Pull request latency explained: an empirical overview
Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There i...
Uložené v:
| Vydané v: | Empirical software engineering : an international journal Ročník 27; číslo 6 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.11.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1382-3256, 1573-7616 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts. |
|---|---|
| AbstractList | Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts. |
| ArticleNumber | 126 |
| Author | Wang, Tao Yu, Yue Rastogi, Ayushi Wang, Huaimin Zhang, Xunhui |
| Author_xml | – sequence: 1 givenname: Xunhui surname: Zhang fullname: Zhang, Xunhui organization: National University of Defense Technology – sequence: 2 givenname: Yue orcidid: 0000-0002-9865-2212 surname: Yu fullname: Yu, Yue email: yuyue@nudt.edu.cn organization: National University of Defense Technology – sequence: 3 givenname: Tao surname: Wang fullname: Wang, Tao organization: National University of Defense Technology – sequence: 4 givenname: Ayushi surname: Rastogi fullname: Rastogi, Ayushi organization: University of Groningen – sequence: 5 givenname: Huaimin surname: Wang fullname: Wang, Huaimin organization: National University of Defense Technology |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8LnqOT_11vUrQKBT3oOaTZrKRss2uyrfbbG7uC4KGnmcP7zXvzJmgU2uAQuiRwTQDUTSIgJcdAKSZAOMP8BI2JUAwrSeQo72xGMaNCnqFJSmsAKBUXYyRetk1TRPexdakvGtO7YPeF--oa44OrbgsTCrfpfPTWNEW7c3Hn3ec5Oq1Nk9zF75yit4f71_kjXj4vnuZ3S2yZZD3O_jUpGQioKmJKQ9VKGWBkxXipyopJQ4ELC3UFpeOVMPkLa1VNjDBOWMGm6Gq428X2kFCv220M2VJTOeMMWMlIVs0GlY1tStHV2vre9L4NfTS-0QT0T0l6KEnnkvShJM0zSv-hXfQbE_fHITZAKYvDu4t_qY5Q31-2elM |
| CitedBy_id | crossref_primary_10_1007_s10664_024_10526_9 crossref_primary_10_1016_j_jss_2024_112287 crossref_primary_10_1145_3624739 crossref_primary_10_1007_s10664_022_10143_4 crossref_primary_10_1109_TSE_2024_3443741 crossref_primary_10_1007_s10664_023_10336_5 crossref_primary_10_1109_ACCESS_2025_3603148 crossref_primary_10_1007_s10664_023_10327_6 crossref_primary_10_1002_smr_2746 |
| Cites_doi | 10.1145/3183519.3183542 10.1145/2597073.2597076 10.1007/s11432-016-5595-8 10.1109/AGILE.2010.18 10.1109/APSEC.2014.58 10.1109/ICMLA.2015.41 10.1109/WCRE.2012.54 10.1016/j.infsof.2011.07.001 10.1145/3379597.3387478 10.1007/s10664-022-10143-4 10.1109/SANER.2019.8667996 10.1016/j.jss.2021.110911 10.1145/2568225.2568315 10.1007/s10664-015-9366-8 10.1145/3183519.3183525 10.1109/SEAA.2011.71 10.1145/3274451 10.1109/ICSE.2013.6606617 10.1145/3379597.3387489 10.1109/ESEM.2017.19 10.1016/j.infsof.2016.10.006 10.1145/2804381.2804385 10.1145/3338906.3340457 10.1111/j.2041-210x.2012.00261.x 10.1109/ESEM.2017.7 10.1109/ICSE.2015.55 10.1145/2635868.2661675 10.1109/ICSME52107.2021.00075 10.1145/2020390.2020399 10.1145/2970276.2970358 10.1109/CISE.2009.5364706 10.1109/ICSE.2019.00079 10.1109/ASE.2019.00026 10.1145/3195836.3195858 10.5281/zenodo.5105117 10.1109/APSEC.2014.57 10.1109/ICAIBD.2018.8396204 10.1109/MSR.2015.42 10.1145/3361242.3361254 10.4324/9780203774441 10.1109/MSR.2015.40 10.1145/2568225.2568260 10.1109/ASE.2017.8115619 10.1109/ICITM48982.2020.9080362 10.1109/WICT.2012.6409253 10.1145/3377811.3380410 10.1016/j.infsof.2017.06.002 10.1109/MSR.2013.6624016 10.1145/2695664.2695856 10.1145/2652524.2652544 10.1109/VLHCC.2017.8103456 10.1145/3196398.3196421 10.1145/2372251.2372257 10.1145/3196398.3196455 10.1109/ACCESS.2019.2928566 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
| DOI | 10.1007/s10664-022-10143-4 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7616 |
| ExternalDocumentID | 10_1007_s10664_022_10143_4 |
| GrantInformation_xml | – fundername: National Grand R&D Plan grantid: 2020AAA0103504 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 8FD DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-573f193050dd1a9a27b7a031b34979d36a2045c0fd09e4d5a106cc7f1a5ae5c53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820630300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-3256 |
| IngestDate | Tue Dec 02 16:28:26 EST 2025 Sat Nov 29 05:37:46 EST 2025 Tue Nov 18 22:36:06 EST 2025 Fri Feb 21 02:44:38 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Distributed software development Pull request latency GitHub Pull-based development |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-573f193050dd1a9a27b7a031b34979d36a2045c0fd09e4d5a106cc7f1a5ae5c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9865-2212 |
| OpenAccessLink | https://research.rug.nl/en/publications/885064d6-a684-4eb9-8b59-6e6df2985dd6 |
| PQID | 2684303931 |
| PQPubID | 326341 |
| ParticipantIDs | proquest_journals_2684303931 crossref_citationtrail_10_1007_s10664_022_10143_4 crossref_primary_10_1007_s10664_022_10143_4 springer_journals_10_1007_s10664_022_10143_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Empirical software engineering : an international journal |
| PublicationTitleAbbrev | Empir Software Eng |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | LiZYuYWangTYinGWangHAre you still working on this an empirical study on pull request abandonmentIEEE Trans Softw Eng2021PP9911 Overney C, Meinicke J, Kstner C, Vasilescu B (2020) How to not get rich: an empirical study of donations in open source. In: ICSE ’20: 42nd international conference on software engineering Soares D M, de Lima Júnior ML, Murta L, Plastino A (2015) Acceptance factors of pull requests in open-source projects. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Association for Computing Machinery, New York, NY, USA, SAC ’15. https://doi.org/10.1145/2695664.2695856, pp 1541–1546 Wang Q, Xu B, Xia X, Wang T, Li S (2019) Duplicate pull request detection: When time matters. In: Proceedings of the 11th Asia-Pacific Symposium on Internetware, pp 1–10 Maddila C, Upadrasta S S, Bansal C, Nagappan N, Gousios G, van Deursen A (2020) Nudge: Accelerating overdue pull requests towards completion. arXiv:2011.12468 Singh D, Sekar V R, Stolee K T, Johnson B (2017) Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC) Zhang X, Yu Y, Gousios G, Rastogi A (2021) Pull request decision explained: An empirical overview Gousios G, Zaidman A, Storey M, V Deursen A (2015) Work practices and challenges in pull-based development: The integrator’s perspective. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1, pp 358–368 WesselMDe SouzaBMSteinmacherIWieseISPolatoIChavesAPGerosaMAThe power of bots: Characterizing and understanding bots in oss projectsProceedings of the ACM on Human-Computer Interaction20182CSCW11910.1145/3274451 BaysalOKononenkoOHolmesRGodfreyMWInvestigating technical and non-technical factors influencing modern code reviewEmpir Softw Eng201621393295910.1007/s10664-015-9366-8https://doi.org/10.1007/s10664-015-9366-8 Cassee N, Kitsanelis C, Constantinou E, Serebrenik A (2021) Human, bot or both? a study on the capabilities of classification models on mixed accounts. In: 2021 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 654–658 Soares DM, DLJúnior ML, Murta L, Plastino A (2015) Rejection factors of pull requests filed by core team developers in software projects with high acceptance rates. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp 960–965 Altaleb A, Altherwi M, Gravell A (2020) An industrial investigation into effort estimation predictors for mobile app development in agile processes. In: 2020 9th international conference on industrial technology and management (ICITM). IEEE, pp 291–296 Atkins M (2012) Gerrit code review, or github’s fork and pull model?. https://softwareengineering.stackexchange.com/questions/173262/gerrit-code-review-or-githubs-fork-and-pull-model [Online; accessed 4-November-2021] Baysal O, Kononenko O, Holmes R, Godfrey M W (2012) The secret life of patches: A firefox case study. In: 2012 19th working conference on reverse engineering, pp 447–455 Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: An empirical investigation. In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement, Association for Computing Machinery, ESEM ’14, New York, NY, USA. https://doi.org/10.1145/2652524.2652544 CohenJStatistical power analysis for the behavioral sciences1969CambridgeAcademic Press0747.62110 Gerrit (2013) Gerritforge blog - git and gerrit code review supported and delivered to your enterprise. https://gitenterprise.me/2013/10/17/gerrit-code-review-or-githubs-fork-and-pull-take-both/ [Online; accessed 4-November-2021] CohenJCohenPWestSGAikenLSApplied multiple regression/correlation analysis for the behavioral sciences2013LondonRoutledge10.4324/9780203774441 Hall DB (2009) Data analysis using regression and multilevel/hierarchical models. J Am Stat Assoc Liu Z, Xia X, Treude C, Lo D, Li S (2019) Automatic generation of pull request descriptions. In: 2019 34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 176–188 Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and characterizing bots that commit code. In: Proceedings of the 17th international conference on mining software repositories, pp 209–219 Hechtl C (2020) On the influence of developer coreness on patch acceptance: A survival analysis Zhang X, Rastogi A, Yu Y (2020) Technical Report. https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/technical_report.pdf [Online; accessed 3-March-2021] Ecplise (2011) Mylyn reviews. https://projects.eclipse.org/projects/mylyn.reviews [Online; accessed 4-November-2021] Fan Q, Yu Y, Yin G, Wang T, Wang H (2017) Where is the road for issue reports classification based on text mining?. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM). IEEE, pp 121–130 Hu D, Wang T, Chang J, Zhang Y, Yin G (2018) Bugs and features, do developers treat them differently? 250–255 JingJYunYHeJBlancXLiZWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based development - sciencedirectInform Softw Technol201784C486210.1016/j.infsof.2016.10.006 Lenarduzzi V (2015) Could social factors influence the effort software estimation?. In: Proceedings of the 7th international workshop on social software engineering, pp 21–24 Zhang X, Rastogi A, Yu Y (2020) On the shoulders of giants: A new dataset for pull-based development research. In: Proceedings of the 17th international conference on mining software repositories, pp 543–547 Gerrit (2021) Gerrit code review. https://www.gerritcodereview.com/ [Online; accessed 4-November-2021] Gousios G, Pinzger M, Deursen A (2014) An exploratory study of the pull-based software development model. In: Proceedings of the 36th international conference on software engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568260, pp 345–355 McIntosh S, Kamei Y, Adams B, Hassan A E (2014) The impact of code review coverage and code review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th working conference on mining software repositories, pp 192–201 Bernardo J H, Alencar da Costa D, Kulesza U (2018) Studying the impact of adopting continuous integration on the delivery time of pull requests. In: 2018 IEEE/ACM 15th international conference on mining software repositories (MSR), pp 131–141 Jiang Y, Adams B, German D M (2013) Will my patch make it? and how fast? case study on the linux kernel. In: 2013 10th Working conference on mining software repositories (MSR), pp 101–110 Bernhart M, Mauczka A, Grechenig T (2010) Adopting code reviews for agile software development. In: 2010 Agile Conference. IEEE, pp 44–47 Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration in open-source projects. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 426–437 YuYYinGWangTYangCWangHDeterminants of pull-based development in the context of continuous integrationSci China Inform Sci201659808010410.1007/s11432-016-5595-8https://doi.org/10.1007/s11432-016-5595-8 Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in github. In: Proceedings of the 36th International Conference on Software Engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568315, pp 356–366 LangsrudOAnova for unbalanced data: Use type ii instead of type iii sums of squares2003AmsterdamKluwer Academic Publishers Vogel L (2020) Gerrit code review - tutorial. https://www.vogella.com/tutorials/Gerrit/article.html [Online; accessed 4-November-2021] Golzadeh M, Decan A, Mens T (2021) Evaluating a bot detection model on git commit messages. arXiv:2103.11779 Yu Y, Wang H, Yin G, Ling C X (2014) Who should review this pull-request: Reviewer recommendation to expedite crowd collaboration. In: 2014 21st Asia-Pacific software engineering conference, vol 1, pp 335–342 SehraSKBrarYSKaurNSehraSSResearch patterns and trends in software effort estimationInf Softw Technol20179112110.1016/j.infsof.2017.06.002 JiangJYangYHeJBlancXZhangLWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based developmentInf Softw Technol201784486210.1016/j.infsof.2016.10.006 Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018) Studying pull request merges: A case study of shopify’s active merchant. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183542, pp 124–133 Jalali S, Wohlin C (2012) Systematic literature studies: Database searches vs. backward snowballing. In: Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineering and measurement, pp 29–38 Pinto G, Dias L F, Steinmacher I (2018) Who gets a patch accepted first? comparing the contributions of employees and volunteers. In: Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering. Association for Computing Machinery, New York, NY, USA, CHASE ’18. https://doi.org/10.1145/3195836.3195858, pp 110–113 Minku LL, Yao X (2011) A principled evaluation of ensembles of learning machines for software effort estimation. In: Proceedings of the 7th international conference on predictive models in software engineering, pp 1–10 Zampetti F, Bavota G, Canfora G, Penta M D (2019) A study on the interplay between pull request review and continuous integration builds. In: 2019 IEEE 26th international conference on software analysis, evolution and r 10143_CR38 10143_CR39 10143_CR36 A Trendowicz (10143_CR54) 2014; 12 J Jiang (10143_CR28) 2019; 7 M Jørgensen (10143_CR33) 2011; 53 J Jiang (10143_CR29) 2017; 84 M Wessel (10143_CR60) 2018; 2 J Cohen (10143_CR11) 2013 10143_CR41 10143_CR42 10143_CR45 10143_CR43 10143_CR44 10143_CR27 10143_CR25 10143_CR69 10143_CR26 SK Sehra (10143_CR50) 2017; 91 10143_CR70 10143_CR71 10143_CR30 Z Li (10143_CR40) 2021; PP 10143_CR72 10143_CR34 10143_CR35 10143_CR32 10143_CR6 10143_CR16 10143_CR17 10143_CR8 10143_CR14 10143_CR58 10143_CR7 10143_CR15 10143_CR59 10143_CR9 10143_CR19 10143_CR2 10143_CR1 10143_CR4 10143_CR3 Y Yu (10143_CR64) 2016; 59 S Nakagawa (10143_CR46) 2013; 4 O Langsrud (10143_CR37) 2003 10143_CR63 10143_CR20 10143_CR61 10143_CR62 10143_CR23 10143_CR67 10143_CR24 10143_CR68 10143_CR21 10143_CR65 10143_CR22 10143_CR66 J Cohen (10143_CR10) 1969 10143_CR49 10143_CR47 10143_CR48 O Baysal (10143_CR5) 2016; 21 J Jing (10143_CR31) 2017; 84 M Golzadeh (10143_CR18) 2021; 175 10143_CR52 10143_CR53 10143_CR51 10143_CR12 10143_CR56 10143_CR13 10143_CR57 10143_CR55 |
| References_xml | – reference: BaysalOKononenkoOHolmesRGodfreyMWInvestigating technical and non-technical factors influencing modern code reviewEmpir Softw Eng201621393295910.1007/s10664-015-9366-8https://doi.org/10.1007/s10664-015-9366-8 – reference: Wang F, Yang X, Zhu X, Chen L (2009) Extended use case points method for software cost estimation. In: 2009 International conference on computational intelligence and software engineering. IEEE, pp 1–5 – reference: JingJYunYHeJBlancXLiZWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based development - sciencedirectInform Softw Technol201784C486210.1016/j.infsof.2016.10.006 – reference: Gerrit (2021) Gerrit code review. https://www.gerritcodereview.com/ [Online; accessed 4-November-2021] – reference: Zhang X, Yu Y, Wang T, Rastogi A, Wang H (2021) Dataset for ESE submission “Pull Request Latency Explained: An Empirical Overview”. https://doi.org/10.5281/zenodo.5105117 – reference: Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering – reference: Atkins M (2012) Gerrit code review, or github’s fork and pull model?. https://softwareengineering.stackexchange.com/questions/173262/gerrit-code-review-or-githubs-fork-and-pull-model [Online; accessed 4-November-2021] – reference: Minku LL, Yao X (2011) A principled evaluation of ensembles of learning machines for software effort estimation. In: Proceedings of the 7th international conference on predictive models in software engineering, pp 1–10 – reference: Gousios G, Zaidman A, Storey M, V Deursen A (2015) Work practices and challenges in pull-based development: The integrator’s perspective. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1, pp 358–368 – reference: Hechtl C (2020) On the influence of developer coreness on patch acceptance: A survival analysis – reference: Maddila C, Bansal C, Nagappan N (2019) Predicting pull request completion time: a case study on large scale cloud services. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 874–882 – reference: Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: 2013 35th international conference on software engineering (ICSE). IEEE, pp 712–721 – reference: Singh D, Sekar V R, Stolee K T, Johnson B (2017) Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC) – reference: Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and characterizing bots that commit code. In: Proceedings of the 17th international conference on mining software repositories, pp 209–219 – reference: YuYYinGWangTYangCWangHDeterminants of pull-based development in the context of continuous integrationSci China Inform Sci201659808010410.1007/s11432-016-5595-8https://doi.org/10.1007/s11432-016-5595-8 – reference: Ecplise (2011) Mylyn reviews. https://projects.eclipse.org/projects/mylyn.reviews [Online; accessed 4-November-2021] – reference: Jalali S, Wohlin C (2012) Systematic literature studies: Database searches vs. backward snowballing. In: Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineering and measurement, pp 29–38 – reference: Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018) Studying pull request merges: A case study of shopify’s active merchant. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183542, pp 124–133 – reference: Cassee N, Kitsanelis C, Constantinou E, Serebrenik A (2021) Human, bot or both? a study on the capabilities of classification models on mixed accounts. In: 2021 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 654–658 – reference: Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration in open-source projects. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 426–437 – reference: Zhang X, Yu Y, Gousios G, Rastogi A (2021) Pull request decision explained: An empirical overview – reference: Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in github. In: Proceedings of the 36th International Conference on Software Engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568315, pp 356–366 – reference: Bernardo J H, Alencar da Costa D, Kulesza U (2018) Studying the impact of adopting continuous integration on the delivery time of pull requests. In: 2018 IEEE/ACM 15th international conference on mining software repositories (MSR), pp 131–141 – reference: Kocaguneli E, Misirli A T, Caglayan B, Bener A (2011) Experiences on developer participation and effort estimation. In: 2011 37th EUROMICRO conference on software engineering and advanced applications. IEEE, pp 419–422 – reference: JiangJMohamedAZhangLWhat are the characteristics of reopened pull requests? a case study on open source projects in githubIEEE Access2019710275110276110.1109/ACCESS.2019.2928566 – reference: Overney C, Meinicke J, Kstner C, Vasilescu B (2020) How to not get rich: an empirical study of donations in open source. In: ICSE ’20: 42nd international conference on software engineering – reference: Vogel L (2020) Gerrit code review - tutorial. https://www.vogella.com/tutorials/Gerrit/article.html [Online; accessed 4-November-2021] – reference: Soares DM, DLJúnior ML, Murta L, Plastino A (2015) Rejection factors of pull requests filed by core team developers in software projects with high acceptance rates. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp 960–965 – reference: Jiang Y, Adams B, German D M (2013) Will my patch make it? and how fast? case study on the linux kernel. In: 2013 10th Working conference on mining software repositories (MSR), pp 101–110 – reference: LangsrudOAnova for unbalanced data: Use type ii instead of type iii sums of squares2003AmsterdamKluwer Academic Publishers – reference: Yu Y, Wang H, Yin G, Ling C X (2014) Who should review this pull-request: Reviewer recommendation to expedite crowd collaboration. In: 2014 21st Asia-Pacific software engineering conference, vol 1, pp 335–342 – reference: Lee A, Carver J C (2017) Are one-time contributors different? a comparison to core and periphery developers in floss repositories. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–10 – reference: Hall DB (2009) Data analysis using regression and multilevel/hierarchical models. J Am Stat Assoc – reference: Soares D M, de Lima Júnior ML, Murta L, Plastino A (2015) Acceptance factors of pull requests in open-source projects. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Association for Computing Machinery, New York, NY, USA, SAC ’15. https://doi.org/10.1145/2695664.2695856, pp 1541–1546 – reference: CohenJStatistical power analysis for the behavioral sciences1969CambridgeAcademic Press0747.62110 – reference: Gousios G, Pinzger M, Deursen A (2014) An exploratory study of the pull-based software development model. In: Proceedings of the 36th international conference on software engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568260, pp 345–355 – reference: Golzadeh M, Decan A, Mens T (2021) Evaluating a bot detection model on git commit messages. arXiv:2103.11779 – reference: Baysal O, Kononenko O, Holmes R, Godfrey M W (2012) The secret life of patches: A firefox case study. In: 2012 19th working conference on reverse engineering, pp 447–455 – reference: SehraSKBrarYSKaurNSehraSSResearch patterns and trends in software effort estimationInf Softw Technol20179112110.1016/j.infsof.2017.06.002 – reference: v. d. Veen E, Gousios G, Zaidman A (2015) Automatically prioritizing pull requests. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 357–361 – reference: Pinto G, Dias L F, Steinmacher I (2018) Who gets a patch accepted first? comparing the contributions of employees and volunteers. In: Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering. Association for Computing Machinery, New York, NY, USA, CHASE ’18. https://doi.org/10.1145/3195836.3195858, pp 110–113 – reference: Zampetti F, Bavota G, Canfora G, Penta M D (2019) A study on the interplay between pull request review and continuous integration builds. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering (SANER), pp 38–48 – reference: TrendowiczAJefferyRSoftware project effort estimationFoundations and Best Practice Guidelines for Success, Constructive Cost Model–COCOMO pags201412277293 – reference: Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: An empirical investigation. In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement, Association for Computing Machinery, ESEM ’14, New York, NY, USA. https://doi.org/10.1145/2652524.2652544 – reference: Sadowski C, Söderberg E, Church L, Sipko M, Bacchelli A (2018) Modern code review: A case study at google. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183525, pp 181–190 – reference: Gerrit (2013) Gerritforge blog - git and gerrit code review supported and delivered to your enterprise. https://gitenterprise.me/2013/10/17/gerrit-code-review-or-githubs-fork-and-pull-take-both/ [Online; accessed 4-November-2021] – reference: Liu Z, Xia X, Treude C, Lo D, Li S (2019) Automatic generation of pull request descriptions. In: 2019 34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 176–188 – reference: JiangJYangYHeJBlancXZhangLWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based developmentInf Softw Technol201784486210.1016/j.infsof.2016.10.006 – reference: GolzadehMDecanALegayDMensTA ground-truth dataset and classification model for detecting bots in github issue and pr commentsJ Syst Softw202117511091110.1016/j.jss.2021.110911 – reference: WesselMDe SouzaBMSteinmacherIWieseISPolatoIChavesAPGerosaMAThe power of bots: Characterizing and understanding bots in oss projectsProceedings of the ACM on Human-Computer Interaction20182CSCW11910.1145/3274451 – reference: Zhang T, Song M, Kim M (2014) Critics: An interactive code review tool for searching and inspecting systematic changes. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 755–758 – reference: Maddila C, Upadrasta S S, Bansal C, Nagappan N, Gousios G, van Deursen A (2020) Nudge: Accelerating overdue pull requests towards completion. arXiv:2011.12468 – reference: Zhang Y, Yin G, Yu Y, Wang H (2014) A exploratory study of@-mention in github’s pull-requests. In: 2014 21st Asia-Pacific software engineering conference, vol 1. IEEE, pp 343–350 – reference: LiZYuYWangTYinGWangHAre you still working on this an empirical study on pull request abandonmentIEEE Trans Softw Eng2021PP9911 – reference: Yu Y, Li Z, Yin G, Wang T, Wang H (2018) A dataset of duplicate pull-requests in github. In: Proceedings of the 15th International Conference on Mining Software Repositories, pp 22–25 – reference: Jones J S (2019) Learn to use the eta coefficient test in spss with data from the niosh quality of worklife survey (2014) – reference: Lenarduzzi V (2015) Could social factors influence the effort software estimation?. In: Proceedings of the 7th international workshop on social software engineering, pp 21–24 – reference: NakagawaSSchielzethHA general and simple method for obtaining r2 from generalized linear mixed-effects modelsMethods in Ecology and Evolution20134213314210.1111/j.2041-210x.2012.00261.x – reference: Wang Q, Xu B, Xia X, Wang T, Li S (2019) Duplicate pull request detection: When time matters. In: Proceedings of the 11th Asia-Pacific Symposium on Internetware, pp 1–10 – reference: JørgensenMContrasting ideal and realistic conditions as a means to improve judgment-based software development effort estimationInf Softw Technol201153121382139010.1016/j.infsof.2011.07.001 – reference: Bernhart M, Mauczka A, Grechenig T (2010) Adopting code reviews for agile software development. In: 2010 Agile Conference. IEEE, pp 44–47 – reference: CohenJCohenPWestSGAikenLSApplied multiple regression/correlation analysis for the behavioral sciences2013LondonRoutledge10.4324/9780203774441 – reference: Imtiaz N, Middleton J, Chakraborty J, Robson N, Bai G, Murphy-Hill E (2019) Investigating the effects of gender bias on github. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), pp 700–711 – reference: Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: Determinants of pull request evaluation latency on github. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 367–371 – reference: Zhang X, Rastogi A, Yu Y (2020) Technical Report. https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/technical_report.pdf [Online; accessed 3-March-2021] – reference: Fan Q, Yu Y, Yin G, Wang T, Wang H (2017) Where is the road for issue reports classification based on text mining?. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM). IEEE, pp 121–130 – reference: Hu D, Wang T, Chang J, Zhang Y, Yin G (2018) Bugs and features, do developers treat them differently? 250–255 – reference: Dasheng X, Shenglan H (2012) Estimation of project costs based on fuzzy neural network. In: 2012 World congress on information and communication technologies. IEEE, pp 1177–1181 – reference: Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other software development practices: A large-scale empirical study. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), pp 60–71 – reference: McIntosh S, Kamei Y, Adams B, Hassan A E (2014) The impact of code review coverage and code review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th working conference on mining software repositories, pp 192–201 – reference: Zhang X, Rastogi A, Yu Y (2020) On the shoulders of giants: A new dataset for pull-based development research. In: Proceedings of the 17th international conference on mining software repositories, pp 543–547 – reference: Altaleb A, Altherwi M, Gravell A (2020) An industrial investigation into effort estimation predictors for mobile app development in agile processes. In: 2020 9th international conference on industrial technology and management (ICITM). IEEE, pp 291–296 – ident: 10143_CR36 doi: 10.1145/3183519.3183542 – ident: 10143_CR44 doi: 10.1145/2597073.2597076 – volume: 12 start-page: 277 year: 2014 ident: 10143_CR54 publication-title: Foundations and Best Practice Guidelines for Success, Constructive Cost Model–COCOMO pags – ident: 10143_CR23 – volume: 59 start-page: 080104 issue: 8 year: 2016 ident: 10143_CR64 publication-title: Sci China Inform Sci doi: 10.1007/s11432-016-5595-8 – ident: 10143_CR7 doi: 10.1109/AGILE.2010.18 – ident: 10143_CR71 doi: 10.1109/APSEC.2014.58 – ident: 10143_CR52 doi: 10.1109/ICMLA.2015.41 – ident: 10143_CR14 – ident: 10143_CR2 – ident: 10143_CR4 doi: 10.1109/WCRE.2012.54 – volume: 53 start-page: 1382 issue: 12 year: 2011 ident: 10143_CR33 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2011.07.001 – ident: 10143_CR13 doi: 10.1145/3379597.3387478 – ident: 10143_CR69 doi: 10.1007/s10664-022-10143-4 – ident: 10143_CR65 doi: 10.1109/SANER.2019.8667996 – volume: 175 start-page: 110911 year: 2021 ident: 10143_CR18 publication-title: J Syst Softw doi: 10.1016/j.jss.2021.110911 – ident: 10143_CR55 doi: 10.1145/2568225.2568315 – volume: 21 start-page: 932 issue: 3 year: 2016 ident: 10143_CR5 publication-title: Empir Softw Eng doi: 10.1007/s10664-015-9366-8 – ident: 10143_CR49 doi: 10.1145/3183519.3183525 – ident: 10143_CR35 doi: 10.1109/SEAA.2011.71 – volume: 2 start-page: 1 issue: CSCW year: 2018 ident: 10143_CR60 publication-title: Proceedings of the ACM on Human-Computer Interaction doi: 10.1145/3274451 – ident: 10143_CR3 doi: 10.1109/ICSE.2013.6606617 – ident: 10143_CR17 – ident: 10143_CR67 doi: 10.1145/3379597.3387489 – ident: 10143_CR34 – ident: 10143_CR15 doi: 10.1109/ESEM.2017.19 – volume: 84 start-page: 48 issue: C year: 2017 ident: 10143_CR31 publication-title: Inform Softw Technol doi: 10.1016/j.infsof.2016.10.006 – ident: 10143_CR39 doi: 10.1145/2804381.2804385 – ident: 10143_CR42 doi: 10.1145/3338906.3340457 – volume: 4 start-page: 133 issue: 2 year: 2013 ident: 10143_CR46 publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210x.2012.00261.x – ident: 10143_CR38 doi: 10.1109/ESEM.2017.7 – ident: 10143_CR20 doi: 10.1109/ICSE.2015.55 – volume-title: Statistical power analysis for the behavioral sciences year: 1969 ident: 10143_CR10 – ident: 10143_CR66 doi: 10.1145/2635868.2661675 – ident: 10143_CR9 doi: 10.1109/ICSME52107.2021.00075 – volume: PP start-page: 1 issue: 99 year: 2021 ident: 10143_CR40 publication-title: IEEE Trans Softw Eng – ident: 10143_CR45 doi: 10.1145/2020390.2020399 – ident: 10143_CR24 doi: 10.1145/2970276.2970358 – ident: 10143_CR58 doi: 10.1109/CISE.2009.5364706 – ident: 10143_CR26 doi: 10.1109/ICSE.2019.00079 – ident: 10143_CR41 doi: 10.1109/ASE.2019.00026 – ident: 10143_CR16 – ident: 10143_CR48 doi: 10.1145/3195836.3195858 – ident: 10143_CR70 doi: 10.5281/zenodo.5105117 – volume: 84 start-page: 48 year: 2017 ident: 10143_CR29 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2016.10.006 – ident: 10143_CR62 doi: 10.1109/APSEC.2014.57 – ident: 10143_CR25 doi: 10.1109/ICAIBD.2018.8396204 – ident: 10143_CR61 doi: 10.1109/MSR.2015.42 – ident: 10143_CR59 doi: 10.1145/3361242.3361254 – volume-title: Applied multiple regression/correlation analysis for the behavioral sciences year: 2013 ident: 10143_CR11 doi: 10.4324/9780203774441 – ident: 10143_CR56 doi: 10.1109/MSR.2015.40 – ident: 10143_CR21 doi: 10.1145/2568225.2568260 – ident: 10143_CR72 doi: 10.1109/ASE.2017.8115619 – ident: 10143_CR1 doi: 10.1109/ICITM48982.2020.9080362 – ident: 10143_CR12 doi: 10.1109/WICT.2012.6409253 – ident: 10143_CR47 doi: 10.1145/3377811.3380410 – ident: 10143_CR32 – ident: 10143_CR68 – volume: 91 start-page: 1 year: 2017 ident: 10143_CR50 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2017.06.002 – ident: 10143_CR30 doi: 10.1109/MSR.2013.6624016 – ident: 10143_CR53 doi: 10.1145/2695664.2695856 – ident: 10143_CR8 doi: 10.1145/2652524.2652544 – ident: 10143_CR51 doi: 10.1109/VLHCC.2017.8103456 – ident: 10143_CR43 – ident: 10143_CR19 – ident: 10143_CR6 doi: 10.1145/3196398.3196421 – ident: 10143_CR27 doi: 10.1145/2372251.2372257 – ident: 10143_CR57 – ident: 10143_CR22 – ident: 10143_CR63 doi: 10.1145/3196398.3196455 – volume: 7 start-page: 102751 year: 2019 ident: 10143_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2928566 – volume-title: Anova for unbalanced data: Use type ii instead of type iii sums of squares year: 2003 ident: 10143_CR37 |
| SSID | ssj0009745 |
| Score | 2.4295602 |
| Snippet | Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Compilers Computer Science Correlation Datasets Evaluation Interpreters Literature reviews Programming Languages Regression analysis Regression models Software development Software engineering Software Engineering/Programming and Operating Systems |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8abBtkmb1IiIOT2Ogwm7lNUlhMLe5TdH_3rwstSi4i-e2SXkvyfuSvPd9hJxro0ynUBErjBBMCAsMstK4PY9IlExAcm282ITq9TqDQdYPB27zkFZZrYl-oTYTjWfkV8hKwrGQNL6ZvjJUjcLb1SChsU42kCUh8al7jzXprvIixUizx7iL7aFoJpTOpalgmMuOarWciZ-BqUabvy5IfdzpNv_7xztkOyBOerscIrtkzY73SLNSc6Bhcu8T2Xe7UTqzvgs6AgTTn9R-TEfgkKi5pjCm9mU69JwiFDM_sf8D8ty9f7p7YEFUgWme8gWTipcOtEUyMiaGDBJVKHAzu-AiU5nhKSBBvY5KE2VWGAnOUFqrMgYJVmrJD0ljPBnbI0IBpIUstZ1Ex8KKstACsbqxzhXaIY8WiSuL5jowjqPwxSivuZLRC7nzQu69kIsWufj-Zrrk21j5drsyfR7m3jyv7d4il5Xz6sd_t3a8urUTspX48YLnL23SWMze7CnZ1O-L4Xx25kfeF8Py3EM priority: 102 providerName: ProQuest |
| Title | Pull request latency explained: an empirical overview |
| URI | https://link.springer.com/article/10.1007/s10664-022-10143-4 https://www.proquest.com/docview/2684303931 |
| Volume | 27 |
| WOSCitedRecordID | wos000820630300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7616 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009745 issn: 1382-3256 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnc-TgTQNtkzStN5UNT6NsKsNLSZMUBrOObYr-9yZZa1VU0EsvTUJ4L6_vS9973wM4kYqrKOMezhSlmFItsIhzZe48NOAsEIxI5ZpN8H4_Go3ipCwKm1fZ7lVI0n2pPxS7hSHFNvvc9pclmK7CmnF3kTXHwfCuptrlrjWxJdfDxHj0slTm-zU-u6MaY34Jizpv02v-b59bsFmiS3SxPA7bsKKLHWhWnRtQaci7wBJz80Qz7baBJsIC51ekX6YTYVCnOkeiQPphOnb8IchmedoIwh7c9ro3V9e4bKCAJQnJAjNOcgPQPOYp5YtYBDzjwlhxRmjMY0VCYcnopZcrL9ZUMWG2LiXPfcGEZpKRfWgUj4U-ACQE0yIOdRRIn2qaZ5JaXK60gQzSoIwW-JUcU1myi9smF5O05kW2ckmNXFInl5S24PR9znTJrfHr6HalnrS0s3lquWqILS_2W3BWqaN-_fNqh38bfgQbgdOo_ffShsZi9qSPYV0-L8bzWQfWLrv9ZNCxiaND80zYfcedyTeBANW2 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBb34FtdnDnrSYNskzVYQER8o6iKo4K2mSQoL67rurq8_5W80k20tCnrz4LltaPpNJzPJzPcBrGsjTT2TAc0M55Rzq6hKcuNyHh5JESnBtPFiE7LRqN_eJpdD8F72wmBZZekTvaM2Dxr3yLeRlYRhI2m413mkqBqFp6ulhMbALM7s24tL2Xq7p4cO340oOj66PjihhaoA1SxmfSoky13UEojAmFAlKpKZVM60M8YTmRgWK2Ro10FugsRyI5RLmrSWeaiEskKjSoRz-SMcvb8vFbyqSH6lF0VGWj_KXCxRNOkUrXpxzCnWzqM6LqP860JYRbffDmT9Onc8-d--0BRMFBE12R_8AtMwZNszMFmqVZDCec2CuHTZNulaPyXSUpgsvBH72mkpF2mbHaLaxN53mp4zhWBlK853Dm7-5OXnYbj90LYLQJQSViWxrUc65JbnmeaYixjrwiTtIqsahCWCqS4Y1VHYo5VWXNCIeupQTz3qKa_B5ucznQGfyK93L5dQp4Vv6aUVzjXYKo2luvzzaIu_j7YGYyfXF-fp-WnjbAnGI2-ruNe0DMP97pNdgVH93G_2uqve6gnc_bURfQDPejgL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5ERbz4FtdnDnrSYNskzVYQEXVRlGUPCuKlpkkKwrquu-vrr_nrzGRbi4LePHhuG5LOl8lMkvk-gE1tpKlnMqCZ4ZxybhVVSW5czsMjKSIlmDZebEI2m_Xr66Q1Au9lLQxeqyx9onfU5kHjHvkuspIwLCQNd_PiWkTruHHQfaSoIIUnraWcxhAi5_btxaVv_f2zY2frrShqnFwendJCYYBqFrMBFZLlLoIJRGBMqBIVyUwqB_OM8UQmhsUK2dp1kJsgsdwI5RIorWUeKqGs0KgY4dz_mHQ5JiZ-LXFTEf5KL5CMFH-UubiiKNgpyvbimFO8R49KuYzyr4tiFel-O5z1a15j-j__rRmYKiJtcjicGrMwYjtzMF2qWJDCqc2DaLmuk571wyNthUnEG7Gv3bZyEbjZI6pD7H33znOpELzximNfgKs_6fwijHYeOnYJiFLCqiS29UiH3PI80xxzFGNd-KRdxFWDsLRmqgumdRT8aKcVRzQiIHUISD0CUl6D7c9vukOekV_fXi3NnhY-p59WNq_BTgmc6vHPrS3_3toGTDjspBdnzfMVmIw8bHELahVGB70nuwbj-nlw1--t-wlA4PavMfQBHaBA7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pull+request+latency+explained%3A+an+empirical+overview&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Zhang%2C+Xunhui&rft.au=Yu%2C+Yue&rft.au=Wang%2C+Tao&rft.au=Rastogi%2C+Ayushi&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=6&rft_id=info:doi/10.1007%2Fs10664-022-10143-4&rft.externalDocID=10_1007_s10664_022_10143_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon |