A diversity metric for population-based metaheuristic algorithms
In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a...
Gespeichert in:
| Veröffentlicht in: | Information sciences Jg. 586; S. 192 - 208 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a guide. However, this procedure has two drawbacks: its computational cost and its effectiveness to represent the actual diversity of the population. This paper proposes a DM for real-coded candidate solutions. The approach utilizes surrogate hypervolumes to calculate the spatial distribution of the individuals in the population. In a comparison against five DM reported in the literature, our proposal achieves comparable results in terms of stability, sensitivity, and robustness in the presence of outliers, without significant increases in the computational cost. |
|---|---|
| AbstractList | In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community. Besides its particular parameters, another way to control the Exploration–Exploitation Balance in MA is by using a diversity metric (DM) as a guide. However, this procedure has two drawbacks: its computational cost and its effectiveness to represent the actual diversity of the population. This paper proposes a DM for real-coded candidate solutions. The approach utilizes surrogate hypervolumes to calculate the spatial distribution of the individuals in the population. In a comparison against five DM reported in the literature, our proposal achieves comparable results in terms of stability, sensitivity, and robustness in the presence of outliers, without significant increases in the computational cost. |
| Author | Cuevas, Erik Osuna-Enciso, Valentín Morales Castañeda, Bernardo |
| Author_xml | – sequence: 1 givenname: Valentín surname: Osuna-Enciso fullname: Osuna-Enciso, Valentín organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico – sequence: 2 givenname: Erik surname: Cuevas fullname: Cuevas, Erik organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico – sequence: 3 givenname: Bernardo surname: Morales Castañeda fullname: Morales Castañeda, Bernardo organization: Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico |
| BookMark | eNp9kMtuwjAQRa2KSgXaD-guP5B0xiZOUDdFqC8JqZt2bTn2pBiFGNkGib9vKF11weou5p6R7pmwUe97YuweoUBA-bApXB8LDhwLxAIqccXGWFc8l3yOIzYG4JADL8sbNolxAwCzSsoxe1pk1h0oRJeO2ZZScCZrfch2frfvdHK-zxsdyZ5uek374GIaKrr79sGl9TbesutWd5Hu_nLKvl6eP5dv-erj9X25WOVGSJFyaWph53xW1oRCVoJsK8oKEBvNLTc1tnUjS2MBtORtS8A5WMvtTBjNpQUxZXj-a4KPMVCrdsFtdTgqBHVSoDZqUKBOChSiGhQMTPWPMS79jkpBu-4i-XgmaZh0cBRUNI56Q9YFMklZ7y7QP3bDeSg |
| CitedBy_id | crossref_primary_10_1016_j_physa_2024_129831 crossref_primary_10_1109_TII_2024_3514155 crossref_primary_10_1016_j_rineng_2025_106551 crossref_primary_10_1007_s12065_025_01035_9 crossref_primary_10_1007_s11047_023_09950_5 crossref_primary_10_3390_biomimetics8040355 crossref_primary_10_1038_s41598_023_35863_5 crossref_primary_10_1007_s12293_025_00469_z crossref_primary_10_1016_j_asoc_2022_109255 crossref_primary_10_1016_j_ins_2022_08_021 crossref_primary_10_3390_math10121963 crossref_primary_10_1007_s10878_024_01189_9 crossref_primary_10_1038_s41598_024_75123_8 crossref_primary_10_1007_s10586_025_05416_8 crossref_primary_10_1016_j_ins_2023_119656 crossref_primary_10_1007_s41870_024_02030_6 crossref_primary_10_1007_s10586_025_05121_6 crossref_primary_10_1016_j_asoc_2023_110492 crossref_primary_10_1007_s11227_023_05529_0 crossref_primary_10_1016_j_swevo_2024_101829 crossref_primary_10_1016_j_engappai_2024_109750 crossref_primary_10_1016_j_engappai_2025_111760 crossref_primary_10_1016_j_swevo_2024_101705 crossref_primary_10_1007_s12293_023_00400_4 crossref_primary_10_1016_j_eswa_2023_122732 crossref_primary_10_3390_math11102340 crossref_primary_10_1016_j_eswa_2023_120112 crossref_primary_10_1016_j_eswa_2025_129524 crossref_primary_10_1016_j_swevo_2024_101822 crossref_primary_10_1007_s10462_022_10328_9 crossref_primary_10_1016_j_ins_2023_03_138 crossref_primary_10_1007_s10462_025_11319_2 crossref_primary_10_1007_s11581_024_05999_z crossref_primary_10_1016_j_matcom_2024_08_004 crossref_primary_10_1016_j_jocs_2022_101903 crossref_primary_10_1016_j_eswa_2024_124646 crossref_primary_10_1016_j_isatra_2023_05_005 crossref_primary_10_1109_ACCESS_2022_3198987 crossref_primary_10_1016_j_jnca_2024_104048 crossref_primary_10_1016_j_neucom_2023_126899 crossref_primary_10_1016_j_asoc_2024_111394 crossref_primary_10_1016_j_engappai_2023_106989 crossref_primary_10_1038_s41598_025_98112_x crossref_primary_10_1109_ACCESS_2024_3403089 crossref_primary_10_3390_math12233676 crossref_primary_10_3934_math_2025667 crossref_primary_10_1016_j_eswa_2023_122942 crossref_primary_10_1016_j_engappai_2023_107001 crossref_primary_10_1007_s42235_023_00400_7 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1016_j_eswa_2024_124112 crossref_primary_10_1007_s10462_023_10602_4 crossref_primary_10_1038_s41598_025_01299_2 crossref_primary_10_1016_j_engappai_2024_109298 crossref_primary_10_1007_s00521_024_10327_7 crossref_primary_10_1007_s10586_025_05429_3 crossref_primary_10_1016_j_eswa_2023_122677 crossref_primary_10_1088_1757_899X_1237_1_012011 |
| Cites_doi | 10.1145/3067695.3082528 10.1016/j.engappai.2013.06.014 10.1080/01621459.1990.10476223 10.1109/TCYB.2014.2339495 10.1007/978-3-319-72550-5_3 10.1007/s00521-018-3592-0 10.1007/BF02827615 10.1016/j.asoc.2017.04.044 10.1007/978-3-642-16773-7_32 10.1016/j.cor.2009.02.010 10.1137/0220065 10.1016/j.ins.2019.03.049 10.1109/4235.585888 10.1162/evco.2009.17.4.17402 10.1016/j.asoc.2017.04.029 10.1016/j.ins.2010.12.004 10.1186/s12859-020-03630-2 10.1145/3067695.3082529 10.1145/2480741.2480752 10.1016/j.swevo.2017.11.002 10.1016/j.ins.2015.09.056 10.1109/TCYB.2014.2316552 10.1108/K-11-2013-0241 10.1007/978-3-642-38703-6_2 10.1109/TEVC.2011.2170075 10.1016/j.asoc.2015.10.048 10.1145/2463372.2463495 10.3233/FI-1998-35123403 10.1007/978-3-642-15461-4_5 10.1007/s00500-019-04240-8 10.1016/j.asoc.2019.105599 10.1007/s00500-008-0303-2 10.1016/S0305-0548(02)00229-0 10.1016/j.enconman.2018.12.022 10.1007/s00500-016-2166-2 10.1007/s40747-019-0102-7 10.3390/app11156676 10.1016/j.ins.2021.09.058 10.1080/08839514.2019.1683977 10.1007/978-3-642-29353-5_43 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.11.073 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 208 |
| ExternalDocumentID | 10_1016_j_ins_2021_11_073 S0020025521011956 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c363t-6c83d92458e13673edf357011ba2d2c81f8b65cd00a62ffe0220dd2d43ca26d03 |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794186300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 19:49:11 EST 2025 Sat Nov 29 07:30:20 EST 2025 Fri Feb 23 02:41:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Diversity metric Metaheuristic algorithm Exploration–exploitation balance |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-6c83d92458e13673edf357011ba2d2c81f8b65cd00a62ffe0220dd2d43ca26d03 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2021_11_073 crossref_citationtrail_10_1016_j_ins_2021_11_073 elsevier_sciencedirect_doi_10_1016_j_ins_2021_11_073 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | M.Y.S. Hussain A., Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator, Complex and Intelligent Systems 6 (2020) 1–14. Xu, Zhang (b0040) 2014 Ben Guedria (b0165) 2016; 40 G. Leguizamón, C. Coello, An alternative aco r algorithm for continuous optimization problems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6234 LNCS (2010) 48–59. Corriveau, Guilbault, Tahan, Sabourin (b0220) 2012; 16 Lynn, Ali, Suganthan (b0080) 2018; 39 J.L. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Brooks/Cole, 2011, iSBN-13: 978-0-538-73352-6. R.J. Pendharkar P.C., An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification, Computers and Operations Research 31 (2004) 481–498. Herrera, Lozano (b0235) 1996 Shuhao, Shoubao, Li (b0160) 2015; 44 Yang, Li, Cai, Guan (b0185) 2015; 45 Back, Hammel, Schwefel (b0010) 1997; 1 Demšar (b0240) 2006; 7 Squillero, Tonda (b0030) 2016; 329 L.K. Hansheng L., Balance between exploration and exploitation in genetic search, Wuhan Univ. J. Nat. Sci. 4 (1999) 28–32. T.Y. Liu J., Zheng S., The improvement on controlling exploration and exploitation of firework algorithm, in: Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, Vol. 7928, 2013, pp. 11–23. doi:10.1007/978-3-642-38703-6_2. C.S. Hussain K., Salleh M.N.M., On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput and Applic 31 (2019) 7665–7683. M. Gaudesi, G. Squillero, A. Tonda, An efficient distance metric for linear genetic programming, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, Association for Computing Machinery, New York, NY, USA, 2013, p. 925–932. S.A., ype-2 fuzzy logic control of trade-off between exploration and exploitation properties of genetic algorithms, in: Swarm and Evolutionary Computation. EC 2012, SIDE 2012. Lecture Notes in Computer Science, Vol. 7269, 2012, pp. 368–376. doi:10.1007/978-3-642-29353-5_43. Terrell (b0225) 1990; 85 L. Salas-Morera, L. García-Hernández, C. Carmona-Muñoz, A multi-user interactive coral reef optimization algorithm for considering expert knowledge in the unequal area facility layout problem, Applied Sciences (Switzerland) 11 (15). Beume (b0205) 2009; 17 S.H.R. Rezaei F., Guaspso: a new approach to hold a better exploration-exploitation balance in pso algorithm, Soft Computing 24 (2020) 4855–4875. A. Bartoli, A. De Lorenzo, E. Medvet, G. Squillero, Multi-level diversity promotion strategies for grammar-guided genetic programming, Applied Soft Computing Journal 83. G.M. Lin L., Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing 13 (2009) 157–168. C. Li, J. Sun, V. Palade, Diversity-guided lamarckian random drift particle swarm optimization for flexible ligand docking, BMC Bioinformatics 21 (1). Overmars, Yap (b0215) 1991; 20 Wineberg, Oppacher (b0200) 2003; 2724 Yousri, Allam, Eteiba, Suganthan (b0085) 2019; 182 V.F. Kuyu Y.C., Advanced metaheuristic algorithms on solving multimodal functions: Experimental analyses and performance evaluations, Arch Computat Methods Eng 1 (2021) 1–13. dos Santos Coelho, Richter, Mariani, Askarzadeh (b0175) 2016 Lacevic, Amaldi (b0210) 2011; 181 Wang, Liao, Zhou, Cai (b0140) 2014; 44 Eiben, Schippers (b0025) 1998; 35 Tilahun (b0190) 2017; 59 Bansal (b0015) 2019; 33 Sharma, Pant (b0180) 2017; 21 M. Lukovic, Y. Tian, W. Matusik, Diversity-guided multi-objective bayesian optimization with batch evaluations, Vol. 2020-December, 2020. Salleh, Hussain, Cheng, Shi, Muhammad, Ullah, Naseem (b0045) 2018; 700 Eftimov, Korošec (b0020) 2019; 489 Sagban, Ku-Mahamud, Shahbani Abu Bakar (b0170) 2017 Kononova, Caraffini, Bäck (b0005) 2021; 581 Lozano (b0090) 2010; 37 Ji, Ye, Zhou, Yin, Shen (b0145) 2017; 57 C.S. Noa Vargas Y., Particle swarm optimization with resets - improving the balance between exploration and exploitation, in: Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science, Vol. 6438, 2010, pp. 371–381. doi:10.1007/978-3-642-16773-7_32. A. Benbassat, Y. Shafet, A simple bucketing based approach to diversity maintenance, in: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1559–1564. M. Crepinsek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Computing Surveys 45 (3). Lim, Mat Isa (b0135) 2013; 26 T. Gabor, L. Belzner, Genealogical distance as a diversity estimate in evolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1572–1577. 10.1016/j.ins.2021.11.073_b0150 10.1016/j.ins.2021.11.073_b0195 Squillero (10.1016/j.ins.2021.11.073_b0030) 2016; 329 10.1016/j.ins.2021.11.073_b0070 Shuhao (10.1016/j.ins.2021.11.073_b0160) 2015; 44 Wineberg (10.1016/j.ins.2021.11.073_b0200) 2003; 2724 Eftimov (10.1016/j.ins.2021.11.073_b0020) 2019; 489 dos Santos Coelho (10.1016/j.ins.2021.11.073_b0175) 2016 Yousri (10.1016/j.ins.2021.11.073_b0085) 2019; 182 Xu (10.1016/j.ins.2021.11.073_b0040) 2014 Lim (10.1016/j.ins.2021.11.073_b0135) 2013; 26 Corriveau (10.1016/j.ins.2021.11.073_b0220) 2012; 16 Terrell (10.1016/j.ins.2021.11.073_b0225) 1990; 85 10.1016/j.ins.2021.11.073_b0115 10.1016/j.ins.2021.11.073_b0035 10.1016/j.ins.2021.11.073_b0110 10.1016/j.ins.2021.11.073_b0155 10.1016/j.ins.2021.11.073_b0075 10.1016/j.ins.2021.11.073_b0230 Herrera (10.1016/j.ins.2021.11.073_b0235) 1996 10.1016/j.ins.2021.11.073_b0060 Ben Guedria (10.1016/j.ins.2021.11.073_b0165) 2016; 40 Back (10.1016/j.ins.2021.11.073_b0010) 1997; 1 Bansal (10.1016/j.ins.2021.11.073_b0015) 2019; 33 10.1016/j.ins.2021.11.073_b0105 10.1016/j.ins.2021.11.073_b0100 10.1016/j.ins.2021.11.073_b0065 10.1016/j.ins.2021.11.073_b0095 10.1016/j.ins.2021.11.073_b0050 Ji (10.1016/j.ins.2021.11.073_b0145) 2017; 57 Sharma (10.1016/j.ins.2021.11.073_b0180) 2017; 21 Lacevic (10.1016/j.ins.2021.11.073_b0210) 2011; 181 Salleh (10.1016/j.ins.2021.11.073_b0045) 2018; 700 Overmars (10.1016/j.ins.2021.11.073_b0215) 1991; 20 Tilahun (10.1016/j.ins.2021.11.073_b0190) 2017; 59 Eiben (10.1016/j.ins.2021.11.073_b0025) 1998; 35 Wang (10.1016/j.ins.2021.11.073_b0140) 2014; 44 10.1016/j.ins.2021.11.073_b0055 Yang (10.1016/j.ins.2021.11.073_b0185) 2015; 45 10.1016/j.ins.2021.11.073_b0130 Lynn (10.1016/j.ins.2021.11.073_b0080) 2018; 39 Kononova (10.1016/j.ins.2021.11.073_b0005) 2021; 581 Demšar (10.1016/j.ins.2021.11.073_b0240) 2006; 7 Lozano (10.1016/j.ins.2021.11.073_b0090) 2010; 37 10.1016/j.ins.2021.11.073_b0125 Sagban (10.1016/j.ins.2021.11.073_b0170) 2017 Beume (10.1016/j.ins.2021.11.073_b0205) 2009; 17 10.1016/j.ins.2021.11.073_b0245 10.1016/j.ins.2021.11.073_b0120 |
| References_xml | – volume: 20 start-page: 1034 year: 1991 end-page: 1045 ident: b0215 article-title: New upper bounds in klee’s measure problem publication-title: SIAM Journal on Computing – volume: 57 start-page: 504 year: 2017 end-page: 516 ident: b0145 article-title: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry publication-title: Applied Soft Computing Journal – reference: M. Lukovic, Y. Tian, W. Matusik, Diversity-guided multi-objective bayesian optimization with batch evaluations, Vol. 2020-December, 2020. – volume: 40 start-page: 455 year: 2016 end-page: 467 ident: b0165 article-title: Improved accelerated pso algorithm for mechanical engineering optimization problems publication-title: Applied Soft Computing Journal – volume: 85 start-page: 470 year: 1990 end-page: 477 ident: b0225 article-title: The maximal smoothing principle in density estimation publication-title: Journal of the American Statistical Association – reference: A. Benbassat, Y. Shafet, A simple bucketing based approach to diversity maintenance, in: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1559–1564. – reference: S.H.R. Rezaei F., Guaspso: a new approach to hold a better exploration-exploitation balance in pso algorithm, Soft Computing 24 (2020) 4855–4875. – reference: J.L. Devore, Probability and Statistics for Engineering and the Sciences, 8th Edition, Brooks/Cole, 2011, iSBN-13: 978-0-538-73352-6. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0240 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – reference: M.Y.S. Hussain A., Trade-off between exploration and exploitation with genetic algorithm using a novel selection operator, Complex and Intelligent Systems 6 (2020) 1–14. – volume: 16 start-page: 695 year: 2012 end-page: 710 ident: b0220 article-title: Review and study of genotypic diversity measures for real-coded representations publication-title: IEEE Transactions on Evolutionary Computation – reference: T. Gabor, L. Belzner, Genealogical distance as a diversity estimate in evolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, Association for Computing Machinery, New York, NY, USA, 2017, p. 1572–1577. – volume: 44 start-page: 2792 year: 2014 end-page: 2805 ident: b0140 article-title: Differential evolution enhanced with multiobjective sorting-based mutation operators publication-title: IEEE Transactions on Cybernetics – volume: 35 start-page: 35 year: 1998 end-page: 50 ident: b0025 article-title: On evolutionary exploration and exploitation publication-title: Fundamenta Informaticae – volume: 17 start-page: 477 year: 2009 end-page: 492 ident: b0205 article-title: S-metric calculation by considering dominated hypervolume as klee’s measure problem publication-title: Evol. Comput. – reference: L. Salas-Morera, L. García-Hernández, C. Carmona-Muñoz, A multi-user interactive coral reef optimization algorithm for considering expert knowledge in the unequal area facility layout problem, Applied Sciences (Switzerland) 11 (15). – reference: L.K. Hansheng L., Balance between exploration and exploitation in genetic search, Wuhan Univ. J. Nat. Sci. 4 (1999) 28–32. – volume: 182 start-page: 546 year: 2019 end-page: 563 ident: b0085 article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants publication-title: Energy Conversion and Management – volume: 1 start-page: 3 year: 1997 end-page: 17 ident: b0010 article-title: Evolutionary computation: comments on the history and current state publication-title: IEEE Transactions on Evolutionary Computation – volume: 59 start-page: 104 year: 2017 end-page: 114 ident: b0190 article-title: Prey predator hyperheuristic publication-title: Applied Soft Computing Journal – volume: 329 start-page: 782 year: 2016 end-page: 799 ident: b0030 article-title: Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization publication-title: Information Sciences – volume: 21 start-page: 6085 year: 2017 end-page: 6104 ident: b0180 article-title: Shuffled artificial bee colony algorithm publication-title: Soft Computing – start-page: 95 year: 1996 end-page: 125 ident: b0235 article-title: Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in publication-title: Genetic Algorithms and Soft Computing, Physica-Verlag – volume: 44 start-page: 43 year: 2015 end-page: 56 ident: b0160 article-title: A simple diversity guided firefly algorithm publication-title: Kybernetes – start-page: 8633 year: 2014 end-page: 8638 ident: b0040 article-title: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis publication-title: in: Proceedings of the 33rd Chinese Control Conference – volume: 39 start-page: 24 year: 2018 end-page: 35 ident: b0080 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm and Evolutionary Computation – volume: 45 start-page: 302 year: 2015 end-page: 315 ident: b0185 article-title: Differential evolution with auto-enhanced population diversity publication-title: IEEE Transactions on Cybernetics – reference: G. Leguizamón, C. Coello, An alternative aco r algorithm for continuous optimization problems, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6234 LNCS (2010) 48–59. – reference: M. Crepinsek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Computing Surveys 45 (3). – volume: 700 start-page: 24 year: 2018 end-page: 32 ident: b0045 article-title: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis publication-title: Advances in Intelligent Systems and Computing – volume: 26 start-page: 2327 year: 2013 end-page: 2348 ident: b0135 article-title: Two-layer particle swarm optimization with intelligent division of labor publication-title: Engineering Applications of Artificial Intelligence – start-page: 1 year: 2016 ident: b0175 article-title: Modified crow search approach applied to electromagnetic optimization publication-title: 2016 IEEE Conference on Electromagnetic Field Computation (CEFC) – reference: R.J. Pendharkar P.C., An empirical study of impact of crossover operators on the performance of non-binary genetic algorithm based neural approaches for classification, Computers and Operations Research 31 (2004) 481–498. – reference: C.S. Noa Vargas Y., Particle swarm optimization with resets - improving the balance between exploration and exploitation, in: Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science, Vol. 6438, 2010, pp. 371–381. doi:10.1007/978-3-642-16773-7_32. – reference: S.A., ype-2 fuzzy logic control of trade-off between exploration and exploitation properties of genetic algorithms, in: Swarm and Evolutionary Computation. EC 2012, SIDE 2012. Lecture Notes in Computer Science, Vol. 7269, 2012, pp. 368–376. doi:10.1007/978-3-642-29353-5_43. – reference: M. Gaudesi, G. Squillero, A. Tonda, An efficient distance metric for linear genetic programming, in: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, Association for Computing Machinery, New York, NY, USA, 2013, p. 925–932. – start-page: 139 year: 2017 end-page: 143 ident: b0170 article-title: Unified strategy for intensification and diversification balance in aco metaheuristic publication-title: 2017 8th International Conference on Information Technology (ICIT) – volume: 33 start-page: 1199 year: 2019 end-page: 1265 ident: b0015 article-title: A comparative study of nature-inspired metaheuristic algorithms in search of near-to-optimal golomb rulers for the fwm crosstalk elimination in wdm systems publication-title: Applied Artificial Intelligence – reference: V.F. Kuyu Y.C., Advanced metaheuristic algorithms on solving multimodal functions: Experimental analyses and performance evaluations, Arch Computat Methods Eng 1 (2021) 1–13. – volume: 37 start-page: 481 year: 2010 end-page: 497 ident: b0090 article-title: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report publication-title: Computers and Operations Research – reference: G.M. Lin L., Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation, Soft Computing 13 (2009) 157–168. – reference: C. Li, J. Sun, V. Palade, Diversity-guided lamarckian random drift particle swarm optimization for flexible ligand docking, BMC Bioinformatics 21 (1). – volume: 181 start-page: 2316 year: 2011 end-page: 2339 ident: b0210 article-title: Ectropy of diversity measures for populations in euclidean space publication-title: Information Sciences – volume: 2724 start-page: 1493 year: 2003 end-page: 1504 ident: b0200 article-title: The underlying similarity of diversity measures used in evolutionary computation publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – reference: C.S. Hussain K., Salleh M.N.M., On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput and Applic 31 (2019) 7665–7683. – reference: A. Bartoli, A. De Lorenzo, E. Medvet, G. Squillero, Multi-level diversity promotion strategies for grammar-guided genetic programming, Applied Soft Computing Journal 83. – volume: 581 start-page: 587 year: 2021 end-page: 604 ident: b0005 article-title: Differential evolution outside the box publication-title: Information Sciences – volume: 489 start-page: 255 year: 2019 end-page: 273 ident: b0020 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Information Sciences – reference: T.Y. Liu J., Zheng S., The improvement on controlling exploration and exploitation of firework algorithm, in: Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, Vol. 7928, 2013, pp. 11–23. doi:10.1007/978-3-642-38703-6_2. – ident: 10.1016/j.ins.2021.11.073_b0150 doi: 10.1145/3067695.3082528 – volume: 26 start-page: 2327 issue: 10 year: 2013 ident: 10.1016/j.ins.2021.11.073_b0135 article-title: Two-layer particle swarm optimization with intelligent division of labor publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.06.014 – volume: 2724 start-page: 1493 year: 2003 ident: 10.1016/j.ins.2021.11.073_b0200 article-title: The underlying similarity of diversity measures used in evolutionary computation publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 1 year: 2016 ident: 10.1016/j.ins.2021.11.073_b0175 article-title: Modified crow search approach applied to electromagnetic optimization – volume: 85 start-page: 470 issue: 410 year: 1990 ident: 10.1016/j.ins.2021.11.073_b0225 article-title: The maximal smoothing principle in density estimation publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1990.10476223 – volume: 45 start-page: 302 issue: 2 year: 2015 ident: 10.1016/j.ins.2021.11.073_b0185 article-title: Differential evolution with auto-enhanced population diversity publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2339495 – volume: 700 start-page: 24 year: 2018 ident: 10.1016/j.ins.2021.11.073_b0045 article-title: Exploration and exploitation measurement in swarm-based metaheuristic algorithms: An empirical analysis publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-3-319-72550-5_3 – ident: 10.1016/j.ins.2021.11.073_b0245 – ident: 10.1016/j.ins.2021.11.073_b0095 doi: 10.1007/s00521-018-3592-0 – ident: 10.1016/j.ins.2021.11.073_b0060 doi: 10.1007/BF02827615 – volume: 59 start-page: 104 year: 2017 ident: 10.1016/j.ins.2021.11.073_b0190 article-title: Prey predator hyperheuristic publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.04.044 – ident: 10.1016/j.ins.2021.11.073_b0065 doi: 10.1007/978-3-642-16773-7_32 – volume: 37 start-page: 481 year: 2010 ident: 10.1016/j.ins.2021.11.073_b0090 article-title: Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report publication-title: Computers and Operations Research doi: 10.1016/j.cor.2009.02.010 – volume: 20 start-page: 1034 issue: 6 year: 1991 ident: 10.1016/j.ins.2021.11.073_b0215 article-title: New upper bounds in klee’s measure problem publication-title: SIAM Journal on Computing doi: 10.1137/0220065 – ident: 10.1016/j.ins.2021.11.073_b0230 – volume: 489 start-page: 255 year: 2019 ident: 10.1016/j.ins.2021.11.073_b0020 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Information Sciences doi: 10.1016/j.ins.2019.03.049 – volume: 1 start-page: 3 issue: 1 year: 1997 ident: 10.1016/j.ins.2021.11.073_b0010 article-title: Evolutionary computation: comments on the history and current state publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585888 – start-page: 139 year: 2017 ident: 10.1016/j.ins.2021.11.073_b0170 article-title: Unified strategy for intensification and diversification balance in aco metaheuristic – volume: 17 start-page: 477 issue: 4 year: 2009 ident: 10.1016/j.ins.2021.11.073_b0205 article-title: S-metric calculation by considering dominated hypervolume as klee’s measure problem publication-title: Evol. Comput. doi: 10.1162/evco.2009.17.4.17402 – volume: 57 start-page: 504 year: 2017 ident: 10.1016/j.ins.2021.11.073_b0145 article-title: An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.04.029 – volume: 181 start-page: 2316 issue: 11 year: 2011 ident: 10.1016/j.ins.2021.11.073_b0210 article-title: Ectropy of diversity measures for populations in euclidean space publication-title: Information Sciences doi: 10.1016/j.ins.2010.12.004 – ident: 10.1016/j.ins.2021.11.073_b0110 doi: 10.1186/s12859-020-03630-2 – start-page: 95 year: 1996 ident: 10.1016/j.ins.2021.11.073_b0235 article-title: Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in publication-title: Genetic Algorithms and Soft Computing, Physica-Verlag – ident: 10.1016/j.ins.2021.11.073_b0195 doi: 10.1145/3067695.3082529 – ident: 10.1016/j.ins.2021.11.073_b0130 doi: 10.1145/2480741.2480752 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ins.2021.11.073_b0240 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 39 start-page: 24 year: 2018 ident: 10.1016/j.ins.2021.11.073_b0080 article-title: Population topologies for particle swarm optimization and differential evolution publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.11.002 – volume: 329 start-page: 782 year: 2016 ident: 10.1016/j.ins.2021.11.073_b0030 article-title: Divergence of character and premature convergence: A survey of methodologies for promoting diversity in evolutionary optimization publication-title: Information Sciences doi: 10.1016/j.ins.2015.09.056 – volume: 44 start-page: 2792 issue: 12 year: 2014 ident: 10.1016/j.ins.2021.11.073_b0140 article-title: Differential evolution enhanced with multiobjective sorting-based mutation operators publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2316552 – volume: 44 start-page: 43 issue: 1 year: 2015 ident: 10.1016/j.ins.2021.11.073_b0160 article-title: A simple diversity guided firefly algorithm publication-title: Kybernetes doi: 10.1108/K-11-2013-0241 – ident: 10.1016/j.ins.2021.11.073_b0050 doi: 10.1007/978-3-642-38703-6_2 – volume: 16 start-page: 695 issue: 5 year: 2012 ident: 10.1016/j.ins.2021.11.073_b0220 article-title: Review and study of genotypic diversity measures for real-coded representations publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2170075 – volume: 40 start-page: 455 year: 2016 ident: 10.1016/j.ins.2021.11.073_b0165 article-title: Improved accelerated pso algorithm for mechanical engineering optimization problems publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2015.10.048 – ident: 10.1016/j.ins.2021.11.073_b0125 doi: 10.1145/2463372.2463495 – volume: 35 start-page: 35 issue: 1–4 year: 1998 ident: 10.1016/j.ins.2021.11.073_b0025 article-title: On evolutionary exploration and exploitation publication-title: Fundamenta Informaticae doi: 10.3233/FI-1998-35123403 – ident: 10.1016/j.ins.2021.11.073_b0155 doi: 10.1007/978-3-642-15461-4_5 – ident: 10.1016/j.ins.2021.11.073_b0105 doi: 10.1007/s00500-019-04240-8 – ident: 10.1016/j.ins.2021.11.073_b0120 doi: 10.1016/j.asoc.2019.105599 – ident: 10.1016/j.ins.2021.11.073_b0075 doi: 10.1007/s00500-008-0303-2 – ident: 10.1016/j.ins.2021.11.073_b0035 doi: 10.1016/S0305-0548(02)00229-0 – volume: 182 start-page: 546 year: 2019 ident: 10.1016/j.ins.2021.11.073_b0085 article-title: Static and dynamic photovoltaic models’ parameters identification using chaotic heterogeneous comprehensive learning particle swarm optimizer variants publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.12.022 – volume: 21 start-page: 6085 issue: 20 year: 2017 ident: 10.1016/j.ins.2021.11.073_b0180 article-title: Shuffled artificial bee colony algorithm publication-title: Soft Computing doi: 10.1007/s00500-016-2166-2 – ident: 10.1016/j.ins.2021.11.073_b0055 doi: 10.1007/s40747-019-0102-7 – ident: 10.1016/j.ins.2021.11.073_b0100 doi: 10.3390/app11156676 – ident: 10.1016/j.ins.2021.11.073_b0115 – volume: 581 start-page: 587 year: 2021 ident: 10.1016/j.ins.2021.11.073_b0005 article-title: Differential evolution outside the box publication-title: Information Sciences doi: 10.1016/j.ins.2021.09.058 – volume: 33 start-page: 1199 issue: 14 year: 2019 ident: 10.1016/j.ins.2021.11.073_b0015 article-title: A comparative study of nature-inspired metaheuristic algorithms in search of near-to-optimal golomb rulers for the fwm crosstalk elimination in wdm systems publication-title: Applied Artificial Intelligence doi: 10.1080/08839514.2019.1683977 – start-page: 8633 year: 2014 ident: 10.1016/j.ins.2021.11.073_b0040 article-title: Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis – ident: 10.1016/j.ins.2021.11.073_b0070 doi: 10.1007/978-3-642-29353-5_43 |
| SSID | ssj0004766 |
| Score | 2.5863233 |
| Snippet | In Metaheuristic Algorithms (MA), the balance between exploration and exploitation is a common issue considered an open research problem in the MA community.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 192 |
| SubjectTerms | Diversity metric Exploration–exploitation balance Metaheuristic algorithm |
| Title | A diversity metric for population-based metaheuristic algorithms |
| URI | https://dx.doi.org/10.1016/j.ins.2021.11.073 |
| Volume | 586 |
| WOSCitedRecordID | wos000794186300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdg48AOCAaIbWzyAXGgCnKcxHFulK4IkBgcBuotcm2HrdrSqh_T_nzeix03KwyxAxerSmOn7Xt9H_Z7vx8hr7KxqKSQuFHFExiMjlTFGBZT8crGRc6sbMgm8pMTORoV33xJ0KKhE8jrWl5fF7P_Kmq4BsLG1tk7iDssChfgNQgdRhA7jP8k-H7PhFqLS-TL0k0p4SwwdUXouQy-p87syiE199TFz-n8fHnmwcsnbYF7aG7seV8ZYvCvi1WtoiHScjTbrT8UOrDm4P04aNxgZa9cyxgY3NAU9AVhAeyiN1AYvMKM97E1jgMatyfnZtrdjIA8NlRjheYAFmGa0jWwmeyayNhx33lvyxtUh98NudtTmED2gZjqPH6LUKuO9OQmaPaGMwslhm312qSEJUpcApKdEpa4T7Z5nhVgAbf7n4ajz-su2tydbLdfoT0Db6oBNz7Hn6OYTmRy-pg88ikF7TtVeELu2XqX7HSAJnfJoW9Poa9pR6TUG_an5F2fBqWhTmko3EY3lYbeUBq6Vppn5PuH4engY-S5NSKdiGQZCS0TA7l3Ji2C9iXWVEmWg7EfK264lnElxyLThjEleFVZbMg2hps00YoLw5LnZKue1vYFoWKcZ6kuUoiMWZpyo0SVckztWaFTleV7hLW_Vak98Dzyn1yUt8poj7wJU2YOdeVvN6etAEr_V3DhYAnKdPu0_bs844A8XKv7S7K1nK_sIXmgr5bni_mR16Rf9EeMIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+diversity+metric+for+population-based+metaheuristic+algorithms&rft.jtitle=Information+sciences&rft.au=Osuna-Enciso%2C+Valent%C3%ADn&rft.au=Cuevas%2C+Erik&rft.au=Morales+Casta%C3%B1eda%2C+Bernardo&rft.date=2022-03-01&rft.issn=0020-0255&rft.volume=586&rft.spage=192&rft.epage=208&rft_id=info:doi/10.1016%2Fj.ins.2021.11.073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_11_073 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |