Pull request latency explained: an empirical overview

Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Empirical software engineering : an international journal Ročník 27; číslo 6
Hlavní autori: Zhang, Xunhui, Yu, Yue, Wang, Tao, Rastogi, Ayushi, Wang, Huaimin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.11.2022
Springer Nature B.V
Predmet:
ISSN:1382-3256, 1573-7616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts.
AbstractList Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts.
ArticleNumber 126
Author Wang, Tao
Yu, Yue
Rastogi, Ayushi
Wang, Huaimin
Zhang, Xunhui
Author_xml – sequence: 1
  givenname: Xunhui
  surname: Zhang
  fullname: Zhang, Xunhui
  organization: National University of Defense Technology
– sequence: 2
  givenname: Yue
  orcidid: 0000-0002-9865-2212
  surname: Yu
  fullname: Yu, Yue
  email: yuyue@nudt.edu.cn
  organization: National University of Defense Technology
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: National University of Defense Technology
– sequence: 4
  givenname: Ayushi
  surname: Rastogi
  fullname: Rastogi, Ayushi
  organization: University of Groningen
– sequence: 5
  givenname: Huaimin
  surname: Wang
  fullname: Wang, Huaimin
  organization: National University of Defense Technology
BookMark eNp9kE9LAzEQxYNUsK1-AU8LnqOT_11vUrQKBT3oOaTZrKRss2uyrfbbG7uC4KGnmcP7zXvzJmgU2uAQuiRwTQDUTSIgJcdAKSZAOMP8BI2JUAwrSeQo72xGMaNCnqFJSmsAKBUXYyRetk1TRPexdakvGtO7YPeF--oa44OrbgsTCrfpfPTWNEW7c3Hn3ec5Oq1Nk9zF75yit4f71_kjXj4vnuZ3S2yZZD3O_jUpGQioKmJKQ9VKGWBkxXipyopJQ4ELC3UFpeOVMPkLa1VNjDBOWMGm6Gq428X2kFCv220M2VJTOeMMWMlIVs0GlY1tStHV2vre9L4NfTS-0QT0T0l6KEnnkvShJM0zSv-hXfQbE_fHITZAKYvDu4t_qY5Q31-2elM
CitedBy_id crossref_primary_10_1007_s10664_024_10526_9
crossref_primary_10_1016_j_jss_2024_112287
crossref_primary_10_1145_3624739
crossref_primary_10_1007_s10664_022_10143_4
crossref_primary_10_1109_TSE_2024_3443741
crossref_primary_10_1007_s10664_023_10336_5
crossref_primary_10_1109_ACCESS_2025_3603148
crossref_primary_10_1007_s10664_023_10327_6
crossref_primary_10_1002_smr_2746
Cites_doi 10.1145/3183519.3183542
10.1145/2597073.2597076
10.1007/s11432-016-5595-8
10.1109/AGILE.2010.18
10.1109/APSEC.2014.58
10.1109/ICMLA.2015.41
10.1109/WCRE.2012.54
10.1016/j.infsof.2011.07.001
10.1145/3379597.3387478
10.1007/s10664-022-10143-4
10.1109/SANER.2019.8667996
10.1016/j.jss.2021.110911
10.1145/2568225.2568315
10.1007/s10664-015-9366-8
10.1145/3183519.3183525
10.1109/SEAA.2011.71
10.1145/3274451
10.1109/ICSE.2013.6606617
10.1145/3379597.3387489
10.1109/ESEM.2017.19
10.1016/j.infsof.2016.10.006
10.1145/2804381.2804385
10.1145/3338906.3340457
10.1111/j.2041-210x.2012.00261.x
10.1109/ESEM.2017.7
10.1109/ICSE.2015.55
10.1145/2635868.2661675
10.1109/ICSME52107.2021.00075
10.1145/2020390.2020399
10.1145/2970276.2970358
10.1109/CISE.2009.5364706
10.1109/ICSE.2019.00079
10.1109/ASE.2019.00026
10.1145/3195836.3195858
10.5281/zenodo.5105117
10.1109/APSEC.2014.57
10.1109/ICAIBD.2018.8396204
10.1109/MSR.2015.42
10.1145/3361242.3361254
10.4324/9780203774441
10.1109/MSR.2015.40
10.1145/2568225.2568260
10.1109/ASE.2017.8115619
10.1109/ICITM48982.2020.9080362
10.1109/WICT.2012.6409253
10.1145/3377811.3380410
10.1016/j.infsof.2017.06.002
10.1109/MSR.2013.6624016
10.1145/2695664.2695856
10.1145/2652524.2652544
10.1109/VLHCC.2017.8103456
10.1145/3196398.3196421
10.1145/2372251.2372257
10.1145/3196398.3196455
10.1109/ACCESS.2019.2928566
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-022-10143-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_022_10143_4
GrantInformation_xml – fundername: National Grand R&D Plan
  grantid: 2020AAA0103504
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-573f193050dd1a9a27b7a031b34979d36a2045c0fd09e4d5a106cc7f1a5ae5c53
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820630300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 16:28:26 EST 2025
Sat Nov 29 05:37:46 EST 2025
Tue Nov 18 22:36:06 EST 2025
Fri Feb 21 02:44:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Distributed software development
Pull request latency
GitHub
Pull-based development
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-573f193050dd1a9a27b7a031b34979d36a2045c0fd09e4d5a106cc7f1a5ae5c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9865-2212
OpenAccessLink https://research.rug.nl/en/publications/885064d6-a684-4eb9-8b59-6e6df2985dd6
PQID 2684303931
PQPubID 326341
ParticipantIDs proquest_journals_2684303931
crossref_citationtrail_10_1007_s10664_022_10143_4
crossref_primary_10_1007_s10664_022_10143_4
springer_journals_10_1007_s10664_022_10143_4
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiZYuYWangTYinGWangHAre you still working on this an empirical study on pull request abandonmentIEEE Trans Softw Eng2021PP9911
Overney C, Meinicke J, Kstner C, Vasilescu B (2020) How to not get rich: an empirical study of donations in open source. In: ICSE ’20: 42nd international conference on software engineering
Soares D M, de Lima Júnior ML, Murta L, Plastino A (2015) Acceptance factors of pull requests in open-source projects. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Association for Computing Machinery, New York, NY, USA, SAC ’15. https://doi.org/10.1145/2695664.2695856, pp 1541–1546
Wang Q, Xu B, Xia X, Wang T, Li S (2019) Duplicate pull request detection: When time matters. In: Proceedings of the 11th Asia-Pacific Symposium on Internetware, pp 1–10
Maddila C, Upadrasta S S, Bansal C, Nagappan N, Gousios G, van Deursen A (2020) Nudge: Accelerating overdue pull requests towards completion. arXiv:2011.12468
Singh D, Sekar V R, Stolee K T, Johnson B (2017) Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC)
Zhang X, Yu Y, Gousios G, Rastogi A (2021) Pull request decision explained: An empirical overview
Gousios G, Zaidman A, Storey M, V Deursen A (2015) Work practices and challenges in pull-based development: The integrator’s perspective. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1, pp 358–368
WesselMDe SouzaBMSteinmacherIWieseISPolatoIChavesAPGerosaMAThe power of bots: Characterizing and understanding bots in oss projectsProceedings of the ACM on Human-Computer Interaction20182CSCW11910.1145/3274451
BaysalOKononenkoOHolmesRGodfreyMWInvestigating technical and non-technical factors influencing modern code reviewEmpir Softw Eng201621393295910.1007/s10664-015-9366-8https://doi.org/10.1007/s10664-015-9366-8
Cassee N, Kitsanelis C, Constantinou E, Serebrenik A (2021) Human, bot or both? a study on the capabilities of classification models on mixed accounts. In: 2021 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 654–658
Soares DM, DLJúnior ML, Murta L, Plastino A (2015) Rejection factors of pull requests filed by core team developers in software projects with high acceptance rates. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp 960–965
Altaleb A, Altherwi M, Gravell A (2020) An industrial investigation into effort estimation predictors for mobile app development in agile processes. In: 2020 9th international conference on industrial technology and management (ICITM). IEEE, pp 291–296
Atkins M (2012) Gerrit code review, or github’s fork and pull model?. https://softwareengineering.stackexchange.com/questions/173262/gerrit-code-review-or-githubs-fork-and-pull-model [Online; accessed 4-November-2021]
Baysal O, Kononenko O, Holmes R, Godfrey M W (2012) The secret life of patches: A firefox case study. In: 2012 19th working conference on reverse engineering, pp 447–455
Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: An empirical investigation. In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement, Association for Computing Machinery, ESEM ’14, New York, NY, USA. https://doi.org/10.1145/2652524.2652544
CohenJStatistical power analysis for the behavioral sciences1969CambridgeAcademic Press0747.62110
Gerrit (2013) Gerritforge blog - git and gerrit code review supported and delivered to your enterprise. https://gitenterprise.me/2013/10/17/gerrit-code-review-or-githubs-fork-and-pull-take-both/ [Online; accessed 4-November-2021]
CohenJCohenPWestSGAikenLSApplied multiple regression/correlation analysis for the behavioral sciences2013LondonRoutledge10.4324/9780203774441
Hall DB (2009) Data analysis using regression and multilevel/hierarchical models. J Am Stat Assoc
Liu Z, Xia X, Treude C, Lo D, Li S (2019) Automatic generation of pull request descriptions. In: 2019 34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 176–188
Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and characterizing bots that commit code. In: Proceedings of the 17th international conference on mining software repositories, pp 209–219
Hechtl C (2020) On the influence of developer coreness on patch acceptance: A survival analysis
Zhang X, Rastogi A, Yu Y (2020) Technical Report. https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/technical_report.pdf [Online; accessed 3-March-2021]
Ecplise (2011) Mylyn reviews. https://projects.eclipse.org/projects/mylyn.reviews [Online; accessed 4-November-2021]
Fan Q, Yu Y, Yin G, Wang T, Wang H (2017) Where is the road for issue reports classification based on text mining?. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM). IEEE, pp 121–130
Hu D, Wang T, Chang J, Zhang Y, Yin G (2018) Bugs and features, do developers treat them differently? 250–255
JingJYunYHeJBlancXLiZWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based development - sciencedirectInform Softw Technol201784C486210.1016/j.infsof.2016.10.006
Lenarduzzi V (2015) Could social factors influence the effort software estimation?. In: Proceedings of the 7th international workshop on social software engineering, pp 21–24
Zhang X, Rastogi A, Yu Y (2020) On the shoulders of giants: A new dataset for pull-based development research. In: Proceedings of the 17th international conference on mining software repositories, pp 543–547
Gerrit (2021) Gerrit code review. https://www.gerritcodereview.com/ [Online; accessed 4-November-2021]
Gousios G, Pinzger M, Deursen A (2014) An exploratory study of the pull-based software development model. In: Proceedings of the 36th international conference on software engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568260, pp 345–355
McIntosh S, Kamei Y, Adams B, Hassan A E (2014) The impact of code review coverage and code review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th working conference on mining software repositories, pp 192–201
Bernardo J H, Alencar da Costa D, Kulesza U (2018) Studying the impact of adopting continuous integration on the delivery time of pull requests. In: 2018 IEEE/ACM 15th international conference on mining software repositories (MSR), pp 131–141
Jiang Y, Adams B, German D M (2013) Will my patch make it? and how fast? case study on the linux kernel. In: 2013 10th Working conference on mining software repositories (MSR), pp 101–110
Bernhart M, Mauczka A, Grechenig T (2010) Adopting code reviews for agile software development. In: 2010 Agile Conference. IEEE, pp 44–47
Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration in open-source projects. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 426–437
YuYYinGWangTYangCWangHDeterminants of pull-based development in the context of continuous integrationSci China Inform Sci201659808010410.1007/s11432-016-5595-8https://doi.org/10.1007/s11432-016-5595-8
Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in github. In: Proceedings of the 36th International Conference on Software Engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568315, pp 356–366
LangsrudOAnova for unbalanced data: Use type ii instead of type iii sums of squares2003AmsterdamKluwer Academic Publishers
Vogel L (2020) Gerrit code review - tutorial. https://www.vogella.com/tutorials/Gerrit/article.html [Online; accessed 4-November-2021]
Golzadeh M, Decan A, Mens T (2021) Evaluating a bot detection model on git commit messages. arXiv:2103.11779
Yu Y, Wang H, Yin G, Ling C X (2014) Who should review this pull-request: Reviewer recommendation to expedite crowd collaboration. In: 2014 21st Asia-Pacific software engineering conference, vol 1, pp 335–342
SehraSKBrarYSKaurNSehraSSResearch patterns and trends in software effort estimationInf Softw Technol20179112110.1016/j.infsof.2017.06.002
JiangJYangYHeJBlancXZhangLWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based developmentInf Softw Technol201784486210.1016/j.infsof.2016.10.006
Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018) Studying pull request merges: A case study of shopify’s active merchant. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183542, pp 124–133
Jalali S, Wohlin C (2012) Systematic literature studies: Database searches vs. backward snowballing. In: Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineering and measurement, pp 29–38
Pinto G, Dias L F, Steinmacher I (2018) Who gets a patch accepted first? comparing the contributions of employees and volunteers. In: Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering. Association for Computing Machinery, New York, NY, USA, CHASE ’18. https://doi.org/10.1145/3195836.3195858, pp 110–113
Minku LL, Yao X (2011) A principled evaluation of ensembles of learning machines for software effort estimation. In: Proceedings of the 7th international conference on predictive models in software engineering, pp 1–10
Zampetti F, Bavota G, Canfora G, Penta M D (2019) A study on the interplay between pull request review and continuous integration builds. In: 2019 IEEE 26th international conference on software analysis, evolution and r
10143_CR38
10143_CR39
10143_CR36
A Trendowicz (10143_CR54) 2014; 12
J Jiang (10143_CR28) 2019; 7
M Jørgensen (10143_CR33) 2011; 53
J Jiang (10143_CR29) 2017; 84
M Wessel (10143_CR60) 2018; 2
J Cohen (10143_CR11) 2013
10143_CR41
10143_CR42
10143_CR45
10143_CR43
10143_CR44
10143_CR27
10143_CR25
10143_CR69
10143_CR26
SK Sehra (10143_CR50) 2017; 91
10143_CR70
10143_CR71
10143_CR30
Z Li (10143_CR40) 2021; PP
10143_CR72
10143_CR34
10143_CR35
10143_CR32
10143_CR6
10143_CR16
10143_CR17
10143_CR8
10143_CR14
10143_CR58
10143_CR7
10143_CR15
10143_CR59
10143_CR9
10143_CR19
10143_CR2
10143_CR1
10143_CR4
10143_CR3
Y Yu (10143_CR64) 2016; 59
S Nakagawa (10143_CR46) 2013; 4
O Langsrud (10143_CR37) 2003
10143_CR63
10143_CR20
10143_CR61
10143_CR62
10143_CR23
10143_CR67
10143_CR24
10143_CR68
10143_CR21
10143_CR65
10143_CR22
10143_CR66
J Cohen (10143_CR10) 1969
10143_CR49
10143_CR47
10143_CR48
O Baysal (10143_CR5) 2016; 21
J Jing (10143_CR31) 2017; 84
M Golzadeh (10143_CR18) 2021; 175
10143_CR52
10143_CR53
10143_CR51
10143_CR12
10143_CR56
10143_CR13
10143_CR57
10143_CR55
References_xml – reference: BaysalOKononenkoOHolmesRGodfreyMWInvestigating technical and non-technical factors influencing modern code reviewEmpir Softw Eng201621393295910.1007/s10664-015-9366-8https://doi.org/10.1007/s10664-015-9366-8
– reference: Wang F, Yang X, Zhu X, Chen L (2009) Extended use case points method for software cost estimation. In: 2009 International conference on computational intelligence and software engineering. IEEE, pp 1–5
– reference: JingJYunYHeJBlancXLiZWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based development - sciencedirectInform Softw Technol201784C486210.1016/j.infsof.2016.10.006
– reference: Gerrit (2021) Gerrit code review. https://www.gerritcodereview.com/ [Online; accessed 4-November-2021]
– reference: Zhang X, Yu Y, Wang T, Rastogi A, Wang H (2021) Dataset for ESE submission “Pull Request Latency Explained: An Empirical Overview”. https://doi.org/10.5281/zenodo.5105117
– reference: Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering
– reference: Atkins M (2012) Gerrit code review, or github’s fork and pull model?. https://softwareengineering.stackexchange.com/questions/173262/gerrit-code-review-or-githubs-fork-and-pull-model [Online; accessed 4-November-2021]
– reference: Minku LL, Yao X (2011) A principled evaluation of ensembles of learning machines for software effort estimation. In: Proceedings of the 7th international conference on predictive models in software engineering, pp 1–10
– reference: Gousios G, Zaidman A, Storey M, V Deursen A (2015) Work practices and challenges in pull-based development: The integrator’s perspective. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol 1, pp 358–368
– reference: Hechtl C (2020) On the influence of developer coreness on patch acceptance: A survival analysis
– reference: Maddila C, Bansal C, Nagappan N (2019) Predicting pull request completion time: a case study on large scale cloud services. In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp 874–882
– reference: Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: 2013 35th international conference on software engineering (ICSE). IEEE, pp 712–721
– reference: Singh D, Sekar V R, Stolee K T, Johnson B (2017) Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE symposium on visual languages and human-centric computing (VL/HCC)
– reference: Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and characterizing bots that commit code. In: Proceedings of the 17th international conference on mining software repositories, pp 209–219
– reference: YuYYinGWangTYangCWangHDeterminants of pull-based development in the context of continuous integrationSci China Inform Sci201659808010410.1007/s11432-016-5595-8https://doi.org/10.1007/s11432-016-5595-8
– reference: Ecplise (2011) Mylyn reviews. https://projects.eclipse.org/projects/mylyn.reviews [Online; accessed 4-November-2021]
– reference: Jalali S, Wohlin C (2012) Systematic literature studies: Database searches vs. backward snowballing. In: Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineering and measurement, pp 29–38
– reference: Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018) Studying pull request merges: A case study of shopify’s active merchant. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183542, pp 124–133
– reference: Cassee N, Kitsanelis C, Constantinou E, Serebrenik A (2021) Human, bot or both? a study on the capabilities of classification models on mixed accounts. In: 2021 IEEE international conference on software maintenance and evolution (ICSME). IEEE, pp 654–658
– reference: Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration in open-source projects. In: 2016 31st IEEE/ACM international conference on automated software engineering (ASE), pp 426–437
– reference: Zhang X, Yu Y, Gousios G, Rastogi A (2021) Pull request decision explained: An empirical overview
– reference: Tsay J, Dabbish L, Herbsleb J (2014) Influence of social and technical factors for evaluating contribution in github. In: Proceedings of the 36th International Conference on Software Engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568315, pp 356–366
– reference: Bernardo J H, Alencar da Costa D, Kulesza U (2018) Studying the impact of adopting continuous integration on the delivery time of pull requests. In: 2018 IEEE/ACM 15th international conference on mining software repositories (MSR), pp 131–141
– reference: Kocaguneli E, Misirli A T, Caglayan B, Bener A (2011) Experiences on developer participation and effort estimation. In: 2011 37th EUROMICRO conference on software engineering and advanced applications. IEEE, pp 419–422
– reference: JiangJMohamedAZhangLWhat are the characteristics of reopened pull requests? a case study on open source projects in githubIEEE Access2019710275110276110.1109/ACCESS.2019.2928566
– reference: Overney C, Meinicke J, Kstner C, Vasilescu B (2020) How to not get rich: an empirical study of donations in open source. In: ICSE ’20: 42nd international conference on software engineering
– reference: Vogel L (2020) Gerrit code review - tutorial. https://www.vogella.com/tutorials/Gerrit/article.html [Online; accessed 4-November-2021]
– reference: Soares DM, DLJúnior ML, Murta L, Plastino A (2015) Rejection factors of pull requests filed by core team developers in software projects with high acceptance rates. In: 2015 IEEE 14th international conference on machine learning and applications (ICMLA), pp 960–965
– reference: Jiang Y, Adams B, German D M (2013) Will my patch make it? and how fast? case study on the linux kernel. In: 2013 10th Working conference on mining software repositories (MSR), pp 101–110
– reference: LangsrudOAnova for unbalanced data: Use type ii instead of type iii sums of squares2003AmsterdamKluwer Academic Publishers
– reference: Yu Y, Wang H, Yin G, Ling C X (2014) Who should review this pull-request: Reviewer recommendation to expedite crowd collaboration. In: 2014 21st Asia-Pacific software engineering conference, vol 1, pp 335–342
– reference: Lee A, Carver J C (2017) Are one-time contributors different? a comparison to core and periphery developers in floss repositories. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM), pp 1–10
– reference: Hall DB (2009) Data analysis using regression and multilevel/hierarchical models. J Am Stat Assoc
– reference: Soares D M, de Lima Júnior ML, Murta L, Plastino A (2015) Acceptance factors of pull requests in open-source projects. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, Association for Computing Machinery, New York, NY, USA, SAC ’15. https://doi.org/10.1145/2695664.2695856, pp 1541–1546
– reference: CohenJStatistical power analysis for the behavioral sciences1969CambridgeAcademic Press0747.62110
– reference: Gousios G, Pinzger M, Deursen A (2014) An exploratory study of the pull-based software development model. In: Proceedings of the 36th international conference on software engineering, Association for Computing Machinery, New York, NY, USA, ICSE 2014. https://doi.org/10.1145/2568225.2568260, pp 345–355
– reference: Golzadeh M, Decan A, Mens T (2021) Evaluating a bot detection model on git commit messages. arXiv:2103.11779
– reference: Baysal O, Kononenko O, Holmes R, Godfrey M W (2012) The secret life of patches: A firefox case study. In: 2012 19th working conference on reverse engineering, pp 447–455
– reference: SehraSKBrarYSKaurNSehraSSResearch patterns and trends in software effort estimationInf Softw Technol20179112110.1016/j.infsof.2017.06.002
– reference: v. d. Veen E, Gousios G, Zaidman A (2015) Automatically prioritizing pull requests. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 357–361
– reference: Pinto G, Dias L F, Steinmacher I (2018) Who gets a patch accepted first? comparing the contributions of employees and volunteers. In: Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software Engineering. Association for Computing Machinery, New York, NY, USA, CHASE ’18. https://doi.org/10.1145/3195836.3195858, pp 110–113
– reference: Zampetti F, Bavota G, Canfora G, Penta M D (2019) A study on the interplay between pull request review and continuous integration builds. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering (SANER), pp 38–48
– reference: TrendowiczAJefferyRSoftware project effort estimationFoundations and Best Practice Guidelines for Success, Constructive Cost Model–COCOMO pags201412277293
– reference: Bosu A, Carver JC (2014) Impact of developer reputation on code review outcomes in oss projects: An empirical investigation. In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering and measurement, Association for Computing Machinery, ESEM ’14, New York, NY, USA. https://doi.org/10.1145/2652524.2652544
– reference: Sadowski C, Söderberg E, Church L, Sipko M, Bacchelli A (2018) Modern code review: A case study at google. In: Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, Association for Computing Machinery, New York, NY, USA, ICSE-SEIP ’18. https://doi.org/10.1145/3183519.3183525, pp 181–190
– reference: Gerrit (2013) Gerritforge blog - git and gerrit code review supported and delivered to your enterprise. https://gitenterprise.me/2013/10/17/gerrit-code-review-or-githubs-fork-and-pull-take-both/ [Online; accessed 4-November-2021]
– reference: Liu Z, Xia X, Treude C, Lo D, Li S (2019) Automatic generation of pull request descriptions. In: 2019 34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 176–188
– reference: JiangJYangYHeJBlancXZhangLWho should comment on this pull request? analyzing attributes for more accurate commenter recommendation in pull-based developmentInf Softw Technol201784486210.1016/j.infsof.2016.10.006
– reference: GolzadehMDecanALegayDMensTA ground-truth dataset and classification model for detecting bots in github issue and pr commentsJ Syst Softw202117511091110.1016/j.jss.2021.110911
– reference: WesselMDe SouzaBMSteinmacherIWieseISPolatoIChavesAPGerosaMAThe power of bots: Characterizing and understanding bots in oss projectsProceedings of the ACM on Human-Computer Interaction20182CSCW11910.1145/3274451
– reference: Zhang T, Song M, Kim M (2014) Critics: An interactive code review tool for searching and inspecting systematic changes. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 755–758
– reference: Maddila C, Upadrasta S S, Bansal C, Nagappan N, Gousios G, van Deursen A (2020) Nudge: Accelerating overdue pull requests towards completion. arXiv:2011.12468
– reference: Zhang Y, Yin G, Yu Y, Wang H (2014) A exploratory study of@-mention in github’s pull-requests. In: 2014 21st Asia-Pacific software engineering conference, vol 1. IEEE, pp 343–350
– reference: LiZYuYWangTYinGWangHAre you still working on this an empirical study on pull request abandonmentIEEE Trans Softw Eng2021PP9911
– reference: Yu Y, Li Z, Yin G, Wang T, Wang H (2018) A dataset of duplicate pull-requests in github. In: Proceedings of the 15th International Conference on Mining Software Repositories, pp 22–25
– reference: Jones J S (2019) Learn to use the eta coefficient test in spss with data from the niosh quality of worklife survey (2014)
– reference: Lenarduzzi V (2015) Could social factors influence the effort software estimation?. In: Proceedings of the 7th international workshop on social software engineering, pp 21–24
– reference: NakagawaSSchielzethHA general and simple method for obtaining r2 from generalized linear mixed-effects modelsMethods in Ecology and Evolution20134213314210.1111/j.2041-210x.2012.00261.x
– reference: Wang Q, Xu B, Xia X, Wang T, Li S (2019) Duplicate pull request detection: When time matters. In: Proceedings of the 11th Asia-Pacific Symposium on Internetware, pp 1–10
– reference: JørgensenMContrasting ideal and realistic conditions as a means to improve judgment-based software development effort estimationInf Softw Technol201153121382139010.1016/j.infsof.2011.07.001
– reference: Bernhart M, Mauczka A, Grechenig T (2010) Adopting code reviews for agile software development. In: 2010 Agile Conference. IEEE, pp 44–47
– reference: CohenJCohenPWestSGAikenLSApplied multiple regression/correlation analysis for the behavioral sciences2013LondonRoutledge10.4324/9780203774441
– reference: Imtiaz N, Middleton J, Chakraborty J, Robson N, Bai G, Murphy-Hill E (2019) Investigating the effects of gender bias on github. In: 2019 IEEE/ACM 41st international conference on software engineering (ICSE), pp 700–711
– reference: Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: Determinants of pull request evaluation latency on github. In: 2015 IEEE/ACM 12th working conference on mining software repositories, pp 367–371
– reference: Zhang X, Rastogi A, Yu Y (2020) Technical Report. https://github.com/zhangxunhui/new_pullreq_msr2020/blob/master/technical_report.pdf [Online; accessed 3-March-2021]
– reference: Fan Q, Yu Y, Yin G, Wang T, Wang H (2017) Where is the road for issue reports classification based on text mining?. In: 2017 ACM/IEEE international symposium on empirical software engineering and measurement (ESEM). IEEE, pp 121–130
– reference: Hu D, Wang T, Chang J, Zhang Y, Yin G (2018) Bugs and features, do developers treat them differently? 250–255
– reference: Dasheng X, Shenglan H (2012) Estimation of project costs based on fuzzy neural network. In: 2012 World congress on information and communication technologies. IEEE, pp 1177–1181
– reference: Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other software development practices: A large-scale empirical study. In: 2017 32nd IEEE/ACM international conference on automated software engineering (ASE), pp 60–71
– reference: McIntosh S, Kamei Y, Adams B, Hassan A E (2014) The impact of code review coverage and code review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of the 11th working conference on mining software repositories, pp 192–201
– reference: Zhang X, Rastogi A, Yu Y (2020) On the shoulders of giants: A new dataset for pull-based development research. In: Proceedings of the 17th international conference on mining software repositories, pp 543–547
– reference: Altaleb A, Altherwi M, Gravell A (2020) An industrial investigation into effort estimation predictors for mobile app development in agile processes. In: 2020 9th international conference on industrial technology and management (ICITM). IEEE, pp 291–296
– ident: 10143_CR36
  doi: 10.1145/3183519.3183542
– ident: 10143_CR44
  doi: 10.1145/2597073.2597076
– volume: 12
  start-page: 277
  year: 2014
  ident: 10143_CR54
  publication-title: Foundations and Best Practice Guidelines for Success, Constructive Cost Model–COCOMO pags
– ident: 10143_CR23
– volume: 59
  start-page: 080104
  issue: 8
  year: 2016
  ident: 10143_CR64
  publication-title: Sci China Inform Sci
  doi: 10.1007/s11432-016-5595-8
– ident: 10143_CR7
  doi: 10.1109/AGILE.2010.18
– ident: 10143_CR71
  doi: 10.1109/APSEC.2014.58
– ident: 10143_CR52
  doi: 10.1109/ICMLA.2015.41
– ident: 10143_CR14
– ident: 10143_CR2
– ident: 10143_CR4
  doi: 10.1109/WCRE.2012.54
– volume: 53
  start-page: 1382
  issue: 12
  year: 2011
  ident: 10143_CR33
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2011.07.001
– ident: 10143_CR13
  doi: 10.1145/3379597.3387478
– ident: 10143_CR69
  doi: 10.1007/s10664-022-10143-4
– ident: 10143_CR65
  doi: 10.1109/SANER.2019.8667996
– volume: 175
  start-page: 110911
  year: 2021
  ident: 10143_CR18
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2021.110911
– ident: 10143_CR55
  doi: 10.1145/2568225.2568315
– volume: 21
  start-page: 932
  issue: 3
  year: 2016
  ident: 10143_CR5
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-015-9366-8
– ident: 10143_CR49
  doi: 10.1145/3183519.3183525
– ident: 10143_CR35
  doi: 10.1109/SEAA.2011.71
– volume: 2
  start-page: 1
  issue: CSCW
  year: 2018
  ident: 10143_CR60
  publication-title: Proceedings of the ACM on Human-Computer Interaction
  doi: 10.1145/3274451
– ident: 10143_CR3
  doi: 10.1109/ICSE.2013.6606617
– ident: 10143_CR17
– ident: 10143_CR67
  doi: 10.1145/3379597.3387489
– ident: 10143_CR34
– ident: 10143_CR15
  doi: 10.1109/ESEM.2017.19
– volume: 84
  start-page: 48
  issue: C
  year: 2017
  ident: 10143_CR31
  publication-title: Inform Softw Technol
  doi: 10.1016/j.infsof.2016.10.006
– ident: 10143_CR39
  doi: 10.1145/2804381.2804385
– ident: 10143_CR42
  doi: 10.1145/3338906.3340457
– volume: 4
  start-page: 133
  issue: 2
  year: 2013
  ident: 10143_CR46
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: 10143_CR38
  doi: 10.1109/ESEM.2017.7
– ident: 10143_CR20
  doi: 10.1109/ICSE.2015.55
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1969
  ident: 10143_CR10
– ident: 10143_CR66
  doi: 10.1145/2635868.2661675
– ident: 10143_CR9
  doi: 10.1109/ICSME52107.2021.00075
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  ident: 10143_CR40
  publication-title: IEEE Trans Softw Eng
– ident: 10143_CR45
  doi: 10.1145/2020390.2020399
– ident: 10143_CR24
  doi: 10.1145/2970276.2970358
– ident: 10143_CR58
  doi: 10.1109/CISE.2009.5364706
– ident: 10143_CR26
  doi: 10.1109/ICSE.2019.00079
– ident: 10143_CR41
  doi: 10.1109/ASE.2019.00026
– ident: 10143_CR16
– ident: 10143_CR48
  doi: 10.1145/3195836.3195858
– ident: 10143_CR70
  doi: 10.5281/zenodo.5105117
– volume: 84
  start-page: 48
  year: 2017
  ident: 10143_CR29
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2016.10.006
– ident: 10143_CR62
  doi: 10.1109/APSEC.2014.57
– ident: 10143_CR25
  doi: 10.1109/ICAIBD.2018.8396204
– ident: 10143_CR61
  doi: 10.1109/MSR.2015.42
– ident: 10143_CR59
  doi: 10.1145/3361242.3361254
– volume-title: Applied multiple regression/correlation analysis for the behavioral sciences
  year: 2013
  ident: 10143_CR11
  doi: 10.4324/9780203774441
– ident: 10143_CR56
  doi: 10.1109/MSR.2015.40
– ident: 10143_CR21
  doi: 10.1145/2568225.2568260
– ident: 10143_CR72
  doi: 10.1109/ASE.2017.8115619
– ident: 10143_CR1
  doi: 10.1109/ICITM48982.2020.9080362
– ident: 10143_CR12
  doi: 10.1109/WICT.2012.6409253
– ident: 10143_CR47
  doi: 10.1145/3377811.3380410
– ident: 10143_CR32
– ident: 10143_CR68
– volume: 91
  start-page: 1
  year: 2017
  ident: 10143_CR50
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2017.06.002
– ident: 10143_CR30
  doi: 10.1109/MSR.2013.6624016
– ident: 10143_CR53
  doi: 10.1145/2695664.2695856
– ident: 10143_CR8
  doi: 10.1145/2652524.2652544
– ident: 10143_CR51
  doi: 10.1109/VLHCC.2017.8103456
– ident: 10143_CR43
– ident: 10143_CR19
– ident: 10143_CR6
  doi: 10.1145/3196398.3196421
– ident: 10143_CR27
  doi: 10.1145/2372251.2372257
– ident: 10143_CR57
– ident: 10143_CR22
– ident: 10143_CR63
  doi: 10.1145/3196398.3196455
– volume: 7
  start-page: 102751
  year: 2019
  ident: 10143_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2928566
– volume-title: Anova for unbalanced data: Use type ii instead of type iii sums of squares
  year: 2003
  ident: 10143_CR37
SSID ssj0009745
Score 2.4295602
Snippet Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compilers
Computer Science
Correlation
Datasets
Evaluation
Interpreters
Literature reviews
Programming Languages
Regression analysis
Regression models
Software development
Software engineering
Software Engineering/Programming and Operating Systems
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46PXhx_sTplBy8abBtkmb1IiIOT2Ogwm7lNUlhMLe5TdH_3rwstSi4i-e2SXkvyfuSvPd9hJxro0ynUBErjBBMCAsMstK4PY9IlExAcm282ITq9TqDQdYPB27zkFZZrYl-oTYTjWfkV8hKwrGQNL6ZvjJUjcLb1SChsU42kCUh8al7jzXprvIixUizx7iL7aFoJpTOpalgmMuOarWciZ-BqUabvy5IfdzpNv_7xztkOyBOerscIrtkzY73SLNSc6Bhcu8T2Xe7UTqzvgs6AgTTn9R-TEfgkKi5pjCm9mU69JwiFDM_sf8D8ty9f7p7YEFUgWme8gWTipcOtEUyMiaGDBJVKHAzu-AiU5nhKSBBvY5KE2VWGAnOUFqrMgYJVmrJD0ljPBnbI0IBpIUstZ1Ex8KKstACsbqxzhXaIY8WiSuL5jowjqPwxSivuZLRC7nzQu69kIsWufj-Zrrk21j5drsyfR7m3jyv7d4il5Xz6sd_t3a8urUTspX48YLnL23SWMze7CnZ1O-L4Xx25kfeF8Py3EM
  priority: 102
  providerName: ProQuest
Title Pull request latency explained: an empirical overview
URI https://link.springer.com/article/10.1007/s10664-022-10143-4
https://www.proquest.com/docview/2684303931
Volume 27
WOSCitedRecordID wos000820630300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnc-TgTQNtkzStN5UNT6NsKsNLSZMUBrOObYr-9yZZa1VU0EsvTUJ4L6_vS9973wM4kYqrKOMezhSlmFItsIhzZe48NOAsEIxI5ZpN8H4_Go3ipCwKm1fZ7lVI0n2pPxS7hSHFNvvc9pclmK7CmnF3kTXHwfCuptrlrjWxJdfDxHj0slTm-zU-u6MaY34Jizpv02v-b59bsFmiS3SxPA7bsKKLHWhWnRtQaci7wBJz80Qz7baBJsIC51ekX6YTYVCnOkeiQPphOnb8IchmedoIwh7c9ro3V9e4bKCAJQnJAjNOcgPQPOYp5YtYBDzjwlhxRmjMY0VCYcnopZcrL9ZUMWG2LiXPfcGEZpKRfWgUj4U-ACQE0yIOdRRIn2qaZ5JaXK60gQzSoIwW-JUcU1myi9smF5O05kW2ckmNXFInl5S24PR9znTJrfHr6HalnrS0s3lquWqILS_2W3BWqaN-_fNqh38bfgQbgdOo_ffShsZi9qSPYV0-L8bzWQfWLrv9ZNCxiaND80zYfcedyTeBANW2
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5EBb34FtdnDnrSYNskzVYQER8o6iKo4K2mSQoL67rurq8_5W80k20tCnrz4LltaPpNJzPJzPcBrGsjTT2TAc0M55Rzq6hKcuNyHh5JESnBtPFiE7LRqN_eJpdD8F72wmBZZekTvaM2Dxr3yLeRlYRhI2m413mkqBqFp6ulhMbALM7s24tL2Xq7p4cO340oOj66PjihhaoA1SxmfSoky13UEojAmFAlKpKZVM60M8YTmRgWK2Ro10FugsRyI5RLmrSWeaiEskKjSoRz-SMcvb8vFbyqSH6lF0VGWj_KXCxRNOkUrXpxzCnWzqM6LqP860JYRbffDmT9Onc8-d--0BRMFBE12R_8AtMwZNszMFmqVZDCec2CuHTZNulaPyXSUpgsvBH72mkpF2mbHaLaxN53mp4zhWBlK853Dm7-5OXnYbj90LYLQJQSViWxrUc65JbnmeaYixjrwiTtIqsahCWCqS4Y1VHYo5VWXNCIeupQTz3qKa_B5ucznQGfyK93L5dQp4Vv6aUVzjXYKo2luvzzaIu_j7YGYyfXF-fp-WnjbAnGI2-ruNe0DMP97pNdgVH93G_2uqve6gnc_bURfQDPejgL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB5ERbz4FtdnDnrSYNskzVYQEXVRlGUPCuKlpkkKwrquu-vrr_nrzGRbi4LePHhuG5LOl8lMkvk-gE1tpKlnMqCZ4ZxybhVVSW5czsMjKSIlmDZebEI2m_Xr66Q1Au9lLQxeqyx9onfU5kHjHvkuspIwLCQNd_PiWkTruHHQfaSoIIUnraWcxhAi5_btxaVv_f2zY2frrShqnFwendJCYYBqFrMBFZLlLoIJRGBMqBIVyUwqB_OM8UQmhsUK2dp1kJsgsdwI5RIorWUeKqGs0KgY4dz_mHQ5JiZ-LXFTEf5KL5CMFH-UubiiKNgpyvbimFO8R49KuYzyr4tiFel-O5z1a15j-j__rRmYKiJtcjicGrMwYjtzMF2qWJDCqc2DaLmuk571wyNthUnEG7Gv3bZyEbjZI6pD7H33znOpELzximNfgKs_6fwijHYeOnYJiFLCqiS29UiH3PI80xxzFGNd-KRdxFWDsLRmqgumdRT8aKcVRzQiIHUISD0CUl6D7c9vukOekV_fXi3NnhY-p59WNq_BTgmc6vHPrS3_3toGTDjspBdnzfMVmIw8bHELahVGB70nuwbj-nlw1--t-wlA4PavMfQBHaBA7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pull+request+latency+explained%3A+an+empirical+overview&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Zhang%2C+Xunhui&rft.au=Yu%2C+Yue&rft.au=Wang%2C+Tao&rft.au=Rastogi%2C+Ayushi&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=6&rft_id=info:doi/10.1007%2Fs10664-022-10143-4&rft.externalDocID=10_1007_s10664_022_10143_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon