On the accurate computation of the Newton form of the Lagrange interpolant
In recent years many efforts have been devoted to finding bidiagonal factorizations of nonsingular totally positive matrices, since their accurate computation allows to numerically solve several important algebraic problems with great precision, even for large ill-conditioned matrices. In this frame...
Saved in:
| Published in: | Numerical algorithms Vol. 98; no. 3; pp. 1553 - 1573 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.03.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years many efforts have been devoted to finding bidiagonal factorizations of nonsingular totally positive matrices, since their accurate computation allows to numerically solve several important algebraic problems with great precision, even for large ill-conditioned matrices. In this framework, the present work provides the factorization of the collocation matrices of Newton bases—of relevance when considering the Lagrange interpolation problem—together with an algorithm that allows to numerically compute it to high relative accuracy. This further allows to determine the coefficients of the interpolating polynomial and to compute the singular values and the inverse of the collocation matrix. Conditions that guarantee high relative accuracy for these methods and, in the former case, for the classical recursion formula of divided differences, are determined. Numerical errors due to imprecise computer arithmetic or perturbed input data in the computation of the factorization are analyzed. Finally, numerical experiments illustrate the accuracy and effectiveness of the proposed methods with several algebraic problems, in stark contrast with traditional approaches. |
|---|---|
| AbstractList | In recent years many efforts have been devoted to finding bidiagonal factorizations of nonsingular totally positive matrices, since their accurate computation allows to numerically solve several important algebraic problems with great precision, even for large ill-conditioned matrices. In this framework, the present work provides the factorization of the collocation matrices of Newton bases—of relevance when considering the Lagrange interpolation problem—together with an algorithm that allows to numerically compute it to high relative accuracy. This further allows to determine the coefficients of the interpolating polynomial and to compute the singular values and the inverse of the collocation matrix. Conditions that guarantee high relative accuracy for these methods and, in the former case, for the classical recursion formula of divided differences, are determined. Numerical errors due to imprecise computer arithmetic or perturbed input data in the computation of the factorization are analyzed. Finally, numerical experiments illustrate the accuracy and effectiveness of the proposed methods with several algebraic problems, in stark contrast with traditional approaches. |
| Author | Khiar, Y. Rubio, B. Mainar, E. Royo-Amondarain, E. |
| Author_xml | – sequence: 1 givenname: Y. surname: Khiar fullname: Khiar, Y. organization: Departamento de Matemática Aplicada/IUMA, Universidad de Zaragoza – sequence: 2 givenname: E. surname: Mainar fullname: Mainar, E. organization: Departamento de Matemática Aplicada/IUMA, Universidad de Zaragoza – sequence: 3 givenname: E. surname: Royo-Amondarain fullname: Royo-Amondarain, E. email: eduroyo@unizar.es organization: Departamento de Matemáticas/CAPA, Universidad de Zaragoza – sequence: 4 givenname: B. surname: Rubio fullname: Rubio, B. organization: Departamento de Matemática Aplicada/IUMA, Universidad de Zaragoza |
| BookMark | eNp9kMtOwzAQRS1UJErhB1hFYm3wo4k9S1TxVEU3sLYcxympWjvYjhB_j2lASCy68usez8w5RRPnnUXogpIrSoi4jpQSUWLC5phQOedYHKEpLQXDwKpykveECkw5yBN0GuOGkIwxMUVPK1ekN1toY4agky2M3_VD0qnzrvDt_u3ZfqR8an3Y_V4t9Tpot7ZF55INvd9ql87Qcau30Z7_rDP0enf7snjAy9X94-JmiQ2veMJzkJKAqcFQgNJoWtcVqVkDBHStmW24KIHWIDmrCWOGyRY4b6FpjKFcMz5Dl-O_ffDvg41JbfwQXC6pOK1KgFyhzCk5pkzwMQbbKtONY6Wgu62iRH2bU6M5lc2pvTklMsr-oX3odjp8Hob4CMUczmbCX1cHqC-TioIb |
| CitedBy_id | crossref_primary_10_1016_j_aml_2024_109391 crossref_primary_10_1007_s40324_025_00392_w crossref_primary_10_3934_math_2025178 |
| Cites_doi | 10.1016/0024-3795(92)90226-Z 10.1016/S0024-3795(00)00124-5 10.1007/s11075-023-01588-9 10.1002/nla.2527 10.1016/0024-3795(94)90183-X 10.1137/0912034 10.1016/j.laa.2005.09.014 10.1137/S0036144502417715 10.1002/nla.2217 10.1016/0024-3795(93)90431-M 10.1007/s13398-022-01253-1 10.1137/S0895479804440335 10.1007/s10444-022-09954-2 10.1016/0024-3795(87)90313-2 10.1137/04061903X 10.13001/1081-3810.1658 10.1137/1.9780898718027 10.1016/j.laa.2022.06.023 10.1002/nla.2184 10.1007/s10915-021-01500-4 10.1137/S0895479803438225 10.1007/s10915-019-00975-6 10.1007/978-94-015-8674-0 10.1016/j.laa.2016.01.037 10.1007/s11075-016-0215-7 10.1016/j.cam.2018.10.009 10.1016/j.laa.2016.12.003 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-024-01843-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1573 |
| ExternalDocumentID | 10_1007_s11075_024_01843_7 |
| GrantInformation_xml | – fundername: Gobierno de Aragón funderid: http://dx.doi.org/10.13039/501100010067 – fundername: MCI/AEI |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG AFFHD AZQEC DWQXO GNUQQ JQ2 L6V P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-498809cb9c1995ca1bb60b2d909aba2ed37591b9832b022c28f933f9ddcc13a23 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001215050000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 08:08:23 EST 2025 Sat Nov 29 01:35:03 EST 2025 Tue Nov 18 20:15:30 EST 2025 Fri Feb 21 02:47:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Divided differences Bidiagonal decompositions Lagrange interpolation 15A23 Totally positive matrices 15A06 65F15 High relative accuracy 65F05 Newton basis 15A18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-498809cb9c1995ca1bb60b2d909aba2ed37591b9832b022c28f933f9ddcc13a23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11075-024-01843-7 |
| PQID | 3165994985 |
| PQPubID | 2043837 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3165994985 crossref_citationtrail_10_1007_s11075_024_01843_7 crossref_primary_10_1007_s11075_024_01843_7 springer_journals_10_1007_s11075_024_01843_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | JM Carnicer (1843_CR3) 2015 J Delgado (1843_CR5) 2019; 80 1843_CR30 A Marco (1843_CR26) 2017; 75 T Ando (1843_CR1) 1987; 90 M Gasca (1843_CR11) 1994; 202 H Tal-Ezer (1843_CR31) 1991; 12 A Marco (1843_CR25) 2017; 517 1843_CR16 M Gasca (1843_CR10) 1992; 165 A Marco (1843_CR27) 2022; 651 P Koev (1843_CR14) 2005; 27 A Marco (1843_CR28) 2024; 31 JP Berrut (1843_CR2) 2004; 46 A Marco (1843_CR24) 2019; 350 P Koev (1843_CR15) 2007; 29 M Gasca (1843_CR12) 1996 E Mainar (1843_CR20) 2022; 116 B Fischer (1843_CR9) 1989; 53 1843_CR21 E Mainar (1843_CR17) 2018; 25 J Demmel (1843_CR6) 2005; 27 A Marco (1843_CR23) 2016; 495 T Finck (1843_CR8) 1993; 183 H Oruç (1843_CR29) 2000; 315 J Delgado (1843_CR4) 2019; 26 A Marco (1843_CR22) 2013; 26 E Mainar (1843_CR19) 2022; 48 J Demmel (1843_CR7) 2006; 27 E Mainar (1843_CR18) 2021; 87 NJ Higham (1843_CR13) 2002 |
| References_xml | – volume: 165 start-page: 25 year: 1992 ident: 1843_CR10 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(92)90226-Z – volume: 315 start-page: 113 year: 2000 ident: 1843_CR29 publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(00)00124-5 – ident: 1843_CR21 doi: 10.1007/s11075-023-01588-9 – volume: 31 start-page: e2527 issue: 1 year: 2024 ident: 1843_CR28 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2527 – volume: 202 start-page: 33 year: 1994 ident: 1843_CR11 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(94)90183-X – volume: 12 start-page: 648 year: 1991 ident: 1843_CR31 publication-title: SIAM J. Sci. Statist. Comput. doi: 10.1137/0912034 – volume: 27 start-page: 382 year: 2006 ident: 1843_CR7 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2005.09.014 – volume: 46 start-page: 501 year: 2004 ident: 1843_CR2 publication-title: SIAM Rev. doi: 10.1137/S0036144502417715 – volume: 53 start-page: 265 year: 1989 ident: 1843_CR9 publication-title: Math. Comp. – volume: 26 start-page: e2217 issue: 10 year: 2019 ident: 1843_CR4 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2217 – volume: 183 start-page: 179 year: 1993 ident: 1843_CR8 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(93)90431-M – volume: 116 start-page: 126 year: 2022 ident: 1843_CR20 publication-title: Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat doi: 10.1007/s13398-022-01253-1 – volume: 27 start-page: 42 year: 2005 ident: 1843_CR6 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479804440335 – volume: 48 start-page: 38 year: 2022 ident: 1843_CR19 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-022-09954-2 – volume: 90 start-page: 165 year: 1987 ident: 1843_CR1 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(87)90313-2 – start-page: 53 volume-title: Thirteenth International Conference Zaragoza-Pau on Mathematics and its Applications year: 2015 ident: 1843_CR3 – volume: 29 start-page: 731 year: 2007 ident: 1843_CR15 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/04061903X – volume: 26 start-page: 357 year: 2013 ident: 1843_CR22 publication-title: Electron. J. Linear Algebra doi: 10.13001/1081-3810.1658 – volume-title: Accuracy and stability of numerical algorithms year: 2002 ident: 1843_CR13 doi: 10.1137/1.9780898718027 – volume: 651 start-page: 312 year: 2022 ident: 1843_CR27 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2022.06.023 – ident: 1843_CR16 – ident: 1843_CR30 – volume: 25 start-page: e2184 year: 2018 ident: 1843_CR17 publication-title: Numer. Linear Algebra Appl. doi: 10.1002/nla.2184 – volume: 87 start-page: 77 year: 2021 ident: 1843_CR18 publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01500-4 – volume: 27 start-page: 1 year: 2005 ident: 1843_CR14 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479803438225 – volume: 80 start-page: 1264 year: 2019 ident: 1843_CR5 publication-title: J. Sci. Comput. doi: 10.1007/s10915-019-00975-6 – volume-title: Total Positivity and Its Applications, pp 109–130 year: 1996 ident: 1843_CR12 doi: 10.1007/978-94-015-8674-0 – volume: 495 start-page: 90 year: 2016 ident: 1843_CR23 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2016.01.037 – volume: 75 start-page: 655 year: 2017 ident: 1843_CR26 publication-title: Numer. Algor. doi: 10.1007/s11075-016-0215-7 – volume: 350 start-page: 299 year: 2019 ident: 1843_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.10.009 – volume: 517 start-page: 63 year: 2017 ident: 1843_CR25 publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2016.12.003 |
| SSID | ssj0010027 |
| Score | 2.3959827 |
| Snippet | In recent years many efforts have been devoted to finding bidiagonal factorizations of nonsingular totally positive matrices, since their accurate computation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1553 |
| SubjectTerms | Accuracy Algebra Algorithms Collocation Collocation methods Computation Computer Science Factorization Linear algebra Mathematical analysis Numeric Computing Numerical Analysis Original Paper Polynomials Recursive functions Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYX-TgTQPdZF85ilhEahUfpbclm92VQtlKt_X3O0mTLooKety8WGYmM1-YF8AZslwIP2IU4bJP_YJxilYupZ08FFlY5B3fhPwPelG_Hw-H4sEmhVUu2t25JI2mrpPd8KWis4l11ETscxqtwhqau1g3bHh8Gix9B_qlZXycqH8R38Q2Veb7Mz6boxpjfnGLGmvTbf7vP7dhy6JLcrkQhx1YycsWNC3SJPYeVzjkmjm4sRZs3i0LuFa7cHtfEvwkUqm5LiZBlNlg2EgmhZlD_YjAkWjU64Z68nWqsxXIaNG-a4x824OX7vXz1Q21bReo4iGfUV_gnRYqFUqnbyvppWnYSVkmOkKmkuUZjwLhpQJ1QYoIQLG4EJwXIsuU8rhkfB8a5aTMD4Cg9spUhBCy0JXZmJJ-LgMWKMZkhkiEtcFz1E-UrUmuW2OMk7qasqZmgtRMDDWTqA3nyz1vi4ocv64-dkxN7O2sEu6FAUqoiIM2XDgm1tM_n3b4t-VHsMF0u2ATsnYMjdl0np_AunqfjarpqZHaD4oC4ro priority: 102 providerName: Springer Nature |
| Title | On the accurate computation of the Newton form of the Lagrange interpolant |
| URI | https://link.springer.com/article/10.1007/s11075-024-01843-7 https://www.proquest.com/docview/3165994985 |
| Volume | 98 |
| WOSCitedRecordID | wos001215050000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: K7- dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: M7S dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: BENPR dateStart: 20241201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R9KAH8TOiSHrwpo1bu6-ejBqJUUQCarwtXbcZEgLIwL_f19JBNNGLlyVbt6bZr33v174vgFOEXAgvZBTpske9nHGKWi6hThaINMgzxzMu_6-tsN2O3t5Exx64FdatspSJRlCnI6XPyC-4G_jYq4j8y_EH1VWjtHXVltBYhTWdJcE1rnu9hRVB77mMtRMlMTKdyAbNzEPncN-jY5O1D0bkcRp-V0xLtvnDQGr0TrP63xFvw5ZlnORqPkV2YCUb7kLVsk9i13axC5uPiwyuxR7cPw0J3hKp1ExnkyDKlH8wOJJRbtpQQCJzJJr2lo9a8n2iwxVIf16_a4DA7cNL8_b55o7augtU8YBPKQ45coRKhNLx20q6SRI4CUuFI2QiWZby0BduIlAYJEgBFItywXku0lQpl0vGD6AyHA2zQyAovlIVIofMdWo2pqSXSZ_5ijGZIhVhNXDLnx4rm5Rc18YYxMt0yhqoGIGKDVBxWIOzxTfjeUqOP9-ul-jEdnkW8RKaGpyX-C6bf-_t6O_ejmGD6frAxketDpXpZJadwLr6nPaLSQPWrm_bnW4DVh9C2jBTFa_d3usXJifqNA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5EBfXgW6zPPehJF5PNcw8i4gO1tXpQ8RY3m0QEaWvTKv4pf6Mzm6RFQW8ePOY1kOy3M99kXgBbuORSuoHgSJdd7mbC4WjlYm6lvkz8LLVck_J_1wiazfD-Xl6PwEdVC0NplZVONIo6aWv6R77n2L6HUmXoHXReOE2NouhqNUKjgEU9fX9Dly3fPz_G9d0W4vTk5uiMl1MFuHZ8p8dRRGhJHUtN1cla2XHsW7FIpCVVrESaOIEn7Vgi1GM0cFqEGTr9mUwSrW1HUaMDVPljrhMGtK_qAR9ELcjHM9FV1PzIrMKySKco1UM_i2qhKecjdB0efDWEQ3b7LSBr7NzpzH_7QrMwXTJqdlhsgTkYSVvzMFOya1bqrnwepi4HHWrzBbi4ajE8ZErrPnXLYNqMtzA4Ze3MXEMDgMyYEa2vTjXUY5fKMdhTMZ_sGYG5CLd_8n5LMNpqt9JlYKieEx0gR86o9ZzQyk2VJzwthEqQaoka2NUiR7psuk6zP56jYbtoAkaEwIgMMKKgBjuDZzpFy5Ff716r0BCV6iePhlCowW6Fp-Hln6Wt_C5tEybObi4bUeO8WV-FSUGzkE0-3hqM9rr9dB3G9WvvKe9umI3B4OGvcfYJsGpDEg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iujBalWsVt2DNw1NdvPao6jFR60FtfQWNptECiUtffj7nd0kjYoK4jH7Iszszn7LzHwDcIoq59z2qIFw2TbshDIDb7nQMGOXR24Sm7YO-e-1vU7H7_d590MWv452L1ySWU6DYmlKZ81xlDTLxDd8tajMYhVB4dvM8JZhxVaB9Oq9_tRb-BHUq0v7O9EWI9bx87SZ79f4fDWVePOLi1TfPK3q__95CzZz1Ekusm2yDUtxWoNqjkBJfr6n2FQUeSjaarDxsCB2ne7A3WNK8JMIKeeKZIJIPUGrl4wS3Yd2EwElUWi4aGqL14nKYiCDrKzXEPW5Cy-t6-fLGyMvx2BI5rKZYXM861yGXKq0bimsMHTNkEbc5CIUNI6Y53Ar5GgjQkQGkvoJZyzhUSSlxQRle1BJR2m8DwStWiQ9hJaJYmyjUtixcKgjKRURIhRaB6vQRCBzrnJVMmMYlCzLSpoBSjPQ0gy8Opwt5owzpo5fRzcKBQf5qZ0GzHId3Lncd-pwXii07P55tYO_DT-Bte5VK2jfdu4PYZ2qisI6qq0BldlkHh_BqnybDaaTY72Z3wF4ze6C |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+accurate+computation+of+the+Newton+form+of+the+Lagrange+interpolant&rft.jtitle=Numerical+algorithms&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=98&rft.issue=3&rft.spage=1553&rft.epage=1573&rft_id=info:doi/10.1007%2Fs11075-024-01843-7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |