An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data

In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-serie...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 174; s. 258 - 265
Hlavní autori: Shao, Yang, Lunetta, Ross S., Wheeler, Brandon, Iiames, John S., Campbell, James B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2016
Predmet:
ISSN:0034-4257, 1879-0704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries–Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries–Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn–soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2–6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance. •Four smoothing algorithms were examined for MODIS land-cover classification.•All smoothing algorithms can significantly reduce intra-class variability.•Smoothed data resulted in large inconsistencies of Jeffries–Matusita (JM) measures.•Fourier smoothing algorithm performed best in improving classification accuracy.
AbstractList In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries–Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries–Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn–soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2–6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance. •Four smoothing algorithms were examined for MODIS land-cover classification.•All smoothing algorithms can significantly reduce intra-class variability.•Smoothed data resulted in large inconsistencies of Jeffries–Matusita (JM) measures.•Fourier smoothing algorithm performed best in improving classification accuracy.
In this study we compared the Savitzky-Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing algorithms (noise reduction) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data, to provide continuous phenology data used for land-cover (LC) classifications across the Laurentian Great Lakes Basin (GLB). MODIS 16-day 250m NDVI imagery for the GLB was used in conjunction with National Land Cover Database (NLCD) from 2001, 2006 and 2011, and the Cropland Data Layers (CDL) from 2011 to 2014 to conduct classification evaluations. Inter-class separability was measured by Jeffries-Matusita (JM) distances between selected cover type pairs (both general classes and specific crops), and intra-class variability was measured by calculating simple Euclidean distance for samples within cover types. For the GLB, we found that the application of a smoothing algorithm significantly reduced image noise compared to the raw data. However, the Jeffries-Matusita (JM) measures for smoothed NDVI temporal profiles resulted in large inconsistencies. Of the five algorithms tested, only the Fourier transformation algorithm and Whittaker smoother improved inter-class separability for corn-soybean class pair and significantly improved overall classification accuracy. When compared to the raw NDVI data as input, the overall classification accuracy from the Fourier transformation and Whittaker smoother improved performance by approximately 2-6% for some years. Conversely, the asymmetric Gaussian and double-logistic smoothing algorithms actually led to degradation of classification performance.
Author Campbell, James B.
Lunetta, Ross S.
Iiames, John S.
Shao, Yang
Wheeler, Brandon
Author_xml – sequence: 1
  givenname: Yang
  surname: Shao
  fullname: Shao, Yang
  email: yshao@vt.edu
  organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA
– sequence: 2
  givenname: Ross S.
  surname: Lunetta
  fullname: Lunetta, Ross S.
  organization: U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
– sequence: 3
  givenname: Brandon
  surname: Wheeler
  fullname: Wheeler, Brandon
  organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA
– sequence: 4
  givenname: John S.
  surname: Iiames
  fullname: Iiames, John S.
  organization: U.S. Environmental Protection Agency, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA
– sequence: 5
  givenname: James B.
  surname: Campbell
  fullname: Campbell, James B.
  organization: Virginia Tech, College of Natural Resources and Environment, Geography Department, 115 Major Williams Hall, Blacksburg, VA 24061, USA
BookMark eNqFkU1v1DAURS1UJKaFH8DOSzYJfnYSx2JVtRRGKnTBx9ZynJfWIycebGck_j2eDqsu2tXbnHP1dO85OVvCgoS8B1YDg-7jro4Ja86grYHXjItXZAO9VBWTrDkjG8ZEUzW8lW_IeUo7VsBewoaslwvFg_GryS4sNEw0uxmrhNFhomkOIT-45Z4afx-iyw9zolOI1JtlrGw4YKTWm5Tc5OxjQqJrOvLf7q63P6rv17-3dF59dlXGeR-i8XQ02bwlryfjE777fy_Ir5vPP6--Vrd3X7ZXl7eVFZ3IVdOAHDsUjRAwgLKy63suJVdmaFAooRCYYjBw4N04WKW4YIorMVjTwtAO4oJ8OOXuY_izYsp6dsmiL-9jWJPmrPQCfcvgRRRkx0WrykcFhRNqY0gp4qT30c0m_tXA9HENvdNlDX1cQwPXZY3iyCeOdfmxsRyN88-an04mlqIODqNO1uFicXQRbdZjcM_Y_wBeIaY1
CitedBy_id crossref_primary_10_1016_j_jag_2020_102150
crossref_primary_10_14358_PERS_24_00098R3
crossref_primary_10_1016_j_jag_2025_104734
crossref_primary_10_1016_j_asr_2020_01_028
crossref_primary_10_3390_rs15153782
crossref_primary_10_3390_rs13091630
crossref_primary_10_1007_s11707_018_0713_0
crossref_primary_10_3390_rs8090741
crossref_primary_10_1175_EI_D_18_0018_1
crossref_primary_10_1016_j_srs_2025_100227
crossref_primary_10_1007_s41976_019_00019_5
crossref_primary_10_3390_drones9040235
crossref_primary_10_1016_j_isprsjprs_2020_03_012
crossref_primary_10_1109_TGRS_2025_3568444
crossref_primary_10_3390_su9050724
crossref_primary_10_1080_01431161_2017_1392639
crossref_primary_10_1016_j_rse_2018_11_032
crossref_primary_10_3390_rs9010016
crossref_primary_10_1016_j_ecolind_2024_112027
crossref_primary_10_1016_j_rsase_2022_100843
crossref_primary_10_1016_j_rsase_2021_100622
crossref_primary_10_1007_s10812_019_00874_6
crossref_primary_10_1016_j_compag_2023_107807
crossref_primary_10_1016_j_jag_2019_05_013
crossref_primary_10_1080_22797254_2017_1365570
crossref_primary_10_1016_j_apgeog_2019_102086
crossref_primary_10_1080_01431161_2025_2492411
crossref_primary_10_3390_rs16244801
crossref_primary_10_3389_fpls_2024_1363690
crossref_primary_10_3390_w12051302
crossref_primary_10_3390_rs12172764
crossref_primary_10_1016_j_compag_2019_04_001
crossref_primary_10_1111_1477_8947_12121
crossref_primary_10_1007_s10980_019_00951_3
crossref_primary_10_3390_rs12101546
crossref_primary_10_1016_j_rse_2021_112632
crossref_primary_10_1088_1742_6596_1367_1_012087
crossref_primary_10_3390_rs17121999
crossref_primary_10_1007_s41976_020_00038_7
crossref_primary_10_3390_rs14246390
crossref_primary_10_3390_w12020405
crossref_primary_10_1016_j_isprsjprs_2021_12_001
crossref_primary_10_1080_01431161_2018_1513667
crossref_primary_10_3390_s21041406
crossref_primary_10_1016_j_rse_2019_111322
crossref_primary_10_1080_2150704X_2022_2068985
crossref_primary_10_3390_app10010238
crossref_primary_10_1080_07038992_2020_1801401
crossref_primary_10_3390_f12091206
crossref_primary_10_3390_rs12182888
crossref_primary_10_1109_JSTARS_2018_2870978
crossref_primary_10_1016_j_rse_2020_111745
crossref_primary_10_3390_land12081500
crossref_primary_10_3390_app13095394
crossref_primary_10_3390_rs15133404
crossref_primary_10_3389_fpls_2023_1250844
crossref_primary_10_1088_1755_1315_648_1_012002
crossref_primary_10_1111_rec_70046
crossref_primary_10_3390_rs12071163
crossref_primary_10_1016_j_ecoinf_2018_05_006
crossref_primary_10_1109_TBDATA_2019_2913402
crossref_primary_10_1109_TGRS_2021_3124798
crossref_primary_10_3390_rs14205232
crossref_primary_10_3390_app14188141
crossref_primary_10_3390_rs16091573
crossref_primary_10_3390_rs11161873
crossref_primary_10_1038_sdata_2016_118
crossref_primary_10_3390_agronomy15061438
crossref_primary_10_1016_j_isprsjprs_2024_06_007
crossref_primary_10_1080_2150704X_2018_1519273
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_1016_j_eja_2025_127542
crossref_primary_10_3390_rs11141639
crossref_primary_10_3390_rs12030529
crossref_primary_10_3390_rs16152785
crossref_primary_10_3390_rs10091456
crossref_primary_10_1016_j_compag_2023_107743
crossref_primary_10_1016_j_rsase_2020_100311
crossref_primary_10_1016_j_ecss_2018_08_007
crossref_primary_10_1016_j_isprsjprs_2019_11_008
crossref_primary_10_3390_rs14102341
crossref_primary_10_1016_j_isprsjprs_2019_06_014
crossref_primary_10_1016_j_rse_2025_114918
crossref_primary_10_3390_rs15092303
crossref_primary_10_1016_j_jag_2021_102352
crossref_primary_10_1080_03736245_2020_1795914
crossref_primary_10_1080_22797254_2019_1689852
crossref_primary_10_1007_s12517_021_06815_y
crossref_primary_10_1109_JSTARS_2017_2746185
crossref_primary_10_3390_rs11222647
crossref_primary_10_3390_rs17091599
crossref_primary_10_1016_j_jag_2021_102477
crossref_primary_10_3390_rs12010174
crossref_primary_10_1109_JSTARS_2019_2922469
crossref_primary_10_1029_2021GL092438
crossref_primary_10_15446_ga_v27n2_105057
crossref_primary_10_1016_j_rse_2021_112292
crossref_primary_10_1080_01431161_2020_1771790
crossref_primary_10_1016_j_rse_2024_114511
crossref_primary_10_1016_j_cj_2021_12_013
crossref_primary_10_1016_j_rse_2025_114995
crossref_primary_10_3390_agriculture12010079
crossref_primary_10_1080_00387010_2016_1240088
crossref_primary_10_3390_rs10091322
crossref_primary_10_1016_j_compag_2022_106731
crossref_primary_10_1007_s11273_017_9541_3
crossref_primary_10_1016_j_jag_2025_104404
crossref_primary_10_3390_rs13142716
crossref_primary_10_1016_j_isprsjprs_2022_12_011
crossref_primary_10_1038_s41597_023_02695_x
crossref_primary_10_3390_rs11242916
crossref_primary_10_1007_s41748_024_00432_x
crossref_primary_10_1016_j_isprsjprs_2016_10_009
crossref_primary_10_3390_rs11141665
crossref_primary_10_1080_01431161_2022_2089540
crossref_primary_10_3390_s23187902
crossref_primary_10_3390_rs15133353
crossref_primary_10_3390_w12051504
crossref_primary_10_3390_rs12030506
crossref_primary_10_3390_app12168115
crossref_primary_10_3390_atmos12111459
crossref_primary_10_1016_j_isprsjprs_2024_09_010
crossref_primary_10_1080_2150704X_2019_1648901
crossref_primary_10_1016_j_jag_2022_103021
crossref_primary_10_3390_rs10010099
crossref_primary_10_3390_rs11243041
crossref_primary_10_1016_j_ecolind_2024_111584
crossref_primary_10_1016_j_jag_2023_103504
crossref_primary_10_3390_rs12071199
crossref_primary_10_1109_TGRS_2024_3386171
crossref_primary_10_3390_rs17142490
crossref_primary_10_3389_fenvs_2024_1502208
crossref_primary_10_1016_j_atmosres_2018_10_012
crossref_primary_10_1080_10106049_2024_2387786
crossref_primary_10_1109_TVCG_2020_3030421
crossref_primary_10_3390_rs11101191
crossref_primary_10_1109_MGRS_2020_2998816
crossref_primary_10_3390_rs8040267
crossref_primary_10_3390_rs14010144
crossref_primary_10_3390_rs11192316
crossref_primary_10_1016_j_rse_2020_112124
crossref_primary_10_3390_rs14081929
crossref_primary_10_1080_01431161_2018_1541368
crossref_primary_10_1016_j_ecolind_2024_112167
crossref_primary_10_1016_j_scitotenv_2021_149346
crossref_primary_10_1109_TGRS_2023_3333568
crossref_primary_10_3390_rs13071355
crossref_primary_10_1371_journal_pone_0198171
crossref_primary_10_1007_s10812_017_0520_5
crossref_primary_10_1016_j_jag_2021_102446
crossref_primary_10_1038_s41598_022_24712_6
crossref_primary_10_1080_01431161_2023_2176723
crossref_primary_10_1109_TGRS_2022_3176144
crossref_primary_10_1590_1807_1929_agriambi_v25n4p264_269
crossref_primary_10_3390_rs8090734
crossref_primary_10_3390_su17125424
crossref_primary_10_1016_j_isprsjprs_2016_03_008
crossref_primary_10_1080_01431161_2018_1446567
crossref_primary_10_3390_rs9070688
crossref_primary_10_3390_rs9070722
crossref_primary_10_1016_j_jenvman_2021_113917
crossref_primary_10_1016_j_ecolind_2022_109080
crossref_primary_10_1016_j_rse_2018_11_041
crossref_primary_10_3390_land11111996
Cites_doi 10.1016/j.rse.2005.10.004
10.1080/01431160600967128
10.1080/01431168608948945
10.1109/TGRS.2002.802519
10.2747/1548-1603.43.1.67
10.1080/014311600210191
10.1086/114383
10.14358/PERS.76.1.73
10.1016/j.rse.2005.10.021
10.1021/ac034173t
10.1016/j.jag.2009.11.005
10.1080/10106049.2011.562309
10.1016/j.rse.2012.04.001
10.1016/S0034-4257(02)00078-0
10.1016/j.rse.2008.09.003
10.1016/j.asr.2005.08.037
10.1016/j.rse.2005.03.008
10.1016/0034-4257(91)90017-Z
10.2747/1548-1603.43.1.1
10.1109/JSTARS.2010.2062173
10.1080/17538947.2010.505664
10.1016/j.rse.2006.06.018
10.1016/j.rse.2006.11.021
10.1080/01431161003762405
10.1016/j.cageo.2004.05.006
10.1073/pnas.1216006110
10.1016/0034-4257(91)90048-B
10.1016/j.rse.2010.01.018
10.1007/1-4020-3968-9
10.1016/j.rse.2004.03.014
10.1126/science.1155398
10.2747/1548-1603.43.1.24
10.1109/JSTARS.2010.2075916
10.1007/s00267-012-9903-9
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7QH
7SN
7ST
7U6
7UA
C1K
F1W
H96
L.G
SOI
7S9
L.6
DOI 10.1016/j.rse.2015.12.023
DatabaseName CrossRef
Aqualine
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Ecology Abstracts
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 265
ExternalDocumentID 10_1016_j_rse_2015_12_023
S0034425715302443
GeographicLocations North America, Great Lakes Basin
Great Lakes
GeographicLocations_xml – name: North America, Great Lakes Basin
– name: Great Lakes
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7QH
7SN
7ST
7U6
7UA
C1K
F1W
H96
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c363t-4417d6e34331b19c768827729ab4e3939e10901b2126dbc992309293bca51b5b3
ISICitedReferencesCount 191
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000368746800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Sep 28 09:00:10 EDT 2025
Tue Oct 07 09:47:36 EDT 2025
Tue Nov 18 21:13:51 EST 2025
Sat Nov 29 02:51:17 EST 2025
Fri Feb 23 02:30:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validation
Smoothing algorithms
Multi-temporal analysis
MODIS-NDVI
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-4417d6e34331b19c768827729ab4e3939e10901b2126dbc992309293bca51b5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762359417
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_2000318501
proquest_miscellaneous_1762359417
crossref_primary_10_1016_j_rse_2015_12_023
crossref_citationtrail_10_1016_j_rse_2015_12_023
elsevier_sciencedirect_doi_10_1016_j_rse_2015_12_023
PublicationCentury 2000
PublicationDate 2016-03-01
2016-03-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing of environment
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Beck, Atzberger, Høgda, Johansen, Skidmore (bb0020) 2006; 100
Ma, Veroustraete (bb0105) 2006; 37
Reed (bb0125) 2006; 43
Lunetta, Knight, Ediriwickrema, Lyon, Worthy (bb0095) 2006; 105
NASA (National Aeronautical and Space Administration) (bb0115) 2015
Friedl, McIver, Hodges, Zhang, Muchoney, Strahler, Cooper (bb0045) 2002; 83
Lopez, Jewett, Dortch, Walton, Hudnell (bb0085) 2008
Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bb0145) 2005; 96
Atzberger, Eilers (bb0015) 2011
Boryan, Yang, Mueller, Craig (bb0025) 2011; 26
Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bb0035) 2004; 91
Michalak, Anderson, Beletsky, Boland, Bosch, Bridgeman, Daloğlu (bb0110) 2013; 110
Congalton (bb0130) 1991; 37
Lunetta, Shao, Ediriwickrema, Lyon (bb0100) 2010; 12
Hird, McDermid (bb0060) 2009; 113
Shao, Lunetta, Ediriwickrema, Iiames (bb0155) 2010; 76
Eilers (bb0040) 2003; 75
Shao, Lunetta (bb0150) 2011; 4
Knight, Lunetta, Ediriwickrema, Khorram (bb0080) 2006; 43
Loveland, Reed, Brown, Ohlen, Zhu, Yang, Merchant (bb0090) 2000; 21
Paerl, Huisman (bb0120) 2008; 320
Tan, Morisette, Wolfe, Gao, Ederer, Nightingale, Pedelty (bb0170) 2011; 4
Jönsson, Eklundh (bb0075) 2004; 30
Hermance (bb0055) 2007
Xiao, Boles, Frolking, Li, Babu, Salas, Moore (bb0185) 2006; 100
Atzberger, Eilers (bb0010) 2011; 32
Wardlow, Egbert, Kastens (bb0175) 2007; 108
Bruce, Mathur, Byrd, John (bb0030) 2006; 43
Goward, Markham, Dye, Dulaney, Yang (bb0050) 1991; 35
Jönsson, Eklundh (bb0070) 2002; 40
Shao, Lunetta, Macpherson, Luo, Chen (bb0160) 2013; 51
Roberts, Lehár, Dreher (bb0140) 1987; 93
Holben (bb0065) 1986; 7
Richards, Jia (bb0135) 2006
Atkinson, Jeganathan, Dash, Atzberger (bb0005) 2012; 123
Swets, Reed, Rowland, Marko (bb0165) 1999
Wickham, Stehman, Fry, Smith, Homer (bb0180) 2010; 114
Atzberger (10.1016/j.rse.2015.12.023_bb0010) 2011; 32
Eilers (10.1016/j.rse.2015.12.023_bb0040) 2003; 75
Holben (10.1016/j.rse.2015.12.023_bb0065) 1986; 7
NASA (National Aeronautical and Space Administration) (10.1016/j.rse.2015.12.023_bb0115) 2015
Atzberger (10.1016/j.rse.2015.12.023_bb0015) 2011
Tan (10.1016/j.rse.2015.12.023_bb0170) 2011; 4
Loveland (10.1016/j.rse.2015.12.023_bb0090) 2000; 21
Hird (10.1016/j.rse.2015.12.023_bb0060) 2009; 113
Paerl (10.1016/j.rse.2015.12.023_bb0120) 2008; 320
Knight (10.1016/j.rse.2015.12.023_bb0080) 2006; 43
Hermance (10.1016/j.rse.2015.12.023_bb0055) 2007
Swets (10.1016/j.rse.2015.12.023_bb0165) 1999
Beck (10.1016/j.rse.2015.12.023_bb0020) 2006; 100
Goward (10.1016/j.rse.2015.12.023_bb0050) 1991; 35
Lunetta (10.1016/j.rse.2015.12.023_bb0100) 2010; 12
Atkinson (10.1016/j.rse.2015.12.023_bb0005) 2012; 123
Ma (10.1016/j.rse.2015.12.023_bb0105) 2006; 37
Wardlow (10.1016/j.rse.2015.12.023_bb0175) 2007; 108
Shao (10.1016/j.rse.2015.12.023_bb0150) 2011; 4
Reed (10.1016/j.rse.2015.12.023_bb0125) 2006; 43
Congalton (10.1016/j.rse.2015.12.023_bb0130) 1991; 37
Shao (10.1016/j.rse.2015.12.023_bb0160) 2013; 51
Friedl (10.1016/j.rse.2015.12.023_bb0045) 2002; 83
Wickham (10.1016/j.rse.2015.12.023_bb0180) 2010; 114
Chen (10.1016/j.rse.2015.12.023_bb0035) 2004; 91
Roberts (10.1016/j.rse.2015.12.023_bb0140) 1987; 93
Jönsson (10.1016/j.rse.2015.12.023_bb0070) 2002; 40
Michalak (10.1016/j.rse.2015.12.023_bb0110) 2013; 110
Lunetta (10.1016/j.rse.2015.12.023_bb0095) 2006; 105
Shao (10.1016/j.rse.2015.12.023_bb0155) 2010; 76
Boryan (10.1016/j.rse.2015.12.023_bb0025) 2011; 26
Lopez (10.1016/j.rse.2015.12.023_bb0085) 2008
Bruce (10.1016/j.rse.2015.12.023_bb0030) 2006; 43
Richards (10.1016/j.rse.2015.12.023_bb0135) 2006
Jönsson (10.1016/j.rse.2015.12.023_bb0075) 2004; 30
Sakamoto (10.1016/j.rse.2015.12.023_bb0145) 2005; 96
Xiao (10.1016/j.rse.2015.12.023_bb0185) 2006; 100
References_xml – start-page: 2801
  year: 2007
  end-page: 2819
  ident: bb0055
  article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness
  publication-title: International Journal of Remote Sensing
– volume: 40
  start-page: 1824
  year: 2002
  end-page: 1832
  ident: bb0070
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: Geoscience and Remote Sensing, IEEE Transactions on
– volume: 51
  start-page: 59
  year: 2013
  end-page: 69
  ident: bb0160
  article-title: Assessing sediment yield for selected watersheds in the Laurentian Great Lakes Basin under future agricultural scenarios
  publication-title: Environmental Management
– year: 2006
  ident: bb0135
  article-title: Remote sensing digital image analysis — Hardback
– year: 2015
  ident: bb0115
  article-title: Cyanobacteria Assessment Network (CyAN) for freshwater systems: An early warning indicator for nuisance blumes using ocean color satellite
– volume: 37
  start-page: 35
  year: 1991
  end-page: 46
  ident: bb0130
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sensing of Environment
– volume: 75
  start-page: 3631
  year: 2003
  end-page: 3636
  ident: bb0040
  article-title: A perfect smoother
  publication-title: Analytical Chemistry
– volume: 43
  start-page: 67
  year: 2006
  end-page: 77
  ident: bb0030
  article-title: Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures
  publication-title: GIScience & Remote Sensing
– start-page: 365
  year: 2011
  end-page: 386
  ident: bb0015
  article-title: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America
  publication-title: International Journal of Digital Earth
– year: 2008
  ident: bb0085
  article-title: Scientific assessment of freshwater harmful algal blooms
– volume: 30
  start-page: 833
  year: 2004
  end-page: 845
  ident: bb0075
  article-title: TIMESAT — A program for analyzing time-series of satellite sensor data
  publication-title: Computers & Geosciences
– volume: 96
  start-page: 366
  year: 2005
  end-page: 374
  ident: bb0145
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sensing of Environment
– year: 1999
  ident: bb0165
  article-title: A weighted least-squares approach to temporal smoothing of NDVI 1999 ASPRS Annual Conference, From Image to Information, Portland, Oregon, May 17–21, 1999
  publication-title: Proceedings: Bethesda, Maryland, American Society for Photogrammetry and Remote Sensing, CD-ROM, 1
– volume: 93
  start-page: 968
  year: 1987
  ident: bb0140
  article-title: Time series analysis with clean — Part one — Derivation of a spectrum
  publication-title: The Astronomical Journal
– volume: 123
  start-page: 400
  year: 2012
  end-page: 417
  ident: bb0005
  article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
  publication-title: Remote Sensing of Environment
– volume: 100
  start-page: 321
  year: 2006
  end-page: 334
  ident: bb0020
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
  publication-title: Remote Sensing of Environment
– volume: 100
  start-page: 95
  year: 2006
  end-page: 113
  ident: bb0185
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sensing of Environment
– volume: 105
  start-page: 142
  year: 2006
  end-page: 154
  ident: bb0095
  article-title: Land-cover change detection using multi-temporal MODIS NDVI data
  publication-title: Remote Sensing of Environment
– volume: 320
  start-page: 57
  year: 2008
  ident: bb0120
  article-title: Blooms like it hot
  publication-title: Science-New York Then Washington
– volume: 7
  start-page: 1417
  year: 1986
  end-page: 1434
  ident: bb0065
  article-title: Characteristics of maximum-value composite images from temporal AVHRR data
  publication-title: International Journal of Remote Sensing
– volume: 4
  start-page: 361
  year: 2011
  end-page: 371
  ident: bb0170
  article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
– volume: 91
  start-page: 332
  year: 2004
  end-page: 344
  ident: bb0035
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 248
  year: 2009
  end-page: 258
  ident: bb0060
  article-title: Noise reduction of NDVI time series: An empirical comparison of selected techniques
  publication-title: Remote Sensing of Environment
– volume: 76
  start-page: 73
  year: 2010
  end-page: 84
  ident: bb0155
  article-title: Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 83
  start-page: 287
  year: 2002
  end-page: 302
  ident: bb0045
  article-title: Global land cover mapping from MODIS: Algorithms and early results
  publication-title: Remote Sensing of Environment
– volume: 4
  start-page: 336
  year: 2011
  end-page: 347
  ident: bb0150
  article-title: Sub-pixel mapping of tree canopy, impervious surfaces, and cropland in the Laurentian Great Lakes Basin using MODIS time-series data
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
– volume: 21
  start-page: 1303
  year: 2000
  end-page: 1330
  ident: bb0090
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1
  publication-title: International Journal of Remote Sensing
– volume: 114
  start-page: 1286
  year: 2010
  end-page: 1296
  ident: bb0180
  article-title: Thematic accuracy of the NLCD 2001 land cover for the conterminous United States
  publication-title: Remote Sensing of Environment
– volume: 110
  start-page: 6448
  year: 2013
  end-page: 6452
  ident: bb0110
  article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 3689
  year: 2011
  end-page: 3709
  ident: bb0010
  article-title: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements
  publication-title: International Journal of Remote Sensing
– volume: 12
  start-page: 81
  year: 2010
  end-page: 88
  ident: bb0100
  article-title: Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 35
  start-page: 257
  year: 1991
  end-page: 277
  ident: bb0050
  article-title: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer
  publication-title: Remote Sensing of Environment
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bb0025
  article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
  publication-title: Geocarto International
– volume: 37
  start-page: 835
  year: 2006
  end-page: 840
  ident: bb0105
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Advances in Space Research
– volume: 43
  start-page: 1
  year: 2006
  end-page: 23
  ident: bb0080
  article-title: Regional scale land cover characterization using MODIS-NDVI 250
  publication-title: GIScience & Remote Sensing
– volume: 43
  start-page: 24
  year: 2006
  end-page: 38
  ident: bb0125
  article-title: Trend analysis of time-series phenology of North America derived from satellite data
  publication-title: GIScience & Remote Sensing
– volume: 108
  start-page: 290
  year: 2007
  end-page: 310
  ident: bb0175
  article-title: Analysis of time-series MODIS 250
  publication-title: Remote Sensing of Environment
– volume: 100
  start-page: 95
  issue: 1
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0185
  article-title: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.004
– start-page: 2801
  year: 2007
  ident: 10.1016/j.rse.2015.12.023_bb0055
  article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160600967128
– volume: 7
  start-page: 1417
  issue: 11
  year: 1986
  ident: 10.1016/j.rse.2015.12.023_bb0065
  article-title: Characteristics of maximum-value composite images from temporal AVHRR data
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431168608948945
– volume: 40
  start-page: 1824
  issue: 8
  year: 2002
  ident: 10.1016/j.rse.2015.12.023_bb0070
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: Geoscience and Remote Sensing, IEEE Transactions on
  doi: 10.1109/TGRS.2002.802519
– volume: 43
  start-page: 67
  issue: 1
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0030
  article-title: Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures
  publication-title: GIScience & Remote Sensing
  doi: 10.2747/1548-1603.43.1.67
– volume: 21
  start-page: 1303
  issue: 6–7
  year: 2000
  ident: 10.1016/j.rse.2015.12.023_bb0090
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1km AVHRR data
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311600210191
– volume: 93
  start-page: 968
  year: 1987
  ident: 10.1016/j.rse.2015.12.023_bb0140
  article-title: Time series analysis with clean — Part one — Derivation of a spectrum
  publication-title: The Astronomical Journal
  doi: 10.1086/114383
– volume: 76
  start-page: 73
  issue: 1
  year: 2010
  ident: 10.1016/j.rse.2015.12.023_bb0155
  article-title: Mapping cropland and major crop types across the Great Lakes Basin using MODIS-NDVI data
  publication-title: Photogrammetric Engineering & Remote Sensing
  doi: 10.14358/PERS.76.1.73
– volume: 100
  start-page: 321
  issue: 3
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0020
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.021
– volume: 75
  start-page: 3631
  issue: 14
  year: 2003
  ident: 10.1016/j.rse.2015.12.023_bb0040
  article-title: A perfect smoother
  publication-title: Analytical Chemistry
  doi: 10.1021/ac034173t
– volume: 12
  start-page: 81
  issue: 2
  year: 2010
  ident: 10.1016/j.rse.2015.12.023_bb0100
  article-title: Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2009.11.005
– volume: 26
  start-page: 341
  issue: 5
  year: 2011
  ident: 10.1016/j.rse.2015.12.023_bb0025
  article-title: Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
  publication-title: Geocarto International
  doi: 10.1080/10106049.2011.562309
– volume: 123
  start-page: 400
  year: 2012
  ident: 10.1016/j.rse.2015.12.023_bb0005
  article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.04.001
– volume: 83
  start-page: 287
  issue: 1
  year: 2002
  ident: 10.1016/j.rse.2015.12.023_bb0045
  article-title: Global land cover mapping from MODIS: Algorithms and early results
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00078-0
– volume: 113
  start-page: 248
  issue: 1
  year: 2009
  ident: 10.1016/j.rse.2015.12.023_bb0060
  article-title: Noise reduction of NDVI time series: An empirical comparison of selected techniques
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.09.003
– volume: 37
  start-page: 835
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0105
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Advances in Space Research
  doi: 10.1016/j.asr.2005.08.037
– volume: 96
  start-page: 366
  issue: 3
  year: 2005
  ident: 10.1016/j.rse.2015.12.023_bb0145
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.03.008
– volume: 35
  start-page: 257
  issue: 2
  year: 1991
  ident: 10.1016/j.rse.2015.12.023_bb0050
  article-title: Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(91)90017-Z
– volume: 43
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0080
  article-title: Regional scale land cover characterization using MODIS-NDVI 250m multi-temporal imagery: A phenology-based approach
  publication-title: GIScience & Remote Sensing
  doi: 10.2747/1548-1603.43.1.1
– volume: 4
  start-page: 336
  issue: 2
  year: 2011
  ident: 10.1016/j.rse.2015.12.023_bb0150
  article-title: Sub-pixel mapping of tree canopy, impervious surfaces, and cropland in the Laurentian Great Lakes Basin using MODIS time-series data
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  doi: 10.1109/JSTARS.2010.2062173
– start-page: 365
  year: 2011
  ident: 10.1016/j.rse.2015.12.023_bb0015
  article-title: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2010.505664
– volume: 105
  start-page: 142
  issue: 2
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0095
  article-title: Land-cover change detection using multi-temporal MODIS NDVI data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.06.018
– year: 1999
  ident: 10.1016/j.rse.2015.12.023_bb0165
  article-title: A weighted least-squares approach to temporal smoothing of NDVI 1999 ASPRS Annual Conference, From Image to Information, Portland, Oregon, May 17–21, 1999
– volume: 108
  start-page: 290
  issue: 3
  year: 2007
  ident: 10.1016/j.rse.2015.12.023_bb0175
  article-title: Analysis of time-series MODIS 250m vegetation index data for crop classification in the US Central Great Plains
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.11.021
– volume: 32
  start-page: 3689
  issue: 13
  year: 2011
  ident: 10.1016/j.rse.2015.12.023_bb0010
  article-title: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161003762405
– volume: 30
  start-page: 833
  issue: 8
  year: 2004
  ident: 10.1016/j.rse.2015.12.023_bb0075
  article-title: TIMESAT — A program for analyzing time-series of satellite sensor data
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2004.05.006
– year: 2015
  ident: 10.1016/j.rse.2015.12.023_bb0115
– volume: 110
  start-page: 6448
  issue: 16
  year: 2013
  ident: 10.1016/j.rse.2015.12.023_bb0110
  article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1216006110
– volume: 37
  start-page: 35
  issue: 1
  year: 1991
  ident: 10.1016/j.rse.2015.12.023_bb0130
  article-title: A review of assessing the accuracy of classifications of remotely sensed data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(91)90048-B
– volume: 114
  start-page: 1286
  issue: 6
  year: 2010
  ident: 10.1016/j.rse.2015.12.023_bb0180
  article-title: Thematic accuracy of the NLCD 2001 land cover for the conterminous United States
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.01.018
– year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0135
  doi: 10.1007/1-4020-3968-9
– volume: 91
  start-page: 332
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2015.12.023_bb0035
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.03.014
– volume: 320
  start-page: 57
  issue: 5872
  year: 2008
  ident: 10.1016/j.rse.2015.12.023_bb0120
  article-title: Blooms like it hot
  publication-title: Science-New York Then Washington
  doi: 10.1126/science.1155398
– volume: 43
  start-page: 24
  issue: 1
  year: 2006
  ident: 10.1016/j.rse.2015.12.023_bb0125
  article-title: Trend analysis of time-series phenology of North America derived from satellite data
  publication-title: GIScience & Remote Sensing
  doi: 10.2747/1548-1603.43.1.24
– volume: 4
  start-page: 361
  issue: 2
  year: 2011
  ident: 10.1016/j.rse.2015.12.023_bb0170
  article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
  publication-title: Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
  doi: 10.1109/JSTARS.2010.2075916
– year: 2008
  ident: 10.1016/j.rse.2015.12.023_bb0085
– volume: 51
  start-page: 59
  issue: 1
  year: 2013
  ident: 10.1016/j.rse.2015.12.023_bb0160
  article-title: Assessing sediment yield for selected watersheds in the Laurentian Great Lakes Basin under future agricultural scenarios
  publication-title: Environmental Management
  doi: 10.1007/s00267-012-9903-9
SSID ssj0015871
Score 2.576185
Snippet In this study we compared the Savitzky–Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing...
In this study we compared the Savitzky-Golay, asymmetric Gaussian, double-logistic, Whittaker smoother, and discrete Fourier transformation smoothing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms algorithms
basins
cropland
crops
Great Lakes
land cover
moderate resolution imaging spectroradiometer
MODIS-NDVI
Multi-temporal analysis
normalized difference vegetation index
phenology
remote sensing
Smoothing algorithms
time series analysis
Validation
Title An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data
URI https://dx.doi.org/10.1016/j.rse.2015.12.023
https://www.proquest.com/docview/1762359417
https://www.proquest.com/docview/2000318501
Volume 174
WOSCitedRecordID wos000368746800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgQXBIGK8tIiIQ5EW8Vv-xhoWoJCimhahdPKu17TVKkT4qQqf4Vfy8x6bSdBrcqBixX5EUf-vszMjr-ZIeRtkEonVXbEUogNmCuBxmGoYgYrBxEFQiS2nkN22g8Gg3A0ir42Gr_LWpjLSZBl4dVVNPuvUMM-ABtLZ_8B7upLYQd8BtBhC7DD9lbAd7KVFt5aAjC-UAxvrfJWfjEFaHRh4uTHdD5enBUNGTBvmTCJes6WxIAaFURGJbfU6YQvR_u9YzbYP-0VIkRmmlpNWqa8rYpxvymAX7VylMYXkuqVaroqo3MW6yTt99i4ThQFLTO1MNEs-O46KwseQ5mKxQ_gW5NaOtAbx6aiQkuAjleTGJZfq7hKw-y4DM3HmmEO3NZsz_YAX99bNbJFs3fjr82xv1xBkZU435vn2A3V8nTWt6htXm-7PTjiByf9Ph92R8N3s58MJ5Lhm3sznuUO2bYDLwKLud3pdUefq3dUXhgU8xjNTy_fmWv14MZdr4t6Nvy_DmqGj8hDsxqhnYJFj0lDZU2y063hgoPG-udNcv9QmQbnTXLvUI-E_vWELDsZrQlHpyldIRytCEdrwlEgHK0JRzcIRzXhaE04uk44ioR7Sk4OusOPn5gZ5sGk4zsLhqPuEl85WKEnrEjCMje0cWkXC1c5kRMplAhbAkIpPxEygoVHG0J3R8jYs4QnnB2ylU0z9YzQGKwLhJ3gpmXoeoEtROpHdhp6KhTYHW2XtMuHzaXpdI8DVya8lDSec8CHIz7csjngs0veV5fMijYvN53slghyE6cW8ScH7t102ZsSbQ42HF_MxZmaLnNuQUTieBE8oevPwZI67HTQtp7f4pwX5EH9N3tJthbzpXpF7srLxTifvzZM_gNkZcun
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+time-series+smoothing+algorithms+for+land-cover+classifications+using+MODIS-NDVI+multi-temporal+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Shao%2C+Yang&rft.au=Lunetta%2C+Ross+S&rft.au=Wheeler%2C+Brandon&rft.au=Iiames%2C+John+S&rft.date=2016-03-01&rft.issn=0034-4257&rft.volume=174+p.258-265&rft.spage=258&rft.epage=265&rft_id=info:doi/10.1016%2Fj.rse.2015.12.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon