Eulerian Walks in Temporal Graphs

An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 85; H. 3; S. 805 - 830
Hauptverfasser: Marino, Andrea, Silva, Ana
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2023
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal graph ( G , λ ) , with λ : E ( G ) → 2 [ τ ] , an edge e ∈ E ( G ) is available only at the times specified by λ ( e ) ⊆ [ τ ] , in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether ( G , λ ) has a temporal walk or trail is polynomial, while deciding whether it has a local trail is NP -complete even if τ = 2 . In contrast, in the general case, solving any of these problems is NP -complete, even under very strict hypotheses. We finally give XP algorithms parametrized by τ for walks, and by τ + t w ( G ) for trails and local trails, where t w ( G ) refers to the treewidth of G .
AbstractList An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal graph (G,λ), with λ:E(G)→2[τ], an edge e∈E(G) is available only at the times specified by λ(e)⊆[τ], in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether (G,λ) has a temporal walk or trail is polynomial, while deciding whether it has a local trail is NP-complete even if τ=2. In contrast, in the general case, solving any of these problems is NP-complete, even under very strict hypotheses. We finally give XP algorithms parametrized by τ for walks, and by τ+tw(G) for trails and local trails, where tw(G) refers to the treewidth of G.
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal graph ( G , λ ) , with λ : E ( G ) → 2 [ τ ] , an edge e ∈ E ( G ) is available only at the times specified by λ ( e ) ⊆ [ τ ] , in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether ( G , λ ) has a temporal walk or trail is polynomial, while deciding whether it has a local trail is NP -complete even if τ = 2 . In contrast, in the general case, solving any of these problems is NP -complete, even under very strict hypotheses. We finally give XP algorithms parametrized by τ for walks, and by τ + t w ( G ) for trails and local trails, where t w ( G ) refers to the treewidth of G .
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. But what if Euler had to take a bus? In a temporal graph $$\varvec{(G,\lambda )}$$ ( G , λ ) , with $$\varvec{\lambda : E(G)}\varvec{\rightarrow } \varvec{2}^{\varvec{[\tau ]}}$$ λ : E ( G ) → 2 [ τ ] , an edge $$\varvec{e}\varvec{\in } \varvec{E(G)}$$ e ∈ E ( G ) is available only at the times specified by $$\varvec{\lambda (e)}\varvec{\subseteq } \varvec{[\tau ]}$$ λ ( e ) ⊆ [ τ ] , in the same way the connections of the public transportation network of a city or of sightseeing tours are available only at scheduled times. In this paper, we deal with temporal walks, local trails, and trails, respectively referring to edge traversal with no constraints, constrained to not repeating the same edge in a single timestamp, and constrained to never repeating the same edge throughout the entire traversal. We show that, if the edges are always available, then deciding whether $$\varvec{(G,\lambda )}$$ ( G , λ ) has a temporal walk or trail is polynomial, while deciding whether it has a local trail is $$\varvec{\texttt {NP}}$$ NP -complete even if $$\varvec{\tau = 2}$$ τ = 2 . In contrast, in the general case, solving any of these problems is $$\varvec{\texttt {NP}}$$ NP -complete, even under very strict hypotheses. We finally give $$\varvec{\texttt {XP}}$$ XP algorithms parametrized by $$\varvec{\tau }$$ τ for walks, and by $$\varvec{\tau +tw(G)}$$ τ + t w ( G ) for trails and local trails, where $$\varvec{tw(G)}$$ t w ( G ) refers to the treewidth of $$\varvec{G}$$ G .
Author Marino, Andrea
Silva, Ana
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0002-9854-7885
  surname: Marino
  fullname: Marino, Andrea
  email: andrea.marino@unifi.it
  organization: Dipartimento di Statistica, Informatica, Applicazioni, Università degli Studi di Firenze
– sequence: 2
  givenname: Ana
  orcidid: 0000-0001-8917-0564
  surname: Silva
  fullname: Silva, Ana
  organization: Dipartimento di Statistica, Informatica, Applicazioni, Università degli Studi di Firenze, Departamento de Matemática, Universidade Federal do Ceará
BookMark eNp9kE1LAzEQhoNUsK3-AU8rnqOTj03So5RaBcFLxWPI5kO3brNrsj3037u6guChp2HgfeYdnhmaxDZ6hC4J3BAAeZsBeMkwUIqBACX4cIKmhLNhLTmZoCkQqTAXRJ6hWc5bAELlQkzR1Wrf-FSbWLya5iMXdSw2fte1yTTFOpnuPZ-j02Ca7C9-5xy93K82ywf89Lx-XN49YcsE6zH3lVOeVxz8wkjGpC3FolKSQuDgbCVdqIgRjqrKE-5CCYyXPlihmBMuWDZH1-PdLrWfe597vW33KQ6VmkpFKWVc8iFFx5RNbc7JB92lemfSQRPQ3yr0qEIPKvSPCn0YIPUPsnVv-rqNfTJ1cxxlI5qHnvjm099XR6gvqh10VA
CitedBy_id crossref_primary_10_1016_j_jcss_2023_103467
crossref_primary_10_1016_j_jcss_2024_103596
crossref_primary_10_1016_j_jcss_2025_103684
Cites_doi 10.1007/s10100-018-0598-8
10.1080/15427951.2016.1177801
10.1137/130947374
10.1155/2013/721051
10.1007/s00453-012-9667-x
10.1007/BFb0045375
10.1007/978-3-662-47672-7_36
10.1007/978-3-030-00256-5_19
10.1007/978-3-030-54921-3_8
10.1137/0205049
10.1016/B978-0-12-566780-7.50022-2
10.1007/978-3-030-17402-6_2
10.1080/17445760.2012.668546
10.1137/S0097539792225297
10.1016/j.tcs.2016.04.006
10.1007/s13278-018-0537-7
10.1016/S0898-1221(02)00156-6
10.1145/335305.335364
10.1007/978-3-030-79987-8_34
10.1002/net.3230170304
10.1007/978-3-030-79987-8_8
10.1137/130936816
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-022-01021-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 830
ExternalDocumentID 10_1007_s00453_022_01021_y
GrantInformation_xml – fundername: MUR, PRIN
  grantid: 20174LF3T8
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: CNPq
  grantid: 303803/2020-7; 437841/2018-9
– fundername: Dipartimento di Statistica, Informatica, Applicazioni, UNIFI
  grantid: GRANTED
– fundername: STIC-AMSUD
  grantid: 360/2019 - 88881.197438/2018-01
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-4ebd8e4b40e9a7337c569b8720f40dcb7dfb1a6d28be14df50345efc683d6dfc3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844472400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 15:03:45 EDT 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 22:30:40 EST 2025
Fri Feb 21 02:44:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Temporal graphs
Eulerian trails
Bounded treewidth
Edge cover
Parameterized complexity
Eulerian walks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-4ebd8e4b40e9a7337c569b8720f40dcb7dfb1a6d28be14df50345efc683d6dfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8917-0564
0000-0002-9854-7885
OpenAccessLink https://link.springer.com/10.1007/s00453-022-01021-y
PQID 2782223474
PQPubID 2043795
PageCount 26
ParticipantIDs proquest_journals_2782223474
crossref_primary_10_1007_s00453_022_01021_y
crossref_citationtrail_10_1007_s00453_022_01021_y
springer_journals_10_1007_s00453_022_01021_y
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DrorMSternHTrudeauPPostman tour on a graph with precedence relation on arcsNetworks198717328329489816810.1002/net.32301703040644.90090
BodlaenderHLDrangePGDregiMSA ckn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^k n$$\end{document} 5-approximation algorithm for treewidthSIAM J. Comput.2016452317378347970510.1137/1309473741333.05282
Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae pp. 128–140 (1741)
FominFVGolovachPALong circuits and large Euler subgraphsSIAM J. Discret. Math.2014282878892321379310.1137/1309368161298.05300
Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: Yao FF, Luks EM (eds) Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21–23, pp. 504–513 . ACM, Portland (2000)
Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer (1994)
LatapyM ViardTMagnienCStream graphs and link streams for the modeling of interactions over timeSoc. Netw. Anal. Min.20188161:161:2910.1007/s13278-018-0537-71426.68227
Marino, A., Silva, A.: Königsberg sightseeing: Eulerian walks in temporal graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12757, pp. 485–500. Springer (2021)
DahlhausEJohnsonDSPapadimitriouCHThe complexity of multiterminal cutsSIAM J. Comput.1994234864894128357910.1137/S00975397922252970809.68075
MichailOSpirakisPGTraveling salesman problems in temporal graphsTheoret. Comput. Sci.2016634123350127410.1016/j.tcs.2016.04.0061338.90349
Manuel, P.: Revisiting path-type covering and partitioning problems. arXiv:1807.10613 (2018)
WangHFWenYPTime-constrained Chinese postman problemsComput. Math. Appl.2002443–4375387191283610.1016/S0898-1221(02)00156-61067.90146
CyganMMarxDPilipczukMParameterized complexity of Eulerian deletion problemsAlgorithmica20146814161314747510.1007/s00453-012-9667-x1284.05157
Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs. In: Potapov I, Spirakis PG, Worrell J (eds) 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27–31, 2018, Liverpool, UK, LIPIcs, vol 117. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 36:1–36:13 (2018)
GuanMGraphic programming using odd or even points. Acta Mathematica Sinica (in Chinese) 10:263–266. Translated in Chinese Mathematics 1Am. Math. Soc.19601962273277
GareyMRJohnsonDSTarjanREThe planar Hamiltonian circuit problem is NP-completeSIAM J. Comput.19765470471444451610.1137/02050490346.05110
WestDIntroduction to Graph Theory1996Upper Saddle RiverPrentice Hall0845.05001
ÇodurMKYılmazMA time-dependent hierarchical Chinese postman problemCEJOR2020281337366405013610.1007/s10100-018-0598-807176691
Gómez, R., Wakabayashi, Y.: Covering a graph with nontrivial vertex-disjoint paths: Existence and optimization. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science—44th International Workshop, WG 2018, Cottbus, Germany, June 27–29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11159, pp. 228–238. Springer (2018)
Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns to the base. In: Heggernes, P. (ed.) Algorithms and Complexity—11th International Conference, CIAC 2019, Rome, Italy, May 27–29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11485, pp. 13–24. Springer (2019)
Erlebach, T., Spooner, J.T.: Non-strict temporal exploration. In: Richa, A.W., Scheideler, C. (eds) Structural Information and Communication Complexity—27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29–July 1, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12156, pp. 129–145. Springer (2020)
SunJTanGQuHDynamic programming algorithm for the time dependent Chinese postman problemJ. Inf. Comput. Sci.20118833841
Bumpus, B.M., Meeks, K.: Edge exploration of temporal graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms—32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12757, pp. 107–121. Springer (2021)
Orlin, J.B.: Some problems on dynamic/periodic graphs. In: Progress in Combinatorial Optimization, pp. 273–293. Elsevier (1984)
Borgnat, P., Fleury, E., Guillaume, J., et al.: Evolving networks. In: Mining Massive Data Sets for Security, pp. 198–203 (2007)
CasteigtsAFlocchiniPQuattrociocchiWTime-varying graphs and dynamic networksInt. J. Parallel Emerg. Distrib. Syst.201227538740810.1080/17445760.2012.668546
ArumugamSHamidIAbrahamVDecomposition of graphs into paths and cyclesJ. Discrete Math.201320131610.1155/2013/7210511295.05184
MichailOAn introduction to temporal graphs: an algorithmic perspectiveInternet Math.2016124239280350835810.1080/15427951.2016.11778011461.68161
Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: 42nd International Colloquium on Automata, Languages, and Programming—ICALP 2015, Kyoto, Japan, Lecture Notes in Computer Science, vol. 9134, pp. 444–455. Springer (2015)
MK Çodur (1021_CR7) 2020; 28
A Casteigts (1021_CR6) 2012; 27
O Michail (1021_CR25) 2016; 634
E Dahlhaus (1021_CR9) 1994; 23
M Cygan (1021_CR8) 2014; 68
1021_CR12
1021_CR11
1021_CR14
1021_CR13
1021_CR17
1021_CR19
FV Fomin (1021_CR15) 2014; 28
HL Bodlaender (1021_CR3) 2016; 45
MR Garey (1021_CR16) 1976; 5
D West (1021_CR29) 1996
S Arumugam (1021_CR2) 2013; 2013
M Dror (1021_CR10) 1987; 17
1021_CR20
J Sun (1021_CR27) 2011; 8
1021_CR5
M Latapy (1021_CR21) 2018; 8
1021_CR23
1021_CR4
1021_CR22
1021_CR1
1021_CR26
O Michail (1021_CR24) 2016; 12
M Guan (1021_CR18) 1960; 1962
HF Wang (1021_CR28) 2002; 44
References_xml – reference: FominFVGolovachPALong circuits and large Euler subgraphsSIAM J. Discret. Math.2014282878892321379310.1137/1309368161298.05300
– reference: MichailOSpirakisPGTraveling salesman problems in temporal graphsTheoret. Comput. Sci.2016634123350127410.1016/j.tcs.2016.04.0061338.90349
– reference: Erlebach, T., Spooner, J.T.: Non-strict temporal exploration. In: Richa, A.W., Scheideler, C. (eds) Structural Information and Communication Complexity—27th International Colloquium, SIROCCO 2020, Paderborn, Germany, June 29–July 1, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12156, pp. 129–145. Springer (2020)
– reference: CasteigtsAFlocchiniPQuattrociocchiWTime-varying graphs and dynamic networksInt. J. Parallel Emerg. Distrib. Syst.201227538740810.1080/17445760.2012.668546
– reference: DrorMSternHTrudeauPPostman tour on a graph with precedence relation on arcsNetworks198717328329489816810.1002/net.32301703040644.90090
– reference: WestDIntroduction to Graph Theory1996Upper Saddle RiverPrentice Hall0845.05001
– reference: ÇodurMKYılmazMA time-dependent hierarchical Chinese postman problemCEJOR2020281337366405013610.1007/s10100-018-0598-807176691
– reference: Orlin, J.B.: Some problems on dynamic/periodic graphs. In: Progress in Combinatorial Optimization, pp. 273–293. Elsevier (1984)
– reference: GareyMRJohnsonDSTarjanREThe planar Hamiltonian circuit problem is NP-completeSIAM J. Comput.19765470471444451610.1137/02050490346.05110
– reference: Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In: 42nd International Colloquium on Automata, Languages, and Programming—ICALP 2015, Kyoto, Japan, Lecture Notes in Computer Science, vol. 9134, pp. 444–455. Springer (2015)
– reference: LatapyM ViardTMagnienCStream graphs and link streams for the modeling of interactions over timeSoc. Netw. Anal. Min.20188161:161:2910.1007/s13278-018-0537-71426.68227
– reference: ArumugamSHamidIAbrahamVDecomposition of graphs into paths and cyclesJ. Discrete Math.201320131610.1155/2013/7210511295.05184
– reference: Borgnat, P., Fleury, E., Guillaume, J., et al.: Evolving networks. In: Mining Massive Data Sets for Security, pp. 198–203 (2007)
– reference: CyganMMarxDPilipczukMParameterized complexity of Eulerian deletion problemsAlgorithmica20146814161314747510.1007/s00453-012-9667-x1284.05157
– reference: Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer (1994)
– reference: MichailOAn introduction to temporal graphs: an algorithmic perspectiveInternet Math.2016124239280350835810.1080/15427951.2016.11778011461.68161
– reference: Manuel, P.: Revisiting path-type covering and partitioning problems. arXiv:1807.10613 (2018)
– reference: Marino, A., Silva, A.: Königsberg sightseeing: Eulerian walks in temporal graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12757, pp. 485–500. Springer (2021)
– reference: GuanMGraphic programming using odd or even points. Acta Mathematica Sinica (in Chinese) 10:263–266. Translated in Chinese Mathematics 1Am. Math. Soc.19601962273277
– reference: BodlaenderHLDrangePGDregiMSA ckn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^k n$$\end{document} 5-approximation algorithm for treewidthSIAM J. Comput.2016452317378347970510.1137/1309473741333.05282
– reference: Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae pp. 128–140 (1741)
– reference: SunJTanGQuHDynamic programming algorithm for the time dependent Chinese postman problemJ. Inf. Comput. Sci.20118833841
– reference: Erlebach, T., Spooner, J.T.: Faster exploration of degree-bounded temporal graphs. In: Potapov I, Spirakis PG, Worrell J (eds) 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27–31, 2018, Liverpool, UK, LIPIcs, vol 117. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 36:1–36:13 (2018)
– reference: DahlhausEJohnsonDSPapadimitriouCHThe complexity of multiterminal cutsSIAM J. Comput.1994234864894128357910.1137/S00975397922252970809.68075
– reference: Bumpus, B.M., Meeks, K.: Edge exploration of temporal graphs. In: Flocchini, P., Moura, L. (eds) Combinatorial Algorithms—32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5–7, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12757, pp. 107–121. Springer (2021)
– reference: Akrida, E.C., Mertzios, G.B., Spirakis, P.G.: The temporal explorer who returns to the base. In: Heggernes, P. (ed.) Algorithms and Complexity—11th International Conference, CIAC 2019, Rome, Italy, May 27–29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11485, pp. 13–24. Springer (2019)
– reference: Kempe, D., Kleinberg, J.M., Kumar, A.: Connectivity and inference problems for temporal networks. In: Yao FF, Luks EM (eds) Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21–23, pp. 504–513 . ACM, Portland (2000)
– reference: WangHFWenYPTime-constrained Chinese postman problemsComput. Math. Appl.2002443–4375387191283610.1016/S0898-1221(02)00156-61067.90146
– reference: Gómez, R., Wakabayashi, Y.: Covering a graph with nontrivial vertex-disjoint paths: Existence and optimization. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science—44th International Workshop, WG 2018, Cottbus, Germany, June 27–29, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11159, pp. 228–238. Springer (2018)
– volume: 28
  start-page: 337
  issue: 1
  year: 2020
  ident: 1021_CR7
  publication-title: CEJOR
  doi: 10.1007/s10100-018-0598-8
– volume: 12
  start-page: 239
  issue: 4
  year: 2016
  ident: 1021_CR24
  publication-title: Internet Math.
  doi: 10.1080/15427951.2016.1177801
– volume: 45
  start-page: 317
  issue: 2
  year: 2016
  ident: 1021_CR3
  publication-title: SIAM J. Comput.
  doi: 10.1137/130947374
– volume: 2013
  start-page: 1
  year: 2013
  ident: 1021_CR2
  publication-title: J. Discrete Math.
  doi: 10.1155/2013/721051
– ident: 1021_CR4
– volume: 68
  start-page: 41
  issue: 1
  year: 2014
  ident: 1021_CR8
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9667-x
– ident: 1021_CR11
– ident: 1021_CR20
  doi: 10.1007/BFb0045375
– ident: 1021_CR13
  doi: 10.1007/978-3-662-47672-7_36
– ident: 1021_CR17
  doi: 10.1007/978-3-030-00256-5_19
– ident: 1021_CR12
  doi: 10.1007/978-3-030-54921-3_8
– volume: 5
  start-page: 704
  issue: 4
  year: 1976
  ident: 1021_CR16
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205049
– ident: 1021_CR26
  doi: 10.1016/B978-0-12-566780-7.50022-2
– ident: 1021_CR1
  doi: 10.1007/978-3-030-17402-6_2
– volume: 27
  start-page: 387
  issue: 5
  year: 2012
  ident: 1021_CR6
  publication-title: Int. J. Parallel Emerg. Distrib. Syst.
  doi: 10.1080/17445760.2012.668546
– volume: 23
  start-page: 864
  issue: 4
  year: 1994
  ident: 1021_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539792225297
– volume: 634
  start-page: 1
  year: 2016
  ident: 1021_CR25
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2016.04.006
– ident: 1021_CR14
– volume: 8
  start-page: 61:1
  issue: 1
  year: 2018
  ident: 1021_CR21
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-018-0537-7
– volume: 44
  start-page: 375
  issue: 3–4
  year: 2002
  ident: 1021_CR28
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(02)00156-6
– volume-title: Introduction to Graph Theory
  year: 1996
  ident: 1021_CR29
– ident: 1021_CR19
  doi: 10.1145/335305.335364
– ident: 1021_CR22
– ident: 1021_CR23
  doi: 10.1007/978-3-030-79987-8_34
– volume: 17
  start-page: 283
  issue: 3
  year: 1987
  ident: 1021_CR10
  publication-title: Networks
  doi: 10.1002/net.3230170304
– ident: 1021_CR5
  doi: 10.1007/978-3-030-79987-8_8
– volume: 28
  start-page: 878
  issue: 2
  year: 2014
  ident: 1021_CR15
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/130936816
– volume: 1962
  start-page: 273
  year: 1960
  ident: 1021_CR18
  publication-title: Am. Math. Soc.
– volume: 8
  start-page: 833
  year: 2011
  ident: 1021_CR27
  publication-title: J. Inf. Comput. Sci.
SSID ssj0012796
Score 2.3991032
Snippet An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed...
An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every edge of a graph G at least (resp. exactly) once. This notion was first discussed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 805
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Constraints
Data Structures and Information Theory
Mathematics of Computing
Polynomials
Public transportation
Special Issue on Combinatorial Algorithms (IWOCA 2021)
Theory of Computation
Transportation networks
Title Eulerian Walks in Temporal Graphs
URI https://link.springer.com/article/10.1007/s00453-022-01021-y
https://www.proquest.com/docview/2782223474
Volume 85
WOSCitedRecordID wos000844472400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnUyJ400LbpE1zFNn0IEN0zt1Km6QwLJ2sm7D_3iRNOxQV9Nw0hJeXfC-8974P4MLDCXdD3ZnrSvVAUQDvRJi7DhMK_QKWcG7YPkf3dDCIxmP2YJvCyrravU5Jmpu6aXbT0YfOOepSAl1YsFyHDQV3kRZseHwaNbkDnxpVLq077xAF0LZV5vs5PsPRKsb8khY1aNNv_2-dO7Bto0t0XbnDLqzJYg_atXIDsgd5H857i1y7XoFekvy1RJMCDSuOqhzdagrr8gCe-73hzZ1jxRIcjkM8d4hMRSRJSlzJEoox5UHI0oj6bkZcwVMqstRLQuFHqfSIyAIXk0BmPIywCEXG8SG0imkhjwBxIVUcRmiSeEw__9Q9FBCaCo9xQhWcd8CrbRZzyySuBS3yuOFANjaIlQ1iY4N42YHL5p-3ikfj19Hdeitie6bK2K-CGULVAq5q068-_zzb8d-Gn8CW1pSvCs260JrPFvIUNvn7fFLOzoyvfQBWLcrR
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqRV800LbpE3zKLI5cQ7ROfcW2iSFYamydsL-e5P-GooK-tw0hMsl34W7-z6AMxsF3PJ0Z64l1QNFAbzpI26ZVCj0c2nAec72OeqTwcAfj-l92RSWVtXuVUoyv6nrZjcdfeicoy4l0IUF82VYwQqxNGP-w-Oozh04JFfl0rrzJlYAXbbKfD_HZzhaxJhf0qI52nSb_1vnJmyU0aVxWbjDFizJZBualXKDUR7kHTjtzGLteonxHMQvqTFJjGHBURUb15rCOt2Fp25neNUzS7EEkyMPZSaWofAlDrElaUAQItz1aOgTx4qwJXhIRBTagSccP5Q2FpFrIezKiHs-Ep6IONqDRvKayH0wuJAqDsMkCGyqn3_qHnIxCYVNOSYKzltgVzZjvGQS14IWMas5kHMbMGUDltuAzVtwXv_zVvBo_Dq6XW0FK89UypwimMFELeCiMv3i88-zHfxt-Ams9YZ3fda_GdwewrrWly-KztrQyKYzeQSr_D2bpNPj3O8-AOHpzbU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50ivji_DWcTq3gm5a1Tdq0j6KbimMMnHNvoU1SGJY61k7Yf2_SX1NRQXxuGsLlku_C3X0fwLmJfGY4qjPXEPKBIgFedxEzdI9L9LM9n7GM7XPUI_2-Ox57gw9d_Fm1e5mSzHsaFEtTnLanPGxXjW8qElH5R1VWoIoMFquwhlUhvXqvP46qPIJFMoUupUGvYwnWRdvM93N8hqZlvPklRZohT7f-_zVvw1YRdWpXuZvswIqId6FeKjpoxQHfg7POPFIuGWvPfvSSaJNYG-bcVZF2q6itk3146naG13d6IaKgM-SgVMci4K7AATaE5xOECLMdL3CJZYTY4CwgPAxM3-GWGwgT89A2ELZFyBwXcYeHDDWgFr_G4gA0xoWMzzDxfdNTz0J5P9mYBNz0GCYS5ptglvajrGAYV0IXEa24kTMbUGkDmtmALppwUf0zzfk1fh3dKreFFmctoVYe5GAiF3BZbsPy88-zHf5t-ClsDG66tHfffziCTSU7n9eitaCWzubiGNbZWzpJZieZC74DnNfWmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eulerian+Walks+in+Temporal+Graphs&rft.jtitle=Algorithmica&rft.au=Marino%2C+Andrea&rft.au=Silva%2C+Ana&rft.date=2023-03-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=3&rft.spage=805&rft.epage=830&rft_id=info:doi/10.1007%2Fs00453-022-01021-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_022_01021_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon