Belyi Maps from Zeroes of Hypergeometric Polynomials

The evaluation of low-degree hypergeometric polynomials to zero defines algebraic hypersurfaces in the affine space of the free parameters and the argument of the hypergeometric function. This article investigates the algebraic surfaces defined by the hypergeometric equation F12(−N,b;c;z)=0 with N=3...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 13; číslo 1; s. 156
Hlavní autor: Vidunas, Raimundas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2025
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The evaluation of low-degree hypergeometric polynomials to zero defines algebraic hypersurfaces in the affine space of the free parameters and the argument of the hypergeometric function. This article investigates the algebraic surfaces defined by the hypergeometric equation F12(−N,b;c;z)=0 with N=3 or N=4. As a captivating application, these surfaces parametrize certain families of genus 0 Belyi maps. Thereby, this article contributes to the systematic enumeration of Belyi maps.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13010156