An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-serie...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 174; s. 258 - 265 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.03.2016
|
| Predmet: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries–Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries–Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn–soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2–6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance.
•Four smoothing algorithms were examined for MODIS land-cover classification.•All smoothing algorithms can significantly reduce intra-class variability.•Smoothed data resulted in large inconsistencies of Jeffries–Matusita (JM) measures.•Fourier smoothing algorithm performed best in improving classification accuracy. |
|---|---|
| AbstractList | In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries–Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries–Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn–soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2–6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance.
•Four smoothing algorithms were examined for MODIS land-cover classification.•All smoothing algorithms can significantly reduce intra-class variability.•Smoothed data resulted in large inconsistencies of Jeffries–Matusita (JM) measures.•Fourier smoothing algorithm performed best in improving classification accuracy. In this study we compared the Savitzky-Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries-Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries-Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn-soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2-6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance. |
| Author | Campbell, James B. Lunetta, Ross S. Iiames, John S. Shao, Yang Wheeler, Brandon |
| Author_xml | – sequence: 1 givenname: Yang surname: Shao fullname: Shao, Yang email: yshao@vt.edu organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA – sequence: 2 givenname: Ross S. surname: Lunetta fullname: Lunetta, Ross S. organization: U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA – sequence: 3 givenname: Brandon surname: Wheeler fullname: Wheeler, Brandon organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA – sequence: 4 givenname: John S. surname: Iiames fullname: Iiames, John S. organization: U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA – sequence: 5 givenname: James B. surname: Campbell fullname: Campbell, James B. organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA |
| BookMark | eNqFkU1v1DAURS1UJKaFH8DOSzYJfnYSx2JVtRRGKnTBx9ZynJfWIycebGck_j2eDqsu2tXbnHP1dO85OVvCgoS8B1YDg-7jro4Ja86grYHXjItXZAO9VBWTrDkjG8ZEUzW8lW_IeUo7VsBewoaslwvFg_GryS4sNEw0uxmrhNFhomkOIT-45Z4afx-iyw9zolOI1JtlrGw4YKTWm5Tc5OxjQqJrOvLf7q63P6rv17-3dF59dlXGeR-i8XQ02bwlryfjE777fy_Ir5vPP6--Vrd3X7ZXl7eVFZ3IVdOAHDsUjRAwgLKy63suJVdmaFAooRCYYjBw4N04WKW4YIorMVjTwtAO4oJ8OOXuY_izYsp6dsmiL-9jWJPmrPQCfcvgRRRkx0WrykcFhRNqY0gp4qT30c0m_tXA9HENvdNlDX1cQwPXZY3iyCeOdfmxsRyN88-an04mlqIODqNO1uFicXQRbdZjcM_Y_wBeIaY1 |
| CitedBy_id | crossref_primary_10_1016_j_jag_2020_102150 crossref_primary_10_14358_PERS_24_00098R3 crossref_primary_10_1016_j_jag_2025_104734 crossref_primary_10_1016_j_asr_2020_01_028 crossref_primary_10_3390_rs15153782 crossref_primary_10_3390_rs13091630 crossref_primary_10_1007_s11707_018_0713_0 crossref_primary_10_3390_rs8090741 crossref_primary_10_1175_EI_D_18_0018_1 crossref_primary_10_1016_j_srs_2025_100227 crossref_primary_10_1007_s41976_019_00019_5 crossref_primary_10_3390_drones9040235 crossref_primary_10_1016_j_isprsjprs_2020_03_012 crossref_primary_10_1109_TGRS_2025_3568444 crossref_primary_10_3390_su9050724 crossref_primary_10_1080_01431161_2017_1392639 crossref_primary_10_1016_j_rse_2018_11_032 crossref_primary_10_3390_rs9010016 crossref_primary_10_1016_j_ecolind_2024_112027 crossref_primary_10_1016_j_rsase_2022_100843 crossref_primary_10_1016_j_rsase_2021_100622 crossref_primary_10_1007_s10812_019_00874_6 crossref_primary_10_1016_j_compag_2023_107807 crossref_primary_10_1016_j_jag_2019_05_013 crossref_primary_10_1080_22797254_2017_1365570 crossref_primary_10_1016_j_apgeog_2019_102086 crossref_primary_10_1080_01431161_2025_2492411 crossref_primary_10_3390_rs16244801 crossref_primary_10_3389_fpls_2024_1363690 crossref_primary_10_3390_w12051302 crossref_primary_10_3390_rs12172764 crossref_primary_10_1016_j_compag_2019_04_001 crossref_primary_10_1111_1477_8947_12121 crossref_primary_10_1007_s10980_019_00951_3 crossref_primary_10_3390_rs12101546 crossref_primary_10_1016_j_rse_2021_112632 crossref_primary_10_1088_1742_6596_1367_1_012087 crossref_primary_10_3390_rs17121999 crossref_primary_10_1007_s41976_020_00038_7 crossref_primary_10_3390_rs14246390 crossref_primary_10_3390_w12020405 crossref_primary_10_1016_j_isprsjprs_2021_12_001 crossref_primary_10_1080_01431161_2018_1513667 crossref_primary_10_3390_s21041406 crossref_primary_10_1016_j_rse_2019_111322 crossref_primary_10_1080_2150704X_2022_2068985 crossref_primary_10_3390_app10010238 crossref_primary_10_1080_07038992_2020_1801401 crossref_primary_10_3390_f12091206 crossref_primary_10_3390_rs12182888 crossref_primary_10_1109_JSTARS_2018_2870978 crossref_primary_10_1016_j_rse_2020_111745 crossref_primary_10_3390_land12081500 crossref_primary_10_3390_app13095394 crossref_primary_10_3390_rs15133404 crossref_primary_10_3389_fpls_2023_1250844 crossref_primary_10_1088_1755_1315_648_1_012002 crossref_primary_10_1111_rec_70046 crossref_primary_10_3390_rs12071163 crossref_primary_10_1016_j_ecoinf_2018_05_006 crossref_primary_10_1109_TBDATA_2019_2913402 crossref_primary_10_1109_TGRS_2021_3124798 crossref_primary_10_3390_rs14205232 crossref_primary_10_3390_app14188141 crossref_primary_10_3390_rs16091573 crossref_primary_10_3390_rs11161873 crossref_primary_10_1038_sdata_2016_118 crossref_primary_10_3390_agronomy15061438 crossref_primary_10_1016_j_isprsjprs_2024_06_007 crossref_primary_10_1080_2150704X_2018_1519273 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_1016_j_eja_2025_127542 crossref_primary_10_3390_rs11141639 crossref_primary_10_3390_rs12030529 crossref_primary_10_3390_rs16152785 crossref_primary_10_3390_rs10091456 crossref_primary_10_1016_j_compag_2023_107743 crossref_primary_10_1016_j_rsase_2020_100311 crossref_primary_10_1016_j_ecss_2018_08_007 crossref_primary_10_1016_j_isprsjprs_2019_11_008 crossref_primary_10_3390_rs14102341 crossref_primary_10_1016_j_isprsjprs_2019_06_014 crossref_primary_10_1016_j_rse_2025_114918 crossref_primary_10_3390_rs15092303 crossref_primary_10_1016_j_jag_2021_102352 crossref_primary_10_1080_03736245_2020_1795914 crossref_primary_10_1080_22797254_2019_1689852 crossref_primary_10_1007_s12517_021_06815_y crossref_primary_10_1109_JSTARS_2017_2746185 crossref_primary_10_3390_rs11222647 crossref_primary_10_3390_rs17091599 crossref_primary_10_1016_j_jag_2021_102477 crossref_primary_10_3390_rs12010174 crossref_primary_10_1109_JSTARS_2019_2922469 crossref_primary_10_1029_2021GL092438 crossref_primary_10_15446_ga_v27n2_105057 crossref_primary_10_1016_j_rse_2021_112292 crossref_primary_10_1080_01431161_2020_1771790 crossref_primary_10_1016_j_rse_2024_114511 crossref_primary_10_1016_j_cj_2021_12_013 crossref_primary_10_1016_j_rse_2025_114995 crossref_primary_10_3390_agriculture12010079 crossref_primary_10_1080_00387010_2016_1240088 crossref_primary_10_3390_rs10091322 crossref_primary_10_1016_j_compag_2022_106731 crossref_primary_10_1007_s11273_017_9541_3 crossref_primary_10_1016_j_jag_2025_104404 crossref_primary_10_3390_rs13142716 crossref_primary_10_1016_j_isprsjprs_2022_12_011 crossref_primary_10_1038_s41597_023_02695_x crossref_primary_10_3390_rs11242916 crossref_primary_10_1007_s41748_024_00432_x crossref_primary_10_1016_j_isprsjprs_2016_10_009 crossref_primary_10_3390_rs11141665 crossref_primary_10_1080_01431161_2022_2089540 crossref_primary_10_3390_s23187902 crossref_primary_10_3390_rs15133353 crossref_primary_10_3390_w12051504 crossref_primary_10_3390_rs12030506 crossref_primary_10_3390_app12168115 crossref_primary_10_3390_atmos12111459 crossref_primary_10_1016_j_isprsjprs_2024_09_010 crossref_primary_10_1080_2150704X_2019_1648901 crossref_primary_10_1016_j_jag_2022_103021 crossref_primary_10_3390_rs10010099 crossref_primary_10_3390_rs11243041 crossref_primary_10_1016_j_ecolind_2024_111584 crossref_primary_10_1016_j_jag_2023_103504 crossref_primary_10_3390_rs12071199 crossref_primary_10_1109_TGRS_2024_3386171 crossref_primary_10_3390_rs17142490 crossref_primary_10_3389_fenvs_2024_1502208 crossref_primary_10_1016_j_atmosres_2018_10_012 crossref_primary_10_1080_10106049_2024_2387786 crossref_primary_10_1109_TVCG_2020_3030421 crossref_primary_10_3390_rs11101191 crossref_primary_10_1109_MGRS_2020_2998816 crossref_primary_10_3390_rs8040267 crossref_primary_10_3390_rs14010144 crossref_primary_10_3390_rs11192316 crossref_primary_10_1016_j_rse_2020_112124 crossref_primary_10_3390_rs14081929 crossref_primary_10_1080_01431161_2018_1541368 crossref_primary_10_1016_j_ecolind_2024_112167 crossref_primary_10_1016_j_scitotenv_2021_149346 crossref_primary_10_1109_TGRS_2023_3333568 crossref_primary_10_3390_rs13071355 crossref_primary_10_1371_journal_pone_0198171 crossref_primary_10_1007_s10812_017_0520_5 crossref_primary_10_1016_j_jag_2021_102446 crossref_primary_10_1038_s41598_022_24712_6 crossref_primary_10_1080_01431161_2023_2176723 crossref_primary_10_1109_TGRS_2022_3176144 crossref_primary_10_1590_1807_1929_agriambi_v25n4p264_269 crossref_primary_10_3390_rs8090734 crossref_primary_10_3390_su17125424 crossref_primary_10_1016_j_isprsjprs_2016_03_008 crossref_primary_10_1080_01431161_2018_1446567 crossref_primary_10_3390_rs9070688 crossref_primary_10_3390_rs9070722 crossref_primary_10_1016_j_jenvman_2021_113917 crossref_primary_10_1016_j_ecolind_2022_109080 crossref_primary_10_1016_j_rse_2018_11_041 crossref_primary_10_3390_land11111996 |
| Cites_doi | 10.1016/j.rse.2005.10.004 10.1080/01431160600967128 10.1080/01431168608948945 10.1109/TGRS.2002.802519 10.2747/1548-1603.43.1.67 10.1080/014311600210191 10.1086/114383 10.14358/PERS.76.1.73 10.1016/j.rse.2005.10.021 10.1021/ac034173t 10.1016/j.jag.2009.11.005 10.1080/10106049.2011.562309 10.1016/j.rse.2012.04.001 10.1016/S0034-4257(02)00078-0 10.1016/j.rse.2008.09.003 10.1016/j.asr.2005.08.037 10.1016/j.rse.2005.03.008 10.1016/0034-4257(91)90017-Z 10.2747/1548-1603.43.1.1 10.1109/JSTARS.2010.2062173 10.1080/17538947.2010.505664 10.1016/j.rse.2006.06.018 10.1016/j.rse.2006.11.021 10.1080/01431161003762405 10.1016/j.cageo.2004.05.006 10.1073/pnas.1216006110 10.1016/0034-4257(91)90048-B 10.1016/j.rse.2010.01.018 10.1007/1-4020-3968-9 10.1016/j.rse.2004.03.014 10.1126/science.1155398 10.2747/1548-1603.43.1.24 10.1109/JSTARS.2010.2075916 10.1007/s00267-012-9903-9 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Inc. |
| Copyright_xml | – notice: 2015 Elsevier Inc. |
| DBID | AAYXX CITATION 7QH 7SN 7ST 7U6 7UA C1K F1W H96 L.G SOI 7S9 L.6 |
| DOI | 10.1016/j.rse.2015.12.023 |
| DatabaseName | CrossRef Aqualine Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Ecology Abstracts Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 265 |
| ExternalDocumentID | 10_1016_j_rse_2015_12_023 S0034425715302443 |
| GeographicLocations | North America, Great Lakes Basin Great Lakes |
| GeographicLocations_xml | – name: North America, Great Lakes Basin – name: Great Lakes |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7QH 7SN 7ST 7U6 7UA C1K F1W H96 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c363t-4417d6e34331b19c768827729ab4e3939e10901b2126dbc992309293bca51b5b3 |
| ISICitedReferencesCount | 191 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368746800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sun Sep 28 09:00:10 EDT 2025 Tue Oct 07 09:47:36 EDT 2025 Tue Nov 18 21:13:51 EST 2025 Sat Nov 29 02:51:17 EST 2025 Fri Feb 23 02:30:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Validation Smoothing algorithms Multi-temporal analysis MODIS-NDVI |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-4417d6e34331b19c768827729ab4e3939e10901b2126dbc992309293bca51b5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1762359417 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2000318501 proquest_miscellaneous_1762359417 crossref_primary_10_1016_j_rse_2015_12_023 crossref_citationtrail_10_1016_j_rse_2015_12_023 elsevier_sciencedirect_doi_10_1016_j_rse_2015_12_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-01 2016-03-00 20160301 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Beck, Atzberger, Høgda, Johansen, Skidmore (bb0020) 2006; 100 Ma, Veroustraete (bb0105) 2006; 37 Reed (bb0125) 2006; 43 Lunetta, Knight, Ediriwickrema, Lyon, Worthy (bb0095) 2006; 105 NASA (National Aeronautical and Space Administration) (bb0115) 2015 Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Cooper (bb0045) 2002; 83 Lopez, Jewett, Dortch, Walton, Hudnell (bb0085) 2008 Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bb0145) 2005; 96 Atzberger, Eilers (bb0015) 2011 Boryan, Yang, Mueller, Craig (bb0025) 2011; 26 Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bb0035) 2004; 91 Michalak, Anderson, Beletsky, Boland, Bosch, Bridgeman, Daloğlu (bb0110) 2013; 110 Congalton (bb0130) 1991; 37 Lunetta, Shao, Ediriwickrema, Lyon (bb0100) 2010; 12 Hird, McDermid (bb0060) 2009; 113 Shao, Lunetta, Ediriwickrema, Iiames (bb0155) 2010; 76 Eilers (bb0040) 2003; 75 Shao, Lunetta (bb0150) 2011; 4 Knight, Lunetta, Ediriwickrema, Khorram (bb0080) 2006; 43 Loveland, Reed, Brown, Ohlen, Zhu, Yang, Merchant (bb0090) 2000; 21 Paerl, Huisman (bb0120) 2008; 320 Tan, Morisette, Wolfe, Gao, Ederer, Nightingale, Pedelty (bb0170) 2011; 4 Jönsson, Eklundh (bb0075) 2004; 30 Hermance (bb0055) 2007 Xiao, Boles, Frolking, Li, Babu, Salas, Moore (bb0185) 2006; 100 Atzberger, Eilers (bb0010) 2011; 32 Wardlow, Egbert, Kastens (bb0175) 2007; 108 Bruce, Mathur, Byrd, John (bb0030) 2006; 43 Goward, Markham, Dye, Dulaney, Yang (bb0050) 1991; 35 Jönsson, Eklundh (bb0070) 2002; 40 Shao, Lunetta, Macpherson, Luo, Chen (bb0160) 2013; 51 Roberts, Lehár, Dreher (bb0140) 1987; 93 Holben (bb0065) 1986; 7 Richards, Jia (bb0135) 2006 Atkinson, Jeganathan, Dash, Atzberger (bb0005) 2012; 123 Swets, Reed, Rowland, Marko (bb0165) 1999 Wickham, Stehman, Fry, Smith, Homer (bb0180) 2010; 114 Atzberger (10.1016/j.rse.2015.12.023_bb0010) 2011; 32 Eilers (10.1016/j.rse.2015.12.023_bb0040) 2003; 75 Holben (10.1016/j.rse.2015.12.023_bb0065) 1986; 7 NASA (National Aeronautical and Space Administration) (10.1016/j.rse.2015.12.023_bb0115) 2015 Atzberger (10.1016/j.rse.2015.12.023_bb0015) 2011 Tan (10.1016/j.rse.2015.12.023_bb0170) 2011; 4 Loveland (10.1016/j.rse.2015.12.023_bb0090) 2000; 21 Hird (10.1016/j.rse.2015.12.023_bb0060) 2009; 113 Paerl (10.1016/j.rse.2015.12.023_bb0120) 2008; 320 Knight (10.1016/j.rse.2015.12.023_bb0080) 2006; 43 Hermance (10.1016/j.rse.2015.12.023_bb0055) 2007 Swets (10.1016/j.rse.2015.12.023_bb0165) 1999 Beck (10.1016/j.rse.2015.12.023_bb0020) 2006; 100 Goward (10.1016/j.rse.2015.12.023_bb0050) 1991; 35 Lunetta (10.1016/j.rse.2015.12.023_bb0100) 2010; 12 Atkinson (10.1016/j.rse.2015.12.023_bb0005) 2012; 123 Ma (10.1016/j.rse.2015.12.023_bb0105) 2006; 37 Wardlow (10.1016/j.rse.2015.12.023_bb0175) 2007; 108 Shao (10.1016/j.rse.2015.12.023_bb0150) 2011; 4 Reed (10.1016/j.rse.2015.12.023_bb0125) 2006; 43 Congalton (10.1016/j.rse.2015.12.023_bb0130) 1991; 37 Shao (10.1016/j.rse.2015.12.023_bb0160) 2013; 51 Friedl (10.1016/j.rse.2015.12.023_bb0045) 2002; 83 Wickham (10.1016/j.rse.2015.12.023_bb0180) 2010; 114 Chen (10.1016/j.rse.2015.12.023_bb0035) 2004; 91 Roberts (10.1016/j.rse.2015.12.023_bb0140) 1987; 93 Jönsson (10.1016/j.rse.2015.12.023_bb0070) 2002; 40 Michalak (10.1016/j.rse.2015.12.023_bb0110) 2013; 110 Lunetta (10.1016/j.rse.2015.12.023_bb0095) 2006; 105 Shao (10.1016/j.rse.2015.12.023_bb0155) 2010; 76 Boryan (10.1016/j.rse.2015.12.023_bb0025) 2011; 26 Lopez (10.1016/j.rse.2015.12.023_bb0085) 2008 Bruce (10.1016/j.rse.2015.12.023_bb0030) 2006; 43 Richards (10.1016/j.rse.2015.12.023_bb0135) 2006 Jönsson (10.1016/j.rse.2015.12.023_bb0075) 2004; 30 Sakamoto (10.1016/j.rse.2015.12.023_bb0145) 2005; 96 Xiao (10.1016/j.rse.2015.12.023_bb0185) 2006; 100 |
| References_xml | – start-page: 2801 year: 2007 end-page: 2819 ident: bb0055 article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness publication-title: International Journal of Remote Sensing – volume: 40 start-page: 1824 year: 2002 end-page: 1832 ident: bb0070 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: Geoscience and Remote Sensing, IEEE Transactions on – volume: 51 start-page: 59 year: 2013 end-page: 69 ident: bb0160 article-title: Assessing sediment yield for selected watersheds in the Laurentian Great Lakes Basin under future agricultural scenarios publication-title: Environmental Management – year: 2006 ident: bb0135 article-title: Remote sensing digital image analysis — Hardback – year: 2015 ident: bb0115 article-title: Cyanobacteria Assessment Network (CyAN) for freshwater systems: An early warning indicator for nuisance blumes using ocean color satellite – volume: 37 start-page: 35 year: 1991 end-page: 46 ident: bb0130 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sensing of Environment – volume: 75 start-page: 3631 year: 2003 end-page: 3636 ident: bb0040 article-title: A perfect smoother publication-title: Analytical Chemistry – volume: 43 start-page: 67 year: 2006 end-page: 77 ident: bb0030 article-title: Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures publication-title: GIScience & Remote Sensing – start-page: 365 year: 2011 end-page: 386 ident: bb0015 article-title: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America publication-title: International Journal of Digital Earth – year: 2008 ident: bb0085 article-title: Scientific assessment of freshwater harmful algal blooms – volume: 30 start-page: 833 year: 2004 end-page: 845 ident: bb0075 article-title: TIMESAT — A program for analyzing time-series of satellite sensor data publication-title: Computers & Geosciences – volume: 96 start-page: 366 year: 2005 end-page: 374 ident: bb0145 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sensing of Environment – year: 1999 ident: bb0165 article-title: A weighted least-squares approach to temporal smoothing of NDVI 1999 ASPRS Annual Conference, From Image to Information, Portland, Oregon, May 17–21, 1999 publication-title: Proceedings: Bethesda, Maryland, American Society for Photogrammetry and Remote Sensing, CD-ROM, 1 – volume: 93 start-page: 968 year: 1987 ident: bb0140 article-title: Time series analysis with clean — Part one — Derivation of a spectrum publication-title: The Astronomical Journal – volume: 123 start-page: 400 year: 2012 end-page: 417 ident: bb0005 article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology publication-title: Remote Sensing of Environment – volume: 100 start-page: 321 year: 2006 end-page: 334 ident: bb0020 article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI publication-title: Remote Sensing of Environment – volume: 100 start-page: 95 year: 2006 end-page: 113 ident: bb0185 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sensing of Environment – volume: 105 start-page: 142 year: 2006 end-page: 154 ident: bb0095 article-title: Land-cover change detection using multi-temporal MODIS NDVI data publication-title: Remote Sensing of Environment – volume: 320 start-page: 57 year: 2008 ident: bb0120 article-title: Blooms like it hot publication-title: Science-New York Then Washington – volume: 7 start-page: 1417 year: 1986 end-page: 1434 ident: bb0065 article-title: Characteristics of maximum-value composite images from temporal AVHRR data publication-title: International Journal of Remote Sensing – volume: 4 start-page: 361 year: 2011 end-page: 371 ident: bb0170 article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of – volume: 91 start-page: 332 year: 2004 end-page: 344 ident: bb0035 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment – volume: 113 start-page: 248 year: 2009 end-page: 258 ident: bb0060 article-title: Noise reduction of NDVI time series: An empirical comparison of selected techniques publication-title: Remote Sensing of Environment – volume: 76 start-page: 73 year: 2010 end-page: 84 ident: bb0155 article-title: Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data publication-title: Photogrammetric Engineering & Remote Sensing – volume: 83 start-page: 287 year: 2002 end-page: 302 ident: bb0045 article-title: Global land cover mapping from MODIS: Algorithms and early results publication-title: Remote Sensing of Environment – volume: 4 start-page: 336 year: 2011 end-page: 347 ident: bb0150 article-title: Sub-pixel mapping of tree canopy, impervious surfaces, and cropland in the Laurentian Great Lakes Basin using MODIS time-series data publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of – volume: 21 start-page: 1303 year: 2000 end-page: 1330 ident: bb0090 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 publication-title: International Journal of Remote Sensing – volume: 114 start-page: 1286 year: 2010 end-page: 1296 ident: bb0180 article-title: Thematic accuracy of the NLCD 2001 land cover for the conterminous United States publication-title: Remote Sensing of Environment – volume: 110 start-page: 6448 year: 2013 end-page: 6452 ident: bb0110 article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions publication-title: Proceedings of the National Academy of Sciences – volume: 32 start-page: 3689 year: 2011 end-page: 3709 ident: bb0010 article-title: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements publication-title: International Journal of Remote Sensing – volume: 12 start-page: 81 year: 2010 end-page: 88 ident: bb0100 article-title: Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 35 start-page: 257 year: 1991 end-page: 277 ident: bb0050 article-title: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer publication-title: Remote Sensing of Environment – volume: 26 start-page: 341 year: 2011 end-page: 358 ident: bb0025 article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program publication-title: Geocarto International – volume: 37 start-page: 835 year: 2006 end-page: 840 ident: bb0105 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Advances in Space Research – volume: 43 start-page: 1 year: 2006 end-page: 23 ident: bb0080 article-title: Regional scale land cover characterization using MODIS-NDVI 250 publication-title: GIScience & Remote Sensing – volume: 43 start-page: 24 year: 2006 end-page: 38 ident: bb0125 article-title: Trend analysis of time-series phenology of North America derived from satellite data publication-title: GIScience & Remote Sensing – volume: 108 start-page: 290 year: 2007 end-page: 310 ident: bb0175 article-title: Analysis of time-series MODIS 250 publication-title: Remote Sensing of Environment – volume: 100 start-page: 95 issue: 1 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0185 article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.004 – start-page: 2801 year: 2007 ident: 10.1016/j.rse.2015.12.023_bb0055 article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness publication-title: International Journal of Remote Sensing doi: 10.1080/01431160600967128 – volume: 7 start-page: 1417 issue: 11 year: 1986 ident: 10.1016/j.rse.2015.12.023_bb0065 article-title: Characteristics of maximum-value composite images from temporal AVHRR data publication-title: International Journal of Remote Sensing doi: 10.1080/01431168608948945 – volume: 40 start-page: 1824 issue: 8 year: 2002 ident: 10.1016/j.rse.2015.12.023_bb0070 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: Geoscience and Remote Sensing, IEEE Transactions on doi: 10.1109/TGRS.2002.802519 – volume: 43 start-page: 67 issue: 1 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0030 article-title: Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures publication-title: GIScience & Remote Sensing doi: 10.2747/1548-1603.43.1.67 – volume: 21 start-page: 1303 issue: 6–7 year: 2000 ident: 10.1016/j.rse.2015.12.023_bb0090 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1km AVHRR data publication-title: International Journal of Remote Sensing doi: 10.1080/014311600210191 – volume: 93 start-page: 968 year: 1987 ident: 10.1016/j.rse.2015.12.023_bb0140 article-title: Time series analysis with clean — Part one — Derivation of a spectrum publication-title: The Astronomical Journal doi: 10.1086/114383 – volume: 76 start-page: 73 issue: 1 year: 2010 ident: 10.1016/j.rse.2015.12.023_bb0155 article-title: Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data publication-title: Photogrammetric Engineering & Remote Sensing doi: 10.14358/PERS.76.1.73 – volume: 100 start-page: 321 issue: 3 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0020 article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.10.021 – volume: 75 start-page: 3631 issue: 14 year: 2003 ident: 10.1016/j.rse.2015.12.023_bb0040 article-title: A perfect smoother publication-title: Analytical Chemistry doi: 10.1021/ac034173t – volume: 12 start-page: 81 issue: 2 year: 2010 ident: 10.1016/j.rse.2015.12.023_bb0100 article-title: Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data publication-title: International Journal of Applied Earth Observation and Geoinformation doi: 10.1016/j.jag.2009.11.005 – volume: 26 start-page: 341 issue: 5 year: 2011 ident: 10.1016/j.rse.2015.12.023_bb0025 article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program publication-title: Geocarto International doi: 10.1080/10106049.2011.562309 – volume: 123 start-page: 400 year: 2012 ident: 10.1016/j.rse.2015.12.023_bb0005 article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.04.001 – volume: 83 start-page: 287 issue: 1 year: 2002 ident: 10.1016/j.rse.2015.12.023_bb0045 article-title: Global land cover mapping from MODIS: Algorithms and early results publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00078-0 – volume: 113 start-page: 248 issue: 1 year: 2009 ident: 10.1016/j.rse.2015.12.023_bb0060 article-title: Noise reduction of NDVI time series: An empirical comparison of selected techniques publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.09.003 – volume: 37 start-page: 835 issue: 4 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0105 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Advances in Space Research doi: 10.1016/j.asr.2005.08.037 – volume: 96 start-page: 366 issue: 3 year: 2005 ident: 10.1016/j.rse.2015.12.023_bb0145 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.03.008 – volume: 35 start-page: 257 issue: 2 year: 1991 ident: 10.1016/j.rse.2015.12.023_bb0050 article-title: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(91)90017-Z – volume: 43 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0080 article-title: Regional scale land cover characterization using MODIS-NDVI 250m multi-temporal imagery: A phenology-based approach publication-title: GIScience & Remote Sensing doi: 10.2747/1548-1603.43.1.1 – volume: 4 start-page: 336 issue: 2 year: 2011 ident: 10.1016/j.rse.2015.12.023_bb0150 article-title: Sub-pixel mapping of tree canopy, impervious surfaces, and cropland in the Laurentian Great Lakes Basin using MODIS time-series data publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of doi: 10.1109/JSTARS.2010.2062173 – start-page: 365 year: 2011 ident: 10.1016/j.rse.2015.12.023_bb0015 article-title: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2010.505664 – volume: 105 start-page: 142 issue: 2 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0095 article-title: Land-cover change detection using multi-temporal MODIS NDVI data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.06.018 – year: 1999 ident: 10.1016/j.rse.2015.12.023_bb0165 article-title: A weighted least-squares approach to temporal smoothing of NDVI 1999 ASPRS Annual Conference, From Image to Information, Portland, Oregon, May 17–21, 1999 – volume: 108 start-page: 290 issue: 3 year: 2007 ident: 10.1016/j.rse.2015.12.023_bb0175 article-title: Analysis of time-series MODIS 250m vegetation index data for crop classification in the US Central Great Plains publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2006.11.021 – volume: 32 start-page: 3689 issue: 13 year: 2011 ident: 10.1016/j.rse.2015.12.023_bb0010 article-title: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements publication-title: International Journal of Remote Sensing doi: 10.1080/01431161003762405 – volume: 30 start-page: 833 issue: 8 year: 2004 ident: 10.1016/j.rse.2015.12.023_bb0075 article-title: TIMESAT — A program for analyzing time-series of satellite sensor data publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2004.05.006 – year: 2015 ident: 10.1016/j.rse.2015.12.023_bb0115 – volume: 110 start-page: 6448 issue: 16 year: 2013 ident: 10.1016/j.rse.2015.12.023_bb0110 article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1216006110 – volume: 37 start-page: 35 issue: 1 year: 1991 ident: 10.1016/j.rse.2015.12.023_bb0130 article-title: A review of assessing the accuracy of classifications of remotely sensed data publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(91)90048-B – volume: 114 start-page: 1286 issue: 6 year: 2010 ident: 10.1016/j.rse.2015.12.023_bb0180 article-title: Thematic accuracy of the NLCD 2001 land cover for the conterminous United States publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.01.018 – year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0135 doi: 10.1007/1-4020-3968-9 – volume: 91 start-page: 332 issue: 3 year: 2004 ident: 10.1016/j.rse.2015.12.023_bb0035 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.03.014 – volume: 320 start-page: 57 issue: 5872 year: 2008 ident: 10.1016/j.rse.2015.12.023_bb0120 article-title: Blooms like it hot publication-title: Science-New York Then Washington doi: 10.1126/science.1155398 – volume: 43 start-page: 24 issue: 1 year: 2006 ident: 10.1016/j.rse.2015.12.023_bb0125 article-title: Trend analysis of time-series phenology of North America derived from satellite data publication-title: GIScience & Remote Sensing doi: 10.2747/1548-1603.43.1.24 – volume: 4 start-page: 361 issue: 2 year: 2011 ident: 10.1016/j.rse.2015.12.023_bb0170 article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of doi: 10.1109/JSTARS.2010.2075916 – year: 2008 ident: 10.1016/j.rse.2015.12.023_bb0085 – volume: 51 start-page: 59 issue: 1 year: 2013 ident: 10.1016/j.rse.2015.12.023_bb0160 article-title: Assessing sediment yield for selected watersheds in the Laurentian Great Lakes Basin under future agricultural scenarios publication-title: Environmental Management doi: 10.1007/s00267-012-9903-9 |
| SSID | ssj0015871 |
| Score | 2.576185 |
| Snippet | In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing... In this study we compared the Savitzky-Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 258 |
| SubjectTerms | algorithms basins cropland crops Great Lakes land cover moderate resolution imaging spectroradiometer MODIS-NDVI Multi-temporal analysis normalized difference vegetation index phenology remote sensing Smoothing algorithms time series analysis Validation |
| Title | An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data |
| URI | https://dx.doi.org/10.1016/j.rse.2015.12.023 https://www.proquest.com/docview/1762359417 https://www.proquest.com/docview/2000318501 |
| Volume | 174 |
| WOSCitedRecordID | wos000368746800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgQXBIGK8tIiIQ5EW8Vv-xhoWoJCimhahdPKu17TVKkT4qQqf4Vfy8x6bSdBrcqBixX5EUf-vszMjr-ZIeRtkEonVXbEUogNmCuBxmGoYgYrBxEFQiS2nkN22g8Gg3A0ir42Gr_LWpjLSZBl4dVVNPuvUMM-ABtLZ_8B7upLYQd8BtBhC7DD9lbAd7KVFt5aAjC-UAxvrfJWfjEFaHRh4uTHdD5enBUNGTBvmTCJes6WxIAaFURGJbfU6YQvR_u9YzbYP-0VIkRmmlpNWqa8rYpxvymAX7VylMYXkuqVaroqo3MW6yTt99i4ThQFLTO1MNEs-O46KwseQ5mKxQ_gW5NaOtAbx6aiQkuAjleTGJZfq7hKw-y4DM3HmmEO3NZsz_YAX99bNbJFs3fjr82xv1xBkZU435vn2A3V8nTWt6htXm-7PTjiByf9Ph92R8N3s58MJ5Lhm3sznuUO2bYDLwKLud3pdUefq3dUXhgU8xjNTy_fmWv14MZdr4t6Nvy_DmqGj8hDsxqhnYJFj0lDZU2y063hgoPG-udNcv9QmQbnTXLvUI-E_vWELDsZrQlHpyldIRytCEdrwlEgHK0JRzcIRzXhaE04uk44ioR7Sk4OusOPn5gZ5sGk4zsLhqPuEl85WKEnrEjCMje0cWkXC1c5kRMplAhbAkIpPxEygoVHG0J3R8jYs4QnnB2ylU0z9YzQGKwLhJ3gpmXoeoEtROpHdhp6KhTYHW2XtMuHzaXpdI8DVya8lDSec8CHIz7csjngs0veV5fMijYvN53slghyE6cW8ScH7t102ZsSbQ42HF_MxZmaLnNuQUTieBE8oevPwZI67HTQtp7f4pwX5EH9N3tJthbzpXpF7srLxTifvzZM_gNkZcun |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+time-series+smoothing+algorithms+for+land-cover+classifications+using+MODIS-NDVI+multi-temporal+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Shao%2C+Yang&rft.au=Lunetta%2C+Ross+S&rft.au=Wheeler%2C+Brandon&rft.au=Iiames%2C+John+S&rft.date=2016-03-01&rft.issn=0034-4257&rft.volume=174+p.258-265&rft.spage=258&rft.epage=265&rft_id=info:doi/10.1016%2Fj.rse.2015.12.023&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |