A CEP-driven framework for real-time news impact prediction on financial markets

Real-time news impact prediction on financial markets is a challenging task for finance experts with limited IT expertise. Many practitioners build machine learning models trained with many low-level features extracted from multiple event-based streams (news and financial market data), which often l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Service oriented computing and applications Ročník 17; číslo 2; s. 129 - 144
Hlavní autori: Chen, Weisi, El Majzoub, Ahmad, Al-Qudah, Islam, Rabhi, Fethi A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.06.2023
Springer Nature B.V
Predmet:
ISSN:1863-2386, 1863-2394
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Real-time news impact prediction on financial markets is a challenging task for finance experts with limited IT expertise. Many practitioners build machine learning models trained with many low-level features extracted from multiple event-based streams (news and financial market data), which often leads to poor outcomes. State-of-the-art solutions either ignore domain-specific contexts or are customised to merely one type of static datasets rather than real-time data streams. In most cases, the domain expert would have to manually conduct data collection, data cleaning and aggregation, and machine learning step by step with the assistance of IT experts, which is time-consuming and complicated. To address these limitations, we propose a technique that uses real-time data pre-processing in accordance with domain-specific event patterns to generate better-quality datasets. This technique is supported by a systematic framework featuring a data model capturing domain-specific event patterns, an SOA-based architecture and processes that integrate the capabilities of sentiment analysis, complex event processing with automated machine learning (AutoML), facilitating event pattern detection and continual learning with sliding time windows. The benefit of adopting an SOA architecture is to ensure the flexibility of the selection and seamless integration of components. This solution allows domain experts to define domain-specific event patterns via a user-friendly interface and prepare better-quality datasets by pre-processing real-time data streams accordingly via the complex event processing component, aiming to generate meaningful prediction results by the downstream AutoML component. The AutoML component allows for minimal machine learning skills by the domain expert to conduct the prediction tasks. A prototype was implemented to evaluate its feasibility and functionality on a real-life price movement prediction scenario involving 3 years of news and financial market data. The results demonstrate that finance experts are able to complete news impact prediction tasks in real time without the intervention of IT experts, which saves a large amount of time compared with traditional machine learning processes.
AbstractList Real-time news impact prediction on financial markets is a challenging task for finance experts with limited IT expertise. Many practitioners build machine learning models trained with many low-level features extracted from multiple event-based streams (news and financial market data), which often leads to poor outcomes. State-of-the-art solutions either ignore domain-specific contexts or are customised to merely one type of static datasets rather than real-time data streams. In most cases, the domain expert would have to manually conduct data collection, data cleaning and aggregation, and machine learning step by step with the assistance of IT experts, which is time-consuming and complicated. To address these limitations, we propose a technique that uses real-time data pre-processing in accordance with domain-specific event patterns to generate better-quality datasets. This technique is supported by a systematic framework featuring a data model capturing domain-specific event patterns, an SOA-based architecture and processes that integrate the capabilities of sentiment analysis, complex event processing with automated machine learning (AutoML), facilitating event pattern detection and continual learning with sliding time windows. The benefit of adopting an SOA architecture is to ensure the flexibility of the selection and seamless integration of components. This solution allows domain experts to define domain-specific event patterns via a user-friendly interface and prepare better-quality datasets by pre-processing real-time data streams accordingly via the complex event processing component, aiming to generate meaningful prediction results by the downstream AutoML component. The AutoML component allows for minimal machine learning skills by the domain expert to conduct the prediction tasks. A prototype was implemented to evaluate its feasibility and functionality on a real-life price movement prediction scenario involving 3 years of news and financial market data. The results demonstrate that finance experts are able to complete news impact prediction tasks in real time without the intervention of IT experts, which saves a large amount of time compared with traditional machine learning processes.
Real-time news impact prediction on financial markets is a challenging task for finance experts with limited IT expertise. Many practitioners build machine learning models trained with many low-level features extracted from multiple event-based streams (news and financial market data), which often leads to poor outcomes. State-of-the-art solutions either ignore domain-specific contexts or are customised to merely one type of static datasets rather than real-time data streams. In most cases, the domain expert would have to manually conduct data collection, data cleaning and aggregation, and machine learning step by step with the assistance of IT experts, which is time-consuming and complicated. To address these limitations, we propose a technique that uses real-time data pre-processing in accordance with domain-specific event patterns to generate better-quality datasets. This technique is supported by a systematic framework featuring a data model capturing domain-specific event patterns, an SOA-based architecture and processes that integrate the capabilities of sentiment analysis, complex event processing with automated machine learning (AutoML), facilitating event pattern detection and continual learning with sliding time windows. The benefit of adopting an SOA architecture is to ensure the flexibility of the selection and seamless integration of components. This solution allows domain experts to define domain-specific event patterns via a user-friendly interface and prepare better-quality datasets by pre-processing real-time data streams accordingly via the complex event processing component, aiming to generate meaningful prediction results by the downstream AutoML component. The AutoML component allows for minimal machine learning skills by the domain expert to conduct the prediction tasks. A prototype was implemented to evaluate its feasibility and functionality on a real-life price movement prediction scenario involving 3 years of news and financial market data. The results demonstrate that finance experts are able to complete news impact prediction tasks in real time without the intervention of IT experts, which saves a large amount of time compared with traditional machine learning processes.
Author El Majzoub, Ahmad
Rabhi, Fethi A.
Chen, Weisi
Al-Qudah, Islam
Author_xml – sequence: 1
  givenname: Weisi
  orcidid: 0000-0001-8131-392X
  surname: Chen
  fullname: Chen, Weisi
  email: chenweisi@xmut.edu.cn
  organization: Xiamen University of Technology
– sequence: 2
  givenname: Ahmad
  surname: El Majzoub
  fullname: El Majzoub, Ahmad
  organization: The University of New South Wales
– sequence: 3
  givenname: Islam
  surname: Al-Qudah
  fullname: Al-Qudah, Islam
  organization: University of Sharjah, University City Rd, University City, Higher Colleges of Technology
– sequence: 4
  givenname: Fethi A.
  surname: Rabhi
  fullname: Rabhi, Fethi A.
  organization: The University of New South Wales
BookMark eNp9kMtKAzEUhoNUsNa-gKuA62guzWWWpdQLFOxC1yGdSSTtTKYmqcW3d8YRBRc9HDhn8X_n8l-CUWiDBeCa4FuCsbxLhEhBEKYMYcy4QuoMjIkSDFFWzEa_vRIXYJrSFnfBqFRCjsF6DhfLNaqi_7ABumgae2zjDro2wmhNjbJvLAz2mKBv9qbMcB9t5cvs2wC7dD6YUHpTw8bEnc3pCpw7Uyc7_akT8Hq_fFk8otXzw9NivkIlEywjbjAlTjiBqXVlxYvuAyI3igpLC8xngjMuKuqkdc5J5pQlRmBiJOHYbahiE3AzzN3H9v1gU9bb9hBDt1IzykUhOZ_1KjWoytimFK3Tpc-mPz5H42tNsO4t1IOFurNQf1uoe5T-Q_fRd09-nobYAKVOHN5s_LvqBPUFqsaEUA
CitedBy_id crossref_primary_10_3390_electronics12122605
crossref_primary_10_32604_cmes_2023_031388
crossref_primary_10_1109_ACCESS_2023_3295694
crossref_primary_10_3390_bdcc8080086
crossref_primary_10_1007_s10791_025_09573_7
crossref_primary_10_1016_j_techfore_2025_124098
crossref_primary_10_3390_app14198749
crossref_primary_10_1007_s00779_024_01820_w
crossref_primary_10_4018_JOEUC_358454
Cites_doi 10.1007/s10796-016-9633-2
10.1007/s00778-019-00557-w
10.1016/j.eswa.2020.113251
10.1109/ICOMET.2019.8673428
10.1002/int.22732
10.1007/s00521-022-07297-z
10.1145/3377325.3377501
10.1016/j.procs.2020.06.111
10.1145/3379336.3381474
10.1007/978-3-030-64466-6_1
10.1145/3448016.3457557
10.18488/journal.76.2021.81.1.7
10.1109/ICEIT54416.2022.9690729
10.1109/TFUZZ.2022.3157951
10.14778/3415478.3415542
10.1080/13504851.2020.1725230
10.1080/17517575.2018.1493145
10.1007/978-3-030-05318-5_4
10.1016/j.knosys.2020.106622
10.1007/978-3-540-31865-1_25
10.1016/B978-0-12-805394-2.00002-7
10.1016/j.dcan.2017.10.002
10.1007/s00521-020-04874-y
10.1016/j.future.2021.06.024
10.1609/aaai.v34i03.5626
10.1145/3485463
10.1016/j.ejor.2019.04.013
10.1007/s00521-014-1550-z
10.1007/s41060-016-0029-7
10.1007/978-3-030-58548-8_46
10.1016/j.ins.2021.10.054
10.1007/978-3-030-05318-5_8
10.1093/bioinformatics/bth361
10.1145/3399579.3399870
10.1007/s41060-022-00309-0
10.1145/3470918
10.1080/00036846.2018.1564115
10.1145/3448326.3448353
10.1109/HICSS.2016.137
10.1109/EDOC49727.2020.00016
10.1007/s12652-020-01839-w
10.1007/978-3-030-05318-5
10.1007/s11227-021-04013-x
10.18653/v1/S17-2088
10.1016/j.eswa.2018.08.003
10.7551/mitpress/10654.001.0001
10.1145/3361118
10.1016/j.procs.2018.05.020
10.1007/s10479-021-04464-8
10.1007/s13218-020-00637-y
10.1007/s00607-012-0193-0
10.1007/978-3-030-05318-5_6
10.1145/3290605.3300911
10.1002/9781119198697
10.1016/j.dss.2018.06.008
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11761-023-00358-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1863-2394
EndPage 144
ExternalDocumentID 10_1007_s11761_023_00358_8
GrantInformation_xml – fundername: Xiamen Scientific Research Funding for Overseas Chinese Scholars
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2022J05291
  funderid: http://dx.doi.org/10.13039/501100003392
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-5a021f6f602efcd5976117b826e2905465356d2f7efff73f8e1a601a7150fb283
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941054500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Tue Oct 07 06:21:17 EDT 2025
Sat Nov 29 01:50:26 EST 2025
Tue Nov 18 20:51:50 EST 2025
Fri Feb 21 02:44:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Data quality
Real-time analytics
Service-oriented architecture
Finance
Complex event processing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-5a021f6f602efcd5976117b826e2905465356d2f7efff73f8e1a601a7150fb283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8131-392X
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11761-023-00358-8.pdf
PQID 3256975548
PQPubID 2044172
PageCount 16
ParticipantIDs proquest_journals_3256975548
crossref_citationtrail_10_1007_s11761_023_00358_8
crossref_primary_10_1007_s11761_023_00358_8
springer_journals_10_1007_s11761_023_00358_8
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References AkyildirimEBarivieraAFNguyenDKSensoyAForecasting high-frequency stock returns: a comparison of alternative methodsAnn Oper Res2022444076310.1007/s10479-021-04464-807553129
AllenDEMcAleerMSinghAKDaily market news sentiment and stock pricesAppl Econ201951303212323510.1080/00036846.2018.1564115
AbdallahZSDuLWebbGISammutCWebbGIData preparationEncyclopedia of machine learning and data mining2016BostonSpringer111
MilosevicZChenWBerryARabhiFABuyyaRCalheirosRNDastjerdiAVChapter 2—real-time analyticsBig Data2016BurlingtonMorgan Kaufmann396110.1016/B978-0-12-805394-2.00002-7
TruongQNguyenMDangHMeiBHousing price prediction via improved machine learning techniquesProcedia Comput Sci202017443344210.1016/j.procs.2020.06.111
Hanussek M, Blohm M, Kintz M (2020) Can AutoML outperform humans? An evaluation on popular OpenML datasets using AutoML benchmark. In: 2020 2nd International conference on artificial intelligence, robotics and control
Wang Q et al (2019) ATMSeer: increasing transparency and controllability in automated machine learning. In: Proceedings of the 2019 CHI conference on human factors in computing systems
Rabhi FA, Mehandjiev N, Baghdadi A (2020) State-of-the-art in applying machine learning to electronic trading. In: Enterprise applications, markets and services in the finance industry. Springer, Cham, pp 3–20
HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622
MaoYHow data scientistswork together with domain experts in scientific collaborations: To find the right answer or to ask the right question?Proc ACM Hum Comput Interact2019323710.1145/3361118
RazaMOPathanNUmarABuxRActivity recognition and creation of web service for activity recognition using mobile sensor data using azure machine learning studioRev Comput Eng Res2021811710.18488/journal.76.2021.81.1.7
MilosevicZChenWBerryARabhiFAAn open architecture for event-based analyticsInt J Data Sci Anal201621132710.1007/s41060-016-0029-7
Apache. Flume. https://flume.apache.org
SoftwareAG. Apama. https://www.softwareag.com/en_corporate/platform/iot/apama.html
HussainWMerigóJMRazaMRGaoHA new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means, subtractive clustering and grid partitioningInf Sci202258428030010.1016/j.ins.2021.10.054
AdiEAnwarABaigZZeadallySMachine learning and data analytics for the IoTNeural Comput Appl20203220162051623310.1007/s00521-020-04874-y
ChenWRabhiFAEnabling user-driven rule management in event data analysisInf Syst Front20161851152810.1007/s10796-016-9633-2
KaurPSharmaMMittalMBig data and machine learning based secure healthcare frameworkProcedia Comput Sci20181321049105910.1016/j.procs.2018.05.020
Luckham D (2012) Event processing for business: organizing the real-time enterprise
OlsonRSMooreJHHutterFKotthoffLVanschorenJTPOT: a tree-based pipeline optimization tool for automating machine learningAutomated machine learning: methods, systems, challenges2019ChamSpringer15116010.1007/978-3-030-05318-5_8
BhardwajAYangJCudré-MaurouxPA human-AI loop approach for joint keyword discovery and expectation estimation in micropost event detectionProc AAAI Conf Artif Intell202034032451245810.1609/aaai.v34i03.5626
Apache. Storm. http://storm.apache.org
YakovlevAOracle AutoML: a fast and predictive AutoML pipelineProc VLDB Endow202013123166318010.14778/3415478.3415542
HuangBHuanYXuLDZhengLZouZAutomated trading systems statistical and machine learning methods and hardware implementation: a surveyEnterp Inf Syst201913113214410.1080/17517575.2018.1493145
LuJ-YStructural break-aware pairs trading strategy using deep reinforcement learningJ Supercomput202278338433882439399310.1007/s11227-021-04013-x
KotthoffLThorntonCHoosHHHutterFLeyton-BrownKHutterFKotthoffLVanschorenJAuto-WEKA: automatic model selection and hyperparameter optimization in WEKAAutomated machine learning: methods, systems, challenges2019ChamSpringer819510.1007/978-3-030-05318-5_4
Luong NNT, Milosevic Z, Berry A, Rabhi F (2020) An open architecture for complex event processing with machine learning. In: 2020 IEEE 24th international enterprise distributed object computing conference (EDOC), 5–8 Oct. 2020, pp 51–56. https://doi.org/10.1109/EDOC49727.2020.00016
Cloudera. Streaming analytics. https://docs.cloudera.com/csa
Wang D et al (2020) AutoAI: automating the end-to-end AI lifecycle with humans-in-the-loop. In; Presented at the proceedings of the 25th international conference on intelligent user interfaces companion, Cagliari, Italy, 2020. [Online]. Available: https://doi.org/10.1145/3379336.3381474
ZhuXComplex event detection for commodity distribution Internet of Things model incorporating radio frequency identification and wireless sensor networkFuture Gener Comput Syst202112510011110.1016/j.future.2021.06.024
AgrapetidouACharonyktakisPGogasPPapadimitriouTTsamardinosIAn AutoML application to forecasting bank failuresAppl Econ Lett20212815910.1080/13504851.2020.1725230
HussainWMerigóJMRazaMRPredictive intelligence using ANFIS-induced OWAWA for complex stock market predictionInt J Intell Syst20223784586461110.1002/int.22732
Google. Cloud AutoML. https://cloud.google.com/automl
Amazon. Amazon streaming. https://aws.amazon.com/streaming-data
HussainWGaoHRazaMRRabhiFAMerigóJMAssessing cloud QoS predictions using OWA in neural network methodsNeural Comput Appl20223417148951491210.1007/s00521-022-07297-z
LiXEmpirical analysis: stock market prediction via extreme learning machineNeural Comput Appl2016271677810.1007/s00521-014-1550-z
Chen W, Liu B, Zhang X, Al-Qudah I (2022) An event-based framework for facilitating real-time sentiment analysis in educational contexts. In :2022 11th International conference on educational and information technology (ICEIT), 6–8 Jan. 2022, pp 57–61. https://doi.org/10.1109/ICEIT54416.2022.9690729
FeuerriegelSGordonJLong-term stock index forecasting based on text mining of regulatory disclosuresDecis Support Syst2018112889710.1016/j.dss.2018.06.008
Drozdal J et al (2020) Trust in AutoML: exploring information needs for establishing trust in automated machine learning systems. In: Presented at the proceedings of the 25th international conference on intelligent user interfaces, Cagliari, Italy, 2020. [Online]. Available: https://doi.org/10.1145/3377325.3377501
Apache. Kafka. https://kafka.apache.org
GrezARiverosCUgarteMVansummerenSA formal framework for complex event recognitionACM Trans Database Syst202146416435060710.1145/348546307650993
HuckNLarge data sets and machine learning: applications to statistical arbitrageEur J Oper Res20192781330342395058610.1016/j.ejor.2019.04.0131414.91435
GiatrakosNAlevizosEArtikisADeligiannakisAGarofalakisMComplex event recognition in the Big Data era: a surveyVLDB J202029131335210.1007/s00778-019-00557-w
PaivaFDCardosoRTNHanaokaGPDuarteWMDecision-making for financial trading: a fusion approach of machine learning and portfolio selectionExpert Syst Appl201911563565510.1016/j.eswa.2018.08.003
KarmakerSKHassanMMSmithMJXuLZhaiCVeeramachaneniKAutoML to date and beyond: challenges and opportunitiesACM Comput Surv202154817510.1145/3470918
EsperTech. Esper. https://www.espertech.com/esper
HutterFKotthoffLVanschorenJAutomated machine learning: methods, systems, challenges2019BerlinSpringer10.1007/978-3-030-05318-5
Statista. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2025. https://www.statista.com/statistics/871513/worldwide-data-created
RoldánJBoubeta-PuigJLuis MartínezJOrtizGIntegrating complex event processing and machine learning: an intelligent architecture for detecting IoT security attacksExpert Syst Appl202014911325110.1016/j.eswa.2020.113251
Liu C, Dollár P, He K, Girshick R, Yuille A, Xie S (2020) Are labels necessary for neural architecture search?. In: Presented at the computer vision—ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV, Glasgow, United Kingdom, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-58548-8_46
BahriMSalutariFPutinaASozioMAutoML: state of the art with a focus on anomaly detection, challenges, and research directionsInt J Data Sci Anal202210.1007/s41060-022-00309-0
Apache. Spark. https://spark.apache.org
FeurerMKleinAEggenspergerKSpringenbergJTBlumMHutterFHutterFKotthoffLVanschorenJAuto-sklearn: efficient and robust automated machine learningAutomated machine learning: methods, systems, challenges2019ChamSpringer11313410.1007/978-3-030-05318-5_6
Omenics. Omenics. https://omenics.com
RabhiFAYaoLGuabtniAADAGE: a framework for supporting user-driven ad-hoc data analysis processesComputing201294648951910.1007/s00607-012-0193-0
Microsoft. Azure streaming analytics. https://azure.microsoft.com/en-us/services/stream-analytics
HussainWRazaMRJanMAMerigóJMGaoHCloud risk management with OWA-LSTM and fuzzy linguistic decision makingIEEE Trans Fuzzy Syst202230114657466610.1109/TFUZZ.2022.3157951
Das P et al (2020) Amazon sagemaker autopilot: a white box AutoML solution at scale. In: Presented at the proceedings of the fourth international workshop on data management for end-to-end machine learning, Portland, OR, USA, 2020. [Online]. Available: https://doi.org/10.1145/3399579.3399870
SokolKFlachPOne explanation does not fit allKI Künstliche Intell202034223525010.1007/s13218-020-00637-y
Shah SY et al (2021) AutoAI-TS: AutoAI for time series forecasting. In: Proceedings of the 2021 international conference on management of data: association for computing machinery, pp 2584–2596
Rosenthal S, Farra N, Nakov P (2017) SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 502–518. https://doi.org/10.18653/v1/S17-2088. [Online]. Available: https://aclanthology.org/S17-2088
KhanWGhazanfarMAAzamMAKaramiAAlyoubiKHAlfakeehASStock market prediction using machine learning classifiers and social media, newsJ Ambient Intell Humaniz Comput202010.1007/s12652-020-01839-w
Taj S, Sha
A Agrapetidou (358_CR54) 2021; 28
X He (358_CR8) 2021; 212
W Khan (358_CR47) 2020
W Hussain (358_CR48) 2022; 37
A Yakovlev (358_CR63) 2020; 13
358_CR19
358_CR29
358_CR9
358_CR28
358_CR27
358_CR26
358_CR25
358_CR69
358_CR24
358_CR23
358_CR67
358_CR22
T Oinn (358_CR16) 2004; 20
358_CR21
MS Mahdavinejad (358_CR38) 2018; 4
358_CR62
358_CR61
L Kotthoff (358_CR65) 2019
W Hussain (358_CR14) 2022; 34
Q Truong (358_CR50) 2020; 174
X Li (358_CR44) 2016; 27
W Hussain (358_CR70) 2022; 30
A Grez (358_CR31) 2021; 46
F Hutter (358_CR53) 2019
358_CR18
358_CR15
X Zhu (358_CR37) 2021; 125
358_CR59
W Chen (358_CR10) 2016; 18
Z Milosevic (358_CR34) 2016
358_CR13
358_CR12
358_CR11
358_CR55
B Huang (358_CR42) 2019; 13
E Akyildirim (358_CR51) 2022
A Bhardwaj (358_CR46) 2020; 34
SK Karmaker (358_CR56) 2021; 54
N Huck (358_CR43) 2019; 278
E Adi (358_CR35) 2020; 32
A Bifet (358_CR3) 2018
P Kaur (358_CR39) 2018; 132
FA Rabhi (358_CR7) 2012; 94
DE Allen (358_CR17) 2019; 51
J-Y Lu (358_CR49) 2022; 78
K Sokol (358_CR58) 2020; 34
358_CR41
358_CR40
S Feuerriegel (358_CR20) 2018; 112
J Roldán (358_CR52) 2020; 149
Z Milosevic (358_CR2) 2016; 2
MO Raza (358_CR60) 2021; 8
N Giatrakos (358_CR36) 2020; 29
ZS Abdallah (358_CR5) 2016
FD Paiva (358_CR45) 2019; 115
M Feurer (358_CR64) 2019
RS Olson (358_CR66) 2019
358_CR4
358_CR1
358_CR33
358_CR32
358_CR30
Y Mao (358_CR57) 2019; 3
M Bahri (358_CR68) 2022
W Hussain (358_CR6) 2022; 584
References_xml – reference: KotthoffLThorntonCHoosHHHutterFLeyton-BrownKHutterFKotthoffLVanschorenJAuto-WEKA: automatic model selection and hyperparameter optimization in WEKAAutomated machine learning: methods, systems, challenges2019ChamSpringer819510.1007/978-3-030-05318-5_4
– reference: BifetAGavaldàRHolmesGPfahringerBMachine learning for data streams: with practical examples in MOA2018CambridgeThe MIT Press10.7551/mitpress/10654.001.0001
– reference: Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Advances in information retrieval. Springer, Berlin, Heidelberg, pp 345–359
– reference: EsperTech. Esper. https://www.espertech.com/esper/
– reference: MilosevicZChenWBerryARabhiFABuyyaRCalheirosRNDastjerdiAVChapter 2—real-time analyticsBig Data2016BurlingtonMorgan Kaufmann396110.1016/B978-0-12-805394-2.00002-7
– reference: KaurPSharmaMMittalMBig data and machine learning based secure healthcare frameworkProcedia Comput Sci20181321049105910.1016/j.procs.2018.05.020
– reference: TruongQNguyenMDangHMeiBHousing price prediction via improved machine learning techniquesProcedia Comput Sci202017443344210.1016/j.procs.2020.06.111
– reference: PaivaFDCardosoRTNHanaokaGPDuarteWMDecision-making for financial trading: a fusion approach of machine learning and portfolio selectionExpert Syst Appl201911563565510.1016/j.eswa.2018.08.003
– reference: HussainWMerigóJMRazaMRGaoHA new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means, subtractive clustering and grid partitioningInf Sci202258428030010.1016/j.ins.2021.10.054
– reference: Wang D et al (2020) AutoAI: automating the end-to-end AI lifecycle with humans-in-the-loop. In; Presented at the proceedings of the 25th international conference on intelligent user interfaces companion, Cagliari, Italy, 2020. [Online]. Available: https://doi.org/10.1145/3379336.3381474
– reference: HuckNLarge data sets and machine learning: applications to statistical arbitrageEur J Oper Res20192781330342395058610.1016/j.ejor.2019.04.0131414.91435
– reference: HutterFKotthoffLVanschorenJAutomated machine learning: methods, systems, challenges2019BerlinSpringer10.1007/978-3-030-05318-5
– reference: Apache. Kafka. https://kafka.apache.org
– reference: MaoYHow data scientistswork together with domain experts in scientific collaborations: To find the right answer or to ask the right question?Proc ACM Hum Comput Interact2019323710.1145/3361118
– reference: ChenWRabhiFAEnabling user-driven rule management in event data analysisInf Syst Front20161851152810.1007/s10796-016-9633-2
– reference: Das P et al (2020) Amazon sagemaker autopilot: a white box AutoML solution at scale. In: Presented at the proceedings of the fourth international workshop on data management for end-to-end machine learning, Portland, OR, USA, 2020. [Online]. Available: https://doi.org/10.1145/3399579.3399870
– reference: Tensorflow. Robust machine learning on streaming data using Kafka and Tensorflow-IO. https://www.tensorflow.org/io/tutorials/kafka
– reference: OlsonRSMooreJHHutterFKotthoffLVanschorenJTPOT: a tree-based pipeline optimization tool for automating machine learningAutomated machine learning: methods, systems, challenges2019ChamSpringer15116010.1007/978-3-030-05318-5_8
– reference: MahdavinejadMSRezvanMBarekatainMAdibiPBarnaghiPShethAPMachine learning for internet of things data analysis: a surveyDigit Commun Netw20184316117510.1016/j.dcan.2017.10.002
– reference: Shah SY et al (2021) AutoAI-TS: AutoAI for time series forecasting. In: Proceedings of the 2021 international conference on management of data: association for computing machinery, pp 2584–2596
– reference: ZhuXComplex event detection for commodity distribution Internet of Things model incorporating radio frequency identification and wireless sensor networkFuture Gener Comput Syst202112510011110.1016/j.future.2021.06.024
– reference: Apache. Spark. https://spark.apache.org
– reference: Microsoft. Azure streaming analytics. https://azure.microsoft.com/en-us/services/stream-analytics/
– reference: MilosevicZChenWBerryARabhiFAAn open architecture for event-based analyticsInt J Data Sci Anal201621132710.1007/s41060-016-0029-7
– reference: GrezARiverosCUgarteMVansummerenSA formal framework for complex event recognitionACM Trans Database Syst202146416435060710.1145/348546307650993
– reference: HuangBHuanYXuLDZhengLZouZAutomated trading systems statistical and machine learning methods and hardware implementation: a surveyEnterp Inf Syst201913113214410.1080/17517575.2018.1493145
– reference: KhanWGhazanfarMAAzamMAKaramiAAlyoubiKHAlfakeehASStock market prediction using machine learning classifiers and social media, newsJ Ambient Intell Humaniz Comput202010.1007/s12652-020-01839-w
– reference: Luong NNT, Milosevic Z, Berry A, Rabhi F (2020) An open architecture for complex event processing with machine learning. In: 2020 IEEE 24th international enterprise distributed object computing conference (EDOC), 5–8 Oct. 2020, pp 51–56. https://doi.org/10.1109/EDOC49727.2020.00016
– reference: HeXZhaoKChuXAutoML: a survey of the state-of-the-artKnowl Based Syst202121210662210.1016/j.knosys.2020.106622
– reference: Apache. Storm. http://storm.apache.org
– reference: HussainWRazaMRJanMAMerigóJMGaoHCloud risk management with OWA-LSTM and fuzzy linguistic decision makingIEEE Trans Fuzzy Syst202230114657466610.1109/TFUZZ.2022.3157951
– reference: LuJ-YStructural break-aware pairs trading strategy using deep reinforcement learningJ Supercomput202278338433882439399310.1007/s11227-021-04013-x
– reference: YakovlevAOracle AutoML: a fast and predictive AutoML pipelineProc VLDB Endow202013123166318010.14778/3415478.3415542
– reference: Rabhi FA, Mehandjiev N, Baghdadi A (2020) State-of-the-art in applying machine learning to electronic trading. In: Enterprise applications, markets and services in the finance industry. Springer, Cham, pp 3–20
– reference: GiatrakosNAlevizosEArtikisADeligiannakisAGarofalakisMComplex event recognition in the Big Data era: a surveyVLDB J202029131335210.1007/s00778-019-00557-w
– reference: RazaMOPathanNUmarABuxRActivity recognition and creation of web service for activity recognition using mobile sensor data using azure machine learning studioRev Comput Eng Res2021811710.18488/journal.76.2021.81.1.7
– reference: OinnTTaverna: a tool for the composition and enactment of bioinformatics workflowsBioinformatics200420173045305410.1093/bioinformatics/bth361
– reference: RabhiFAYaoLGuabtniAADAGE: a framework for supporting user-driven ad-hoc data analysis processesComputing201294648951910.1007/s00607-012-0193-0
– reference: SoftwareAG. Apama. https://www.softwareag.com/en_corporate/platform/iot/apama.html
– reference: Taj S, Shaikh BB, Meghji AF (2019) Sentiment analysis of news articles: a lexicon based approach. In: 2019 2nd International conference on computing, mathematics and engineering technologies (iCoMET), 30–31 Jan. 2019, pp 1–5. https://doi.org/10.1109/ICOMET.2019.8673428.
– reference: FeuerriegelSGordonJLong-term stock index forecasting based on text mining of regulatory disclosuresDecis Support Syst2018112889710.1016/j.dss.2018.06.008
– reference: Apache. Flume. https://flume.apache.org
– reference: Amazon. Amazon streaming. https://aws.amazon.com/streaming-data/
– reference: RoldánJBoubeta-PuigJLuis MartínezJOrtizGIntegrating complex event processing and machine learning: an intelligent architecture for detecting IoT security attacksExpert Syst Appl202014911325110.1016/j.eswa.2020.113251
– reference: BahriMSalutariFPutinaASozioMAutoML: state of the art with a focus on anomaly detection, challenges, and research directionsInt J Data Sci Anal202210.1007/s41060-022-00309-0
– reference: Apache. Flink. https://flink.apache.org/
– reference: AllenDEMcAleerMSinghAKDaily market news sentiment and stock pricesAppl Econ201951303212323510.1080/00036846.2018.1564115
– reference: AdiEAnwarABaigZZeadallySMachine learning and data analytics for the IoTNeural Comput Appl20203220162051623310.1007/s00521-020-04874-y
– reference: Luckham D (2012) Event processing for business: organizing the real-time enterprise
– reference: Google. Cloud AutoML. https://cloud.google.com/automl
– reference: Feuerriegel S, Ratku A, Neumann D (2016) Analysis of how underlying topics in financial news affect stock prices using latent dirichlet allocation. In: 2016 49th Hawaii international conference on system sciences (HICSS), 5–8 Jan. 2016, pp 1072–1081. https://doi.org/10.1109/HICSS.2016.137
– reference: Liu C, Dollár P, He K, Girshick R, Yuille A, Xie S (2020) Are labels necessary for neural architecture search?. In: Presented at the computer vision—ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV, Glasgow, United Kingdom, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-58548-8_46
– reference: SokolKFlachPOne explanation does not fit allKI Künstliche Intell202034223525010.1007/s13218-020-00637-y
– reference: BhardwajAYangJCudré-MaurouxPA human-AI loop approach for joint keyword discovery and expectation estimation in micropost event detectionProc AAAI Conf Artif Intell202034032451245810.1609/aaai.v34i03.5626
– reference: LiXEmpirical analysis: stock market prediction via extreme learning machineNeural Comput Appl2016271677810.1007/s00521-014-1550-z
– reference: Statista. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2025. https://www.statista.com/statistics/871513/worldwide-data-created/
– reference: FeurerMKleinAEggenspergerKSpringenbergJTBlumMHutterFHutterFKotthoffLVanschorenJAuto-sklearn: efficient and robust automated machine learningAutomated machine learning: methods, systems, challenges2019ChamSpringer11313410.1007/978-3-030-05318-5_6
– reference: Chen W, Liu B, Zhang X, Al-Qudah I (2022) An event-based framework for facilitating real-time sentiment analysis in educational contexts. In :2022 11th International conference on educational and information technology (ICEIT), 6–8 Jan. 2022, pp 57–61. https://doi.org/10.1109/ICEIT54416.2022.9690729
– reference: Wang Q et al (2019) ATMSeer: increasing transparency and controllability in automated machine learning. In: Proceedings of the 2019 CHI conference on human factors in computing systems
– reference: HussainWMerigóJMRazaMRPredictive intelligence using ANFIS-induced OWAWA for complex stock market predictionInt J Intell Syst20223784586461110.1002/int.22732
– reference: Drozdal J et al (2020) Trust in AutoML: exploring information needs for establishing trust in automated machine learning systems. In: Presented at the proceedings of the 25th international conference on intelligent user interfaces, Cagliari, Italy, 2020. [Online]. Available: https://doi.org/10.1145/3377325.3377501
– reference: AbdallahZSDuLWebbGISammutCWebbGIData preparationEncyclopedia of machine learning and data mining2016BostonSpringer111
– reference: HussainWGaoHRazaMRRabhiFAMerigóJMAssessing cloud QoS predictions using OWA in neural network methodsNeural Comput Appl20223417148951491210.1007/s00521-022-07297-z
– reference: AkyildirimEBarivieraAFNguyenDKSensoyAForecasting high-frequency stock returns: a comparison of alternative methodsAnn Oper Res2022444076310.1007/s10479-021-04464-807553129
– reference: Omenics. Omenics. https://omenics.com/
– reference: Hanussek M, Blohm M, Kintz M (2020) Can AutoML outperform humans? An evaluation on popular OpenML datasets using AutoML benchmark. In: 2020 2nd International conference on artificial intelligence, robotics and control
– reference: Rosenthal S, Farra N, Nakov P (2017) SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th international workshop on semantic evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada, pp 502–518. https://doi.org/10.18653/v1/S17-2088. [Online]. Available: https://aclanthology.org/S17-2088
– reference: AgrapetidouACharonyktakisPGogasPPapadimitriouTTsamardinosIAn AutoML application to forecasting bank failuresAppl Econ Lett20212815910.1080/13504851.2020.1725230
– reference: KarmakerSKHassanMMSmithMJXuLZhaiCVeeramachaneniKAutoML to date and beyond: challenges and opportunitiesACM Comput Surv202154817510.1145/3470918
– reference: Cloudera. Streaming analytics. https://docs.cloudera.com/csa
– volume: 18
  start-page: 511
  year: 2016
  ident: 358_CR10
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-016-9633-2
– volume: 29
  start-page: 313
  issue: 1
  year: 2020
  ident: 358_CR36
  publication-title: VLDB J
  doi: 10.1007/s00778-019-00557-w
– volume: 149
  start-page: 113251
  year: 2020
  ident: 358_CR52
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113251
– ident: 358_CR19
  doi: 10.1109/ICOMET.2019.8673428
– volume: 37
  start-page: 4586
  issue: 8
  year: 2022
  ident: 358_CR48
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22732
– volume: 34
  start-page: 14895
  issue: 17
  year: 2022
  ident: 358_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07297-z
– ident: 358_CR59
  doi: 10.1145/3377325.3377501
– ident: 358_CR23
– volume: 174
  start-page: 433
  year: 2020
  ident: 358_CR50
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.06.111
– ident: 358_CR1
– ident: 358_CR27
– ident: 358_CR62
  doi: 10.1145/3379336.3381474
– ident: 358_CR4
  doi: 10.1007/978-3-030-64466-6_1
– ident: 358_CR55
  doi: 10.1145/3448016.3457557
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 358_CR60
  publication-title: Rev Comput Eng Res
  doi: 10.18488/journal.76.2021.81.1.7
– ident: 358_CR22
  doi: 10.1109/ICEIT54416.2022.9690729
– volume: 30
  start-page: 4657
  issue: 11
  year: 2022
  ident: 358_CR70
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3157951
– ident: 358_CR32
– volume: 13
  start-page: 3166
  issue: 12
  year: 2020
  ident: 358_CR63
  publication-title: Proc VLDB Endow
  doi: 10.14778/3415478.3415542
– volume: 28
  start-page: 5
  issue: 1
  year: 2021
  ident: 358_CR54
  publication-title: Appl Econ Lett
  doi: 10.1080/13504851.2020.1725230
– volume: 13
  start-page: 132
  issue: 1
  year: 2019
  ident: 358_CR42
  publication-title: Enterp Inf Syst
  doi: 10.1080/17517575.2018.1493145
– start-page: 81
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 358_CR65
  doi: 10.1007/978-3-030-05318-5_4
– volume: 212
  start-page: 106622
  year: 2021
  ident: 358_CR8
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106622
– ident: 358_CR26
– ident: 358_CR13
  doi: 10.1007/978-3-540-31865-1_25
– start-page: 39
  volume-title: Big Data
  year: 2016
  ident: 358_CR34
  doi: 10.1016/B978-0-12-805394-2.00002-7
– volume: 4
  start-page: 161
  issue: 3
  year: 2018
  ident: 358_CR38
  publication-title: Digit Commun Netw
  doi: 10.1016/j.dcan.2017.10.002
– volume: 32
  start-page: 16205
  issue: 20
  year: 2020
  ident: 358_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04874-y
– volume: 125
  start-page: 100
  year: 2021
  ident: 358_CR37
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2021.06.024
– volume: 34
  start-page: 2451
  issue: 03
  year: 2020
  ident: 358_CR46
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v34i03.5626
– ident: 358_CR12
– volume: 46
  start-page: 16
  issue: 4
  year: 2021
  ident: 358_CR31
  publication-title: ACM Trans Database Syst
  doi: 10.1145/3485463
– volume: 278
  start-page: 330
  issue: 1
  year: 2019
  ident: 358_CR43
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.04.013
– ident: 358_CR33
– volume: 27
  start-page: 67
  issue: 1
  year: 2016
  ident: 358_CR44
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1550-z
– volume: 2
  start-page: 13
  issue: 1
  year: 2016
  ident: 358_CR2
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-016-0029-7
– ident: 358_CR15
– ident: 358_CR40
– ident: 358_CR69
  doi: 10.1007/978-3-030-58548-8_46
– volume: 584
  start-page: 280
  year: 2022
  ident: 358_CR6
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.10.054
– start-page: 151
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 358_CR66
  doi: 10.1007/978-3-030-05318-5_8
– volume: 20
  start-page: 3045
  issue: 17
  year: 2004
  ident: 358_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth361
– ident: 358_CR25
– ident: 358_CR61
  doi: 10.1145/3399579.3399870
– year: 2022
  ident: 358_CR68
  publication-title: Int J Data Sci Anal
  doi: 10.1007/s41060-022-00309-0
– ident: 358_CR11
– volume: 54
  start-page: 175
  issue: 8
  year: 2021
  ident: 358_CR56
  publication-title: ACM Comput Surv
  doi: 10.1145/3470918
– volume: 51
  start-page: 3212
  issue: 30
  year: 2019
  ident: 358_CR17
  publication-title: Appl Econ
  doi: 10.1080/00036846.2018.1564115
– ident: 358_CR9
  doi: 10.1145/3448326.3448353
– ident: 358_CR21
  doi: 10.1109/HICSS.2016.137
– ident: 358_CR41
  doi: 10.1109/EDOC49727.2020.00016
– year: 2020
  ident: 358_CR47
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-01839-w
– start-page: 1
  volume-title: Encyclopedia of machine learning and data mining
  year: 2016
  ident: 358_CR5
– volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 358_CR53
  doi: 10.1007/978-3-030-05318-5
– volume: 78
  start-page: 3843
  issue: 3
  year: 2022
  ident: 358_CR49
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04013-x
– ident: 358_CR18
  doi: 10.18653/v1/S17-2088
– volume: 115
  start-page: 635
  year: 2019
  ident: 358_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.003
– ident: 358_CR24
– ident: 358_CR29
– volume-title: Machine learning for data streams: with practical examples in MOA
  year: 2018
  ident: 358_CR3
  doi: 10.7551/mitpress/10654.001.0001
– ident: 358_CR28
– volume: 3
  start-page: 237
  year: 2019
  ident: 358_CR57
  publication-title: Proc ACM Hum Comput Interact
  doi: 10.1145/3361118
– volume: 132
  start-page: 1049
  year: 2018
  ident: 358_CR39
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.020
– year: 2022
  ident: 358_CR51
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-021-04464-8
– volume: 34
  start-page: 235
  issue: 2
  year: 2020
  ident: 358_CR58
  publication-title: KI Künstliche Intell
  doi: 10.1007/s13218-020-00637-y
– volume: 94
  start-page: 489
  issue: 6
  year: 2012
  ident: 358_CR7
  publication-title: Computing
  doi: 10.1007/s00607-012-0193-0
– start-page: 113
  volume-title: Automated machine learning: methods, systems, challenges
  year: 2019
  ident: 358_CR64
  doi: 10.1007/978-3-030-05318-5_6
– ident: 358_CR67
  doi: 10.1145/3290605.3300911
– ident: 358_CR30
  doi: 10.1002/9781119198697
– volume: 112
  start-page: 88
  year: 2018
  ident: 358_CR20
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2018.06.008
SSID ssj0000327867
Score 2.3455245
Snippet Real-time news impact prediction on financial markets is a challenging task for finance experts with limited IT expertise. Many practitioners build machine...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Algorithms
Classification
Computer Appl. in Administrative Data Processing
Computer Science
Computer Systems Organization and Communication Networks
Data collection
Data transmission
Datasets
Digital currencies
e-Commerce/e-business
Finance
Impact prediction
IT in Business
Machine learning
Management of Computing and Information Systems
Manufacturing
News
News media
Pharmaceutical industry
Real time
Securities markets
Sentiment analysis
Social networks
Software
Software Engineering/Programming and Operating Systems
Special Issue Paper
Subject specialists
Windows (intervals)
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8abBJ2iQ9yRgbgjB2UNittGkCwtxmO_37fWnTFQV3EXprGkreS9733st7H0K3NMq0tYDcYp2HJKRBTFTILVFxFGmW5TSUNdmEnEzUbBZPfcCt9NcqmzOxOqjzpXYx8gcOtjmWYPzU4-qDONYol131FBq7aI8yRp2eP0uyibEEnElVkchSJTgB6yR83UxdPUfBhydgtIjLpymiftqmFnD-ypFWpmfc_e9PH6FDDzrxoNaSY7RjFieo2xA6YL-_T9F0gIejKckLdwRi29zbwgBsMYDLOXFM9NgBcVxXV-JV4RI9TrgYHtu078DvVTF1eYZex6OX4RPxlAtEc8HXJErB5lthRcCM1Tl4GwJWKQMfxLA4cMTpPBI5s9JYayW3ytAUXLpUAq60GUCVc9RZLBfmAmFllDDKMGVB4IanMaOZgCESAAr4gLqHaLPYifb9yB0txjxpOyk7ASUgoKQSUKJ66G7zzaruxrF1dL-RSuJ3Zpm0Iumh-0au7eu_Z7vcPtsVOmCVKrkATR911sWnuUb7-mv9VhY3lV5-AwHI5Nw
  priority: 102
  providerName: ProQuest
Title A CEP-driven framework for real-time news impact prediction on financial markets
URI https://link.springer.com/article/10.1007/s11761-023-00358-8
https://www.proquest.com/docview/3256975548
Volume 17
WOSCitedRecordID wos000941054500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: P5Z
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: K7-
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_c5oMvzk-czpIH3zTQNm2SPs6xIQijbCrDl9KPBIQ5Rzf9-730w6KooFD60jSEuyT3u1zufgAXjp-kWiNyC9LMo55jB1R6TFMZ-H7qJpnjiZJsQkwmcj4PwiopbF3fdq9DksVO3SS7OehyU7Qx1IS_JJUt6KC5k2Y5TmcPHycrNnOFLKhjHckZRZvEq2yZ77v5bJEamPklMloYnHH3f0Pdg90KYJJBOSP2YUstD6BbkzeQai0fQjggw1FIs9xsd0TXd7QIgliCQHJBDes8MaCblJmUZJWboI5RJMFH16U6yHOROL0-gvvx6G54Qyt6BZoyzjbUj9G-a6657SqdZuhZcBx3gv6GcgPbkKQzn2euFkprLZiWyonRfYsFYkidICw5hvbyZalOgEgluZLKlRqVq1gcuE7CsYlAMIL-XtoDpxZxlFa1xw0FxiJqqiYbkUUosqgQWSR7cPnxz6qsvPFr636tuahaheuIIZ4LBAIm_HxVa6r5_HNvp39rfgY7bqFsczjTh_Ymf1XnsJ2-bZ7WuQWd69EknFrQuhXUMpdLZ_gO_UermLfv923fZQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58gV58i-szBz1pcJO0SXoQER8oq8seFLzVbZqAoOu6uyr-KX-jk7ZxUdCbB6G3piltvsx8yWTmA9hicWacQ-aWmDyiEasnVEfCUZ3EseFZziJVik2oZlPf3CStEXgPuTD-WGWwiYWhzh-N3yPfE-ibE4XOTx90n6hXjfLR1SChUcKiYd9eccnW3z8_xvHd5vz05OrojFaqAtQIKQY0bqNbc9LJOrfO5EioJWMqQ5pteVL32uAiljl3yjrnlHDasjauWtoKqZPL0Btjv6MwHgmtfK3-hqKfezp1wZUuRGuZloKiN5RVnk6ZrcfwVRSdJPXxO031V184JLjfYrKFqzud-W8_aRamK1JNDstZMAcjtjMPM0GwglT2awFah-TopEXznjfxxIVzaQSJO0HyfE8Hdw-W-IUGKbNHSbfnA1kevAQvF8qTkIciWby_CNd_8l1LMNZ57NhlINpqabXl2iGgrWgnnGUSmygkYLjGNTVgYXBTU9Vb97If9-mwUrQHRIqASAtApLoGO5_PdMtqI7-2XgsoSCvL00-HEKjBbsDR8PbPva383tsmTJ5dXV6kF-fNxipM8QLGfjNqDcYGvWe7DhPmZXDX720Uc4LA7V_j6wNtdz_9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5807ClaZP0ccwNRRkFP9hbadMEhFlHV_37vfTDqqggQt_yQbhLer_L5e6H0Cn1YmUMIDdfJS5xad8n0mWGSN_zlBMn1BUl2YSYTOR06gcfsviL1-51SLLMabBVmtK8N09Mr0l8o-B-E7A3xIbCJJHLaMW1pEHWX799eL9l6TNHyIJGlkrOCNgnXmXOfD_NZ-vUQM4vUdLC-Izb_1_2JtqogCcelDtlCy3pdBu1a1IHXJ3xHRQM8HAUkCSzv0Fs6rdbGMAtBoA5I5aNHlswjssMSzzPbLDHKhjDZ-oSHvipSKhe7KL78ehueEkq2gWiGGc58SKw-4Yb3ne0UQl4HBzWHYMfoh2_b8nTmccTxwhtjBHMSE0jcOsiAdjSxABX9lArfU71PsJSS66ldqQBpWsW-Q6NOXQRAFLAD1QdRGtxh6qqSW6pMWZhU03ZiiwEkYWFyELZQWfvY-ZlRY5fe3drLYbV6VyEDHCeLwBIQfN5rbWm-efZDv7W_QStBRfj8OZqcn2I1p1C7_b-potaefaij9Cqes0fF9lxsWnfAEiE5ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CEP-driven+framework+for+real-time+news+impact+prediction+on+financial+markets&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Chen%2C+Weisi&rft.au=El+Majzoub%2C+Ahmad&rft.au=Al-Qudah%2C+Islam&rft.au=Rabhi%2C+Fethi+A.&rft.date=2023-06-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=17&rft.issue=2&rft.spage=129&rft.epage=144&rft_id=info:doi/10.1007%2Fs11761-023-00358-8&rft.externalDocID=10_1007_s11761_023_00358_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon