 10.1016/j.ins.2021.11.073_b0165
  article-title: Improved accelerated pso algorithm for mechanical engineering optimization problems
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2015.10.048
– ident: 10.1016/j.ins.2021.11.073_b0125
  doi: 10.1145/2463372.2463495
– volume: 35
  start-page: 35
  issue: 1–4
  year: 1998
  ident: 10.1016/j.ins.2021.11.073_b0025
  article-title: On evolutionary exploration and exploitation
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-1998-35123403
– ident: 10.1016/j.ins.2021.11.073_b0155
  doi: 10.1007/978-3-642-15461-4_5
– ident: 10.1016/j.ins.2021.11.073_b0105
  doi: 10.1007/s00500-019-04240-8
– ident: 10.1016/j.ins.2021.11.073_b0120
  doi: 10.1016/j.asoc.2019.105599
– ident: 10.1016/j.ins.2021.11.073_b0075
  doi: 10.1007/s00500-008-0303-2
– ident: 10.1016/j.ins.2021.11.073_b0035
  doi: 10.1016/S0305-0548(02)00229-0
– volume: 182
  start-page: 546
  year: 2019
  ident: 10.1016/j.ins.2021.11.073_b0085
  article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2018.12.022
– volume: 21
  start-page: 6085
  issue: 20
  year: 2017
  ident: 10.1016/j.ins.2021.11.073_b0180
  article-title: Shuffled artificial bee colony algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2166-2
– ident: 10.1016/j.ins.2021.11.073_b0055
  doi: 10.1007/s40747-019-0102-7
– ident: 10.1016/j.ins.2021.11.073_b0100
  doi: 10.3390/app11156676
– ident: 10.1016/j.ins.2021.11.073_b0115
– volume: 581
  start-page: 587
  year: 2021
  ident: 10.1016/j.ins.2021.11.073_b0005
  article-title: Differential evolution outside the box
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.09.058
– volume: 33
  start-page: 1199
  issue: 14
  year: 2019
  ident: 10.1016/j.ins.2021.11.073_b0015
  article-title: A comparative study of nature-inspired metaheuristic algorithms in search of near-to-optimal golomb rulers for the fwm crosstalk elimination in wdm systems
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/08839514.2019.1683977
– start-page: 8633
  year: 2014
  ident: 10.1016/j.ins.2021.11.073_b0040
  article-title: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis
– ident: 10.1016/j.ins.2021.11.073_b0070
  doi: 10.1007/978-3-642-29353-5_43
SSID ssj0004766
Score 2.5863233
Snippet In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 192
SubjectTerms Diversity metric
Exploration–exploitation balance
Metaheuristic algorithm
Title A diversity metric for population-based metaheuristic algorithms
URI https://dx.doi.org/10.1016/j.ins.2021.11.073
Volume 586
WOSCitedRecordID wos000794186300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48AOCAaIbWzyAXGgCnKcxHFulK4IkBgcBuotcm2HrdrSqh_T_nzeix03KwyxAxerSmOn7Xt9H_Z7vx8hr7KxqKSQuFHFExiMjlTFGBZT8crGRc6sbMgm8pMTORoV33xJ0KKhE8jrWl5fF7P_Kmq4BsLG1tk7iDssChfgNQgdRhA7jP8k-H7PhFqLS-TL0k0p4SwwdUXouQy-p87syiE199TFz-n8fHnmwcsnbYF7aG7seV8ZYvCvi1WtoiHScjTbrT8UOrDm4P04aNxgZa9cyxgY3NAU9AVhAeyiN1AYvMKM97E1jgMatyfnZtrdjIA8NlRjheYAFmGa0jWwmeyayNhx33lvyxtUh98NudtTmED2gZjqPH6LUKuO9OQmaPaGMwslhm312qSEJUpcApKdEpa4T7Z5nhVgAbf7n4ajz-su2tydbLdfoT0Db6oBNz7Hn6OYTmRy-pg88ikF7TtVeELu2XqX7HSAJnfJoW9Poa9pR6TUG_an5F2fBqWhTmko3EY3lYbeUBq6Vppn5PuH4engY-S5NSKdiGQZCS0TA7l3Ji2C9iXWVEmWg7EfK264lnElxyLThjEleFVZbMg2hps00YoLw5LnZKue1vYFoWKcZ6kuUoiMWZpyo0SVckztWaFTleV7hLW_Vak98Dzyn1yUt8poj7wJU2YOdeVvN6etAEr_V3DhYAnKdPu0_bs844A8XKv7S7K1nK_sIXmgr5bni_mR16Rf9EeMIg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+diversity+metric+for+population-based+metaheuristic+algorithms&rft.jtitle=Information+sciences&rft.au=Osuna-Enciso%2C+Valent%C3%ADn&rft.au=Cuevas%2C+Erik&rft.au=Morales+Casta%C3%B1eda%2C+Bernardo&rft.date=2022-03-01&rft.issn=0020-0255&rft.volume=586&rft.spage=192&rft.epage=208&rft_id=info:doi/10.1016%2Fj.ins.2021.11.073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_11_073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon