Eigenvalues of K-invariant Toeplitz Operators on Bounded Symmetric Domains

We determine the eigenvalues of certain “fundamental” K -invariant Toeplitz type operators on weighted Bergman spaces over bounded symmetric domains D = G / K , for the irreducible K -types indexed by all partitions of length r = rank ( D ) .

Saved in:
Bibliographic Details
Published in:Integral equations and operator theory Vol. 93; no. 3
Main Author: Upmeier, Harald
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Subjects:
ISSN:0378-620X, 1420-8989
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We determine the eigenvalues of certain “fundamental” K -invariant Toeplitz type operators on weighted Bergman spaces over bounded symmetric domains D = G / K , for the irreducible K -types indexed by all partitions of length r = rank ( D ) .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-021-02639-3