Hybrid parallelization of molecular dynamics simulations to reduce load imbalance
The most widely used technique to allow for parallel simulations in molecular dynamics is spatial domain decomposition, where the physical geometry is divided into boxes , one per processor. This technique can inherently produce computational load imbalance when either the spatial distribution of pa...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 78; číslo 7; s. 9184 - 9215 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The most widely used technique to allow for parallel simulations in molecular dynamics is spatial domain decomposition, where the physical geometry is divided into
boxes
, one per processor. This technique can inherently produce computational load imbalance when either the spatial distribution of particles or the computational cost per particle is not uniform. This paper shows the benefits of using a hybrid MPI+OpenMP model to deal with this load imbalance. We consider LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), a prototypical molecular dynamics simulator that provides its own balancing mechanism and an OpenMP implementation for many of its modules, allowing for a hybrid setup. In this work, we extend the current OpenMP implementation of LAMMPS and optimize it and evaluate three different setups: MPI-only, MPI with the LAMMPS balance mechanism, and hybrid setup using our improved OpenMP version. This comparison is made using the five standard benchmarks included in the LAMMPS distribution plus two additional test cases. Results show that the hybrid approach can deal with load balancing problems better and more effectively (50% improvement versus MPI-only for a highly imbalanced test case) than the LAMMPS balance mechanism (
only
43% improvement) and improve simulations with issues other than load imbalance. |
|---|---|
| AbstractList | The most widely used technique to allow for parallel simulations in molecular dynamics is spatial domain decomposition, where the physical geometry is divided into boxes, one per processor. This technique can inherently produce computational load imbalance when either the spatial distribution of particles or the computational cost per particle is not uniform. This paper shows the benefits of using a hybrid MPI+OpenMP model to deal with this load imbalance. We consider LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), a prototypical molecular dynamics simulator that provides its own balancing mechanism and an OpenMP implementation for many of its modules, allowing for a hybrid setup. In this work, we extend the current OpenMP implementation of LAMMPS and optimize it and evaluate three different setups: MPI-only, MPI with the LAMMPS balance mechanism, and hybrid setup using our improved OpenMP version. This comparison is made using the five standard benchmarks included in the LAMMPS distribution plus two additional test cases. Results show that the hybrid approach can deal with load balancing problems better and more effectively (50% improvement versus MPI-only for a highly imbalanced test case) than the LAMMPS balance mechanism (only 43% improvement) and improve simulations with issues other than load imbalance. The most widely used technique to allow for parallel simulations in molecular dynamics is spatial domain decomposition, where the physical geometry is divided into boxes , one per processor. This technique can inherently produce computational load imbalance when either the spatial distribution of particles or the computational cost per particle is not uniform. This paper shows the benefits of using a hybrid MPI+OpenMP model to deal with this load imbalance. We consider LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), a prototypical molecular dynamics simulator that provides its own balancing mechanism and an OpenMP implementation for many of its modules, allowing for a hybrid setup. In this work, we extend the current OpenMP implementation of LAMMPS and optimize it and evaluate three different setups: MPI-only, MPI with the LAMMPS balance mechanism, and hybrid setup using our improved OpenMP version. This comparison is made using the five standard benchmarks included in the LAMMPS distribution plus two additional test cases. Results show that the hybrid approach can deal with load balancing problems better and more effectively (50% improvement versus MPI-only for a highly imbalanced test case) than the LAMMPS balance mechanism ( only 43% improvement) and improve simulations with issues other than load imbalance. |
| Author | Morillo, Julian Vassaux, Maxime Coveney, Peter V. Garcia-Gasulla, Marta |
| Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0002-8448-9995 surname: Morillo fullname: Morillo, Julian email: julian.morillo@bsc.es organization: Barcelona Supercomputing Center - Centro Nacional de Supercomputacion – sequence: 2 givenname: Maxime surname: Vassaux fullname: Vassaux, Maxime organization: Centre for Computational Sciences - University College London – sequence: 3 givenname: Peter V. surname: Coveney fullname: Coveney, Peter V. organization: Centre for Computational Sciences - University College London – sequence: 4 givenname: Marta surname: Garcia-Gasulla fullname: Garcia-Gasulla, Marta organization: Barcelona Supercomputing Center - Centro Nacional de Supercomputacion |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKeA59XJRze7RylqhYIIeg7ZJCsp2U1Ndg_115t2BcFDYWCY4X3m471Esz70FqEbAncEQNwnQigVBVBSAKeEF_wMzclSsFxWfIbmUFMoqiWnF-gypS0AcCbYHL2t9010Bu9UVN5b777V4EKPQ4u74K0evYrY7HvVOZ1wcl1uHAQJDwFHa0ZtsQ_KYNc1yqte2yt03iqf7PVvXqCPp8f31brYvD6_rB42hWYlGwpmGg0tyUF1WTFFG650XWvdCEPKShloqa1FrakhDUBjidWlKTmrBREVt2yBbqe5uxi-RpsGuQ1j7PNKScslLQlQXmdVNal0DClF20rthuMHQ1TOSwLyYKCcDJTZQHk0UPKM0n_oLrpOxf1piE1QyuL-08a_q05QP6s8heo |
| CitedBy_id | crossref_primary_10_1093_comjnl_bxae143 crossref_primary_10_1007_s11227_023_05085_7 crossref_primary_10_1088_2631_6331_acc3d5 |
| Cites_doi | 10.1006/jcph.1995.1039 10.1002/adts.201800168 10.1007/s11227-013-0915-x 10.1016/j.jpdc.2013.12.008 10.1109/ICPP.2009.56 10.1002/(SICI)1096-987X 10.1177/1094342003017001005 10.1016/j.cpc.2021.108171 10.1109/SC.2014.58 10.1002/jcc.23591 10.1002/adma.202003213 10.1007/978-3-540-24644-2_20 10.1109/IPDPS.2009.5160973 10.1007/978-3-642-11261-4_11 10.1006/jcph.2000.6501 10.1109/IPDPSW.2012.207 10.1109/SC.2000.10035 10.1016/j.powtec.2015.03.019 10.1137/S1064827595287997 10.1109/PDP50117.2020.00032 10.1080/08927028708080929 10.1016/0010-4655(91)90097-5 10.1016/j.apnum.2004.08.028 10.1177/1094342019842919 10.1007/978-3-030-11987-4_1 10.1109/PDP.2009.43 10.1016/j.parco.2013.05.004 10.1137/S1064827598337373 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-021-04214-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 9215 |
| ExternalDocumentID | 10_1007_s11227_021_04214_4 |
| GrantInformation_xml | – fundername: UK EPSRC for the High-End Computing Consortium grantid: EP/R029598/1 – fundername: European POP CoE grantid: 824080 – fundername: Generalitat de Catalunya grantid: 2017-SGR-1414 funderid: http://dx.doi.org/10.13039/501100002809 – fundername: Horizon 2020 Framework Programme grantid: 800925; 823712 funderid: http://dx.doi.org/10.13039/100010661 – fundername: Spanish Governement (Programa Severo Ochoa) grantid: SEV-2015-0493 – fundername: Spanish Ministry of Science and Technology grantid: TIN2015-65316-P |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c363t-3dbc0f10f12c683a2b4ac99ccb7d168ad0f2e979c2d1b00be1ec6d643971784e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000743018900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:47:25 EDT 2025 Tue Nov 18 21:37:28 EST 2025 Sat Nov 29 04:27:41 EST 2025 Fri Feb 21 02:46:44 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Molecular dynamics Parallel computing Hybrid programming model OpenMP Load Balance MPI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-3dbc0f10f12c683a2b4ac99ccb7d168ad0f2e979c2d1b00be1ec6d643971784e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8448-9995 |
| OpenAccessLink | http://hdl.handle.net/2117/364810 |
| PQID | 2652610249 |
| PQPubID | 2043774 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2652610249 crossref_citationtrail_10_1007_s11227_021_04214_4 crossref_primary_10_1007_s11227_021_04214_4 springer_journals_10_1007_s11227_021_04214_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | LAMMPS documentation, OpenMP section. https://docs.lammps.org/Speed_omp.html. [Online; accessed 04-October-2021] Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Michael Brown W, Crozier PS, in ’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens M, Tranchida J, Trott C, Plimpton SJ (2021) Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications p. 108171. https://doi.org/10.1016/j.cpc.2021.108171. https://www.sciencedirect.com/science/article/pii/S0010465521002836 RabenseifnerRWelleinGCommunication and optimization aspects of parallel programming models on hybrid architecturesInt J High Performance Comput Appl2003171496210.1177/1094342003017001005 Official LAMMPS website, benchmark section: Billion-atom LJ benchmarks. https://www.lammps.org/bench.html#billionl. [Online; accessed 29-September-2021] Harlacher DF, Klimach H, Roller S, Siebert C, Wolf F (2012). Dynamic load balancing for unstructured meshes on space-filling curves. In: 2012 IEEE 26th international parallel and distributed processing symposium workshops & PhD forum, pp 1661–1669. IEEE (2012) Polymer chain melt benchmark. https://www.lammps.org/bench.html#chain. [Online; accessed 08-November-2021] Granular chute flow benchmark. https://www.lammps.org/bench.html#chute. [Online; accessed 08-November-2021] LAMMPS balance command. https://docs.lammps.org/balance.html. [Online; accessed 03-November-2021] FinchamDParallel computers and molecular simulationMol Simul198711–214510.1080/08927028708080929 KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J Sci Comput1998201359392163907310.1137/S1064827595287997 Banchelli F, Peiro K, Querol A, Ramirez-Gargallo G, Ramirez-Miranda G, Vinyals J, Vizcaino P, Garcia-Gasulla M, Mantovani F (2020) Performance study of hpc applications on an arm-based cluster using a generic efficiency model. In: 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 167–174. IEEE Berger R, Kloss C, Kohlmeyer A, Pirker S (2015) Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technology 278:234–247 https://doi.org/10.1016/j.powtec.2015.03.019. https://www.sciencedirect.com/science/article/pii/S0032591015002144 LAMMPS fix balance command. https://docs.lammps.org/fix_balance.html. [Online; accessed 03-November-2021] Barcelona Supercomputing Center: Paraver. https://tools.bsc.es/paraver. [Online; accessed 03-November-2021] DevineKDBomanEGHeaphyRTHendricksonBATerescoJDFaikJFlahertyJEGervasioLGNew challenges in dynamic load balancingAppl Numer Math2005522–3133152211690810.1016/j.apnum.2004.08.028 Barcelona Supercomputing Center: Extrae. https://tools.bsc.es/extrae. [Online; accessed 03-November-2021] Lennard-Jones liquid benchmark. https://www.lammps.org/bench.html#lj. [Online; accessed 08-November-2021] Acun B, Gupta A, Jain N, Langer A, Menon H, Mikida E, Ni X, Robson M, Sun Y, Totoni E et al (2014) Parallel programming with migratable objects: Charm++ in practice. In: SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp 647–658. IEEE Smith W (1991) Molecular dynamics on hypercube parallel computers. Comput Phys Commun. 62(2):229–248 https://doi.org/10.1016/0010-4655(91)90097-5. http://www.sciencedirect.com/science/article/pii/0010465591900975 Wagner M, Mohr S, Giménez J, Labarta J (2017) A structured approach to performance analysis. In: International Workshop on Parallel Tools for High Performance Computing, pp 1–15. Springer PlimptonSHendricksonBA new parallel method for molecular dynamics simulation of macromolecular systemsJ Comput Chem199617332633710.1002/(SICI)1096-987X KunasethMRichardsDGlosliJKaliaRNakanoAVashishtaPAnalysis of scalable data-privatization threading algorithms for hybrid mpi/openmp parallelization of molecular dynamicsJ Supercomput20136640643010.1007/s11227-013-0915-x Rabenseifner R, Hager G, Jost G (2009) Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp 427–436. https://doi.org/10.1109/PDP.2009.43 Garcia M, Corbalan J, Labarta, J (2009) LeWI: A Runtime Balancing Algorithm for Nested Parallelism. In: Proceedings of the International Conference on Parallel Processing (ICPP09) Vassaux M, Sinclair RC, Richardson RA, Suter JL, Coveney PV (2019) The role of graphene in enhancing the material properties of thermosetting polymers. Adv Theor Simulations. 2(5):1800168 https://doi.org/10.1002/adts.201800168. https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.201800168 Rabenseifner R, Hager G, Jost G (2009) Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp 427–436. IEEE POP (Performance Optimisation and Productivity, A Centre of Excellence in HPC. Patterns, Loop iterations manually distributed. https://co-design.pop-coe.eu/patterns/loop-manual-distribution.html. [Online; accessed 04-October-2021] Schloegel K, Karypis G, Kumar V (2000) A unified algorithm for load-balancing adaptive scientific simulations. In: SC’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pp 59–59. IEEE (2000) Adaptive MPI - Using Existing MPI Codes with AMPI. https://charm.readthedocs.io/en/latest/ampi/03-using.html. [Online; accessed 04-November-2021] Jung J, Mori T, Sugita Y (2014) Midpoint cell method for hybrid (mpi+openmp) parallelization of molecular dynamics simulations. J Comput Chem. 35(14):1064–1072 https://doi.org/10.1002/jcc.23591. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23591 WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J Sci Comput20002216380176952610.1137/S1064827598337373 LAMMPS website. https://www.lammps.org/. [Online; accessed 08-November-2021] GROMACS. https://www.gromacs.org/. [Online; accessed 04-November-2021] TerpstraDJagodeHYouHDongarraJMüllerMSReschMMSchulzANagelWECollecting performance data with papi-cTools for High Performance Computing 20092010BerlinSpringer15717310.1007/978-3-642-11261-4_11 Pillet V, Labarta J, Cortes T, Girona S (1995) Paraver: A tool to visualize and analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Developments, 44, pp 17–31 Marenostrum4. https://www.bsc.es/marenostrum/marenostrum. [Online; accessed 03-November-2021] Pal A, Agarwala A, Raha S, Bhattacharya B (2014) Performance metrics in a hybrid mpi-openmp based molecular dynamics simulation with short-range interactions. J Parallel Distribut Comput. 74(3):2203–2214 https://doi.org/10.1016/j.jpdc.2013.12.008. https://www.sciencedirect.com/science/article/pii/S0743731513002505 PlimptonSFast parallel algorithms for short-range molecular dynamicsJ Comput Phys1995117111910.1006/jcph.1995.1039 ServatHFramework for a productive performance optimizationParallel Comput201339833635310.1016/j.parco.2013.05.004 Garcia-GasullaMMantovaniFJosep-FabregoMEguzkitzaBHouzeauxGRuntime mechanisms to survive new hpc architectures: a use case in human respiratory simulationsInt J High Performance Comput Appl2020341425610.1177/1094342019842919 Suter JL, Sinclair RC, Coveney PV (2020) Principles governing control of aggregation and dispersion of graphene and graphene oxide in polymer melts. Adv Mater. 32(36):2003213 https://doi.org/10.1002/adma.202003213. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003213 LAMMPS release 20 Nov 2019. https://github.com/lammps/lammps/releases/tag/patch_20Nov2019. [Online; accessed 08-November-2021] Plimpton S, Pollock R, Stevens M (2000) Particle-mesh ewald and rrespa for parallel molecular dynamics simulations. In: Proceeding 8th SIAM Conference on Parallel Processing for Scientific Computing Etinski M, Corbalan J, Labarta J, Valero M, Veidenbaum A (2009). Power-aware load balancing of large scale mpi applications. In: 2009 IEEE international symposium on parallel & distributed processing, pp 1–8. IEEE NAMD Scalable Molecular Dynamics. https://www.ks.uiuc.edu/Research/namd/. [Online; accessed 04-November-2021] Huang C, Lawlor O, Kale LV (2003) Adaptive mpi. In: international workshop on languages and compilers for parallel computing, pp. 306–322. Springer Deng Y, Peierls RF, Rivera C (2000) An Adaptive Load Balancing Method for Parallel Molecular Dynamics Simulations. Journal of Computational Physics 161(1):250–263 https://doi.org/10.1006/jcph.2000.6501. http://www.sciencedirect.com/science/article/pii/S002199910096501X OpenMP. https://www.openmp.org/. [Online; accessed 03-November-2021] Rhodopsin protein benchmark. https://www.lammps.org/bench.html#rhodo. [Online; accessed 08-November-2021] EAM metallic solid benchmark. https://www.lammps.org/bench.html#eam. [Online; accessed 08-November-2021] R Rabenseifner (4214_CR19) 2003; 17 4214_CR42 4214_CR41 4214_CR44 4214_CR43 4214_CR46 S Plimpton (4214_CR2) 1995; 117 D Terpstra (4214_CR40) 2010 4214_CR48 4214_CR49 S Plimpton (4214_CR47) 1996; 17 4214_CR50 4214_CR11 4214_CR10 4214_CR13 4214_CR12 M Kunaseth (4214_CR21) 2013; 66 M Garcia-Gasulla (4214_CR17) 2020; 34 KD Devine (4214_CR3) 2005; 52 4214_CR15 4214_CR14 4214_CR16 4214_CR18 4214_CR20 4214_CR22 4214_CR24 4214_CR23 D Fincham (4214_CR45) 1987; 1 H Servat (4214_CR39) 2013; 39 4214_CR8 4214_CR5 4214_CR9 4214_CR26 G Karypis (4214_CR7) 1998; 20 4214_CR25 4214_CR28 4214_CR27 4214_CR4 4214_CR29 4214_CR1 4214_CR31 4214_CR30 4214_CR33 4214_CR32 4214_CR35 4214_CR34 C Walshaw (4214_CR6) 2000; 22 4214_CR37 4214_CR36 4214_CR38 |
| References_xml | – reference: Rabenseifner R, Hager G, Jost G (2009) Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp 427–436. IEEE – reference: RabenseifnerRWelleinGCommunication and optimization aspects of parallel programming models on hybrid architecturesInt J High Performance Comput Appl2003171496210.1177/1094342003017001005 – reference: ServatHFramework for a productive performance optimizationParallel Comput201339833635310.1016/j.parco.2013.05.004 – reference: FinchamDParallel computers and molecular simulationMol Simul198711–214510.1080/08927028708080929 – reference: Schloegel K, Karypis G, Kumar V (2000) A unified algorithm for load-balancing adaptive scientific simulations. In: SC’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pp 59–59. IEEE (2000) – reference: Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Michael Brown W, Crozier PS, in ’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens M, Tranchida J, Trott C, Plimpton SJ (2021) Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications p. 108171. https://doi.org/10.1016/j.cpc.2021.108171. https://www.sciencedirect.com/science/article/pii/S0010465521002836 – reference: TerpstraDJagodeHYouHDongarraJMüllerMSReschMMSchulzANagelWECollecting performance data with papi-cTools for High Performance Computing 20092010BerlinSpringer15717310.1007/978-3-642-11261-4_11 – reference: Garcia M, Corbalan J, Labarta, J (2009) LeWI: A Runtime Balancing Algorithm for Nested Parallelism. In: Proceedings of the International Conference on Parallel Processing (ICPP09) – reference: DevineKDBomanEGHeaphyRTHendricksonBATerescoJDFaikJFlahertyJEGervasioLGNew challenges in dynamic load balancingAppl Numer Math2005522–3133152211690810.1016/j.apnum.2004.08.028 – reference: KarypisGKumarVA fast and high quality multilevel scheme for partitioning irregular graphsSIAM J Sci Comput1998201359392163907310.1137/S1064827595287997 – reference: Rhodopsin protein benchmark. https://www.lammps.org/bench.html#rhodo. [Online; accessed 08-November-2021] – reference: Etinski M, Corbalan J, Labarta J, Valero M, Veidenbaum A (2009). Power-aware load balancing of large scale mpi applications. In: 2009 IEEE international symposium on parallel & distributed processing, pp 1–8. IEEE – reference: Pal A, Agarwala A, Raha S, Bhattacharya B (2014) Performance metrics in a hybrid mpi-openmp based molecular dynamics simulation with short-range interactions. J Parallel Distribut Comput. 74(3):2203–2214 https://doi.org/10.1016/j.jpdc.2013.12.008. https://www.sciencedirect.com/science/article/pii/S0743731513002505 – reference: Plimpton S, Pollock R, Stevens M (2000) Particle-mesh ewald and rrespa for parallel molecular dynamics simulations. In: Proceeding 8th SIAM Conference on Parallel Processing for Scientific Computing – reference: LAMMPS website. https://www.lammps.org/. [Online; accessed 08-November-2021] – reference: Barcelona Supercomputing Center: Paraver. https://tools.bsc.es/paraver. [Online; accessed 03-November-2021] – reference: NAMD Scalable Molecular Dynamics. https://www.ks.uiuc.edu/Research/namd/. [Online; accessed 04-November-2021] – reference: EAM metallic solid benchmark. https://www.lammps.org/bench.html#eam. [Online; accessed 08-November-2021] – reference: KunasethMRichardsDGlosliJKaliaRNakanoAVashishtaPAnalysis of scalable data-privatization threading algorithms for hybrid mpi/openmp parallelization of molecular dynamicsJ Supercomput20136640643010.1007/s11227-013-0915-x – reference: Suter JL, Sinclair RC, Coveney PV (2020) Principles governing control of aggregation and dispersion of graphene and graphene oxide in polymer melts. Adv Mater. 32(36):2003213 https://doi.org/10.1002/adma.202003213. https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202003213 – reference: LAMMPS release 20 Nov 2019. https://github.com/lammps/lammps/releases/tag/patch_20Nov2019. [Online; accessed 08-November-2021] – reference: Berger R, Kloss C, Kohlmeyer A, Pirker S (2015) Hybrid parallelization of the LIGGGHTS open-source DEM code. Powder Technology 278:234–247 https://doi.org/10.1016/j.powtec.2015.03.019. https://www.sciencedirect.com/science/article/pii/S0032591015002144 – reference: LAMMPS documentation, OpenMP section. https://docs.lammps.org/Speed_omp.html. [Online; accessed 04-October-2021] – reference: Official LAMMPS website, benchmark section: Billion-atom LJ benchmarks. https://www.lammps.org/bench.html#billionl. [Online; accessed 29-September-2021] – reference: Barcelona Supercomputing Center: Extrae. https://tools.bsc.es/extrae. [Online; accessed 03-November-2021] – reference: WalshawCCrossMMesh partitioning: a multilevel balancing and refinement algorithmSIAM J Sci Comput20002216380176952610.1137/S1064827598337373 – reference: Wagner M, Mohr S, Giménez J, Labarta J (2017) A structured approach to performance analysis. In: International Workshop on Parallel Tools for High Performance Computing, pp 1–15. Springer – reference: Smith W (1991) Molecular dynamics on hypercube parallel computers. Comput Phys Commun. 62(2):229–248 https://doi.org/10.1016/0010-4655(91)90097-5. http://www.sciencedirect.com/science/article/pii/0010465591900975 – reference: LAMMPS balance command. https://docs.lammps.org/balance.html. [Online; accessed 03-November-2021] – reference: Garcia-GasullaMMantovaniFJosep-FabregoMEguzkitzaBHouzeauxGRuntime mechanisms to survive new hpc architectures: a use case in human respiratory simulationsInt J High Performance Comput Appl2020341425610.1177/1094342019842919 – reference: GROMACS. https://www.gromacs.org/. [Online; accessed 04-November-2021] – reference: Vassaux M, Sinclair RC, Richardson RA, Suter JL, Coveney PV (2019) The role of graphene in enhancing the material properties of thermosetting polymers. Adv Theor Simulations. 2(5):1800168 https://doi.org/10.1002/adts.201800168. https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.201800168 – reference: Pillet V, Labarta J, Cortes T, Girona S (1995) Paraver: A tool to visualize and analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam Developments, 44, pp 17–31 – reference: Deng Y, Peierls RF, Rivera C (2000) An Adaptive Load Balancing Method for Parallel Molecular Dynamics Simulations. Journal of Computational Physics 161(1):250–263 https://doi.org/10.1006/jcph.2000.6501. http://www.sciencedirect.com/science/article/pii/S002199910096501X – reference: PlimptonSHendricksonBA new parallel method for molecular dynamics simulation of macromolecular systemsJ Comput Chem199617332633710.1002/(SICI)1096-987X – reference: Acun B, Gupta A, Jain N, Langer A, Menon H, Mikida E, Ni X, Robson M, Sun Y, Totoni E et al (2014) Parallel programming with migratable objects: Charm++ in practice. In: SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp 647–658. IEEE – reference: Huang C, Lawlor O, Kale LV (2003) Adaptive mpi. In: international workshop on languages and compilers for parallel computing, pp. 306–322. Springer – reference: Jung J, Mori T, Sugita Y (2014) Midpoint cell method for hybrid (mpi+openmp) parallelization of molecular dynamics simulations. J Comput Chem. 35(14):1064–1072 https://doi.org/10.1002/jcc.23591. https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.23591 – reference: Granular chute flow benchmark. https://www.lammps.org/bench.html#chute. [Online; accessed 08-November-2021] – reference: LAMMPS fix balance command. https://docs.lammps.org/fix_balance.html. [Online; accessed 03-November-2021] – reference: Lennard-Jones liquid benchmark. https://www.lammps.org/bench.html#lj. [Online; accessed 08-November-2021] – reference: POP (Performance Optimisation and Productivity, A Centre of Excellence in HPC. Patterns, Loop iterations manually distributed. https://co-design.pop-coe.eu/patterns/loop-manual-distribution.html. [Online; accessed 04-October-2021] – reference: OpenMP. https://www.openmp.org/. [Online; accessed 03-November-2021] – reference: Banchelli F, Peiro K, Querol A, Ramirez-Gargallo G, Ramirez-Miranda G, Vinyals J, Vizcaino P, Garcia-Gasulla M, Mantovani F (2020) Performance study of hpc applications on an arm-based cluster using a generic efficiency model. In: 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 167–174. IEEE – reference: Adaptive MPI - Using Existing MPI Codes with AMPI. https://charm.readthedocs.io/en/latest/ampi/03-using.html. [Online; accessed 04-November-2021] – reference: Rabenseifner R, Hager G, Jost G (2009) Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp 427–436. https://doi.org/10.1109/PDP.2009.43 – reference: Marenostrum4. https://www.bsc.es/marenostrum/marenostrum. [Online; accessed 03-November-2021] – reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ Comput Phys1995117111910.1006/jcph.1995.1039 – reference: Harlacher DF, Klimach H, Roller S, Siebert C, Wolf F (2012). Dynamic load balancing for unstructured meshes on space-filling curves. In: 2012 IEEE 26th international parallel and distributed processing symposium workshops & PhD forum, pp 1661–1669. IEEE (2012) – reference: Polymer chain melt benchmark. https://www.lammps.org/bench.html#chain. [Online; accessed 08-November-2021] – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 4214_CR2 publication-title: J Comput Phys doi: 10.1006/jcph.1995.1039 – ident: 4214_CR36 doi: 10.1002/adts.201800168 – ident: 4214_CR14 – volume: 66 start-page: 406 year: 2013 ident: 4214_CR21 publication-title: J Supercomput doi: 10.1007/s11227-013-0915-x – ident: 4214_CR23 doi: 10.1016/j.jpdc.2013.12.008 – ident: 4214_CR16 doi: 10.1109/ICPP.2009.56 – ident: 4214_CR10 – volume: 17 start-page: 326 issue: 3 year: 1996 ident: 4214_CR47 publication-title: J Comput Chem doi: 10.1002/(SICI)1096-987X – ident: 4214_CR28 – ident: 4214_CR24 – ident: 4214_CR30 – volume: 17 start-page: 49 issue: 1 year: 2003 ident: 4214_CR19 publication-title: Int J High Performance Comput Appl doi: 10.1177/1094342003017001005 – ident: 4214_CR1 doi: 10.1016/j.cpc.2021.108171 – ident: 4214_CR13 doi: 10.1109/SC.2014.58 – ident: 4214_CR22 doi: 10.1002/jcc.23591 – ident: 4214_CR38 – ident: 4214_CR37 doi: 10.1002/adma.202003213 – ident: 4214_CR34 – ident: 4214_CR12 doi: 10.1007/978-3-540-24644-2_20 – ident: 4214_CR15 doi: 10.1109/IPDPS.2009.5160973 – ident: 4214_CR27 – start-page: 157 volume-title: Tools for High Performance Computing 2009 year: 2010 ident: 4214_CR40 doi: 10.1007/978-3-642-11261-4_11 – ident: 4214_CR4 doi: 10.1006/jcph.2000.6501 – ident: 4214_CR33 – ident: 4214_CR50 – ident: 4214_CR35 – ident: 4214_CR41 – ident: 4214_CR8 doi: 10.1109/IPDPSW.2012.207 – ident: 4214_CR9 doi: 10.1109/SC.2000.10035 – ident: 4214_CR20 doi: 10.1016/j.powtec.2015.03.019 – ident: 4214_CR49 – volume: 20 start-page: 359 issue: 1 year: 1998 ident: 4214_CR7 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827595287997 – ident: 4214_CR26 – ident: 4214_CR32 – ident: 4214_CR44 doi: 10.1109/PDP50117.2020.00032 – volume: 1 start-page: 1 issue: 1–2 year: 1987 ident: 4214_CR45 publication-title: Mol Simul doi: 10.1080/08927028708080929 – ident: 4214_CR46 doi: 10.1016/0010-4655(91)90097-5 – ident: 4214_CR42 – volume: 52 start-page: 133 issue: 2–3 year: 2005 ident: 4214_CR3 publication-title: Appl Numer Math doi: 10.1016/j.apnum.2004.08.028 – ident: 4214_CR11 – ident: 4214_CR5 – volume: 34 start-page: 42 issue: 1 year: 2020 ident: 4214_CR17 publication-title: Int J High Performance Comput Appl doi: 10.1177/1094342019842919 – ident: 4214_CR43 doi: 10.1007/978-3-030-11987-4_1 – ident: 4214_CR18 doi: 10.1109/PDP.2009.43 – ident: 4214_CR31 – ident: 4214_CR48 doi: 10.1109/PDP.2009.43 – ident: 4214_CR29 – ident: 4214_CR25 – volume: 39 start-page: 336 issue: 8 year: 2013 ident: 4214_CR39 publication-title: Parallel Comput doi: 10.1016/j.parco.2013.05.004 – volume: 22 start-page: 63 issue: 1 year: 2000 ident: 4214_CR6 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827598337373 |
| SSID | ssj0004373 |
| Score | 2.3052695 |
| Snippet | The most widely used technique to allow for parallel simulations in molecular dynamics is spatial domain decomposition, where the physical geometry is divided... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9184 |
| SubjectTerms | Compilers Computer Science Computing costs Domain decomposition methods Interpreters Microprocessors Molecular dynamics Processor Architectures Programming Languages Simulation Spatial distribution |
| Title | Hybrid parallelization of molecular dynamics simulations to reduce load imbalance |
| URI | https://link.springer.com/article/10.1007/s11227-021-04214-4 https://www.proquest.com/docview/2652610249 |
| Volume | 78 |
| WOSCitedRecordID | wos000743018900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66evDi-sTVVXLwpoHm0TY9irh4kMXnsreS5gEL3a1sq-C_N2lTi6KCQm9N0zKZ6Xxt5psPgFPKtUUNoUFZwA1ioREocZU5Slo0krifY7UWweQmHo_5dJrcelJY2Va7t1uS9Zu6I7thQmLkSgqso2GG2CpYs-mOu3C8f5h0bEja7CvbOyEeMuKpMt_P8TkddRjzy7ZonW1G_f895xbY9OgSXjTusA1W9GIH9FvlBugDeRfcXb85phZ0jb_zXOeejAkLA-etXi5UjVh9CcvZ3It8lbAq4NJ1e9UwL4SCs3nmaiOl3gNPo6vHy2vkxRWQpBGtEFWZDAy2B5ERp4JkTNj1kTKLFY64UIEhOokTSRS2oZlprGWkavyCY8403Qe9RbHQBwByCwGo4MKoyLCA0kRYFGG4NDKgSstsAHBr41T6zuNOACNPu57JzmaptVla2yxlA3D2cc1z03fj19HDdulSH4NlSqLQfh66logDcN4uVXf659kO_zb8CGwQx4moqyCHoFctX_QxWJev1axcntS--Q4itNzW |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecXp1Dz4poE26SV9FHFMnMPLHHsrbS4w6DZZq-C_N-lSi6KCQh8KTdNyck7zpTnf-QBOKZMaNfgKpw5T2PNVgiOTmSO4RiOR-TlWahEMe2G_z0aj6M6SwvIq273akiy_1DXZzSUkxCalQDua62FvGVb0iW8S-R4ehzUbki72lfWTMPM9Yqky3_fxeTqqMeaXbdFytuk0__eem7Bh0SW6WLjDFizJ6TY0K-UGZAN5B-67b4aphUzh7yyTmSVjoplCk0ovF4mFWH2O8vHEinzlqJihuan2KlE2SwQaT1KTG8nlLjx1rgaXXWzFFTCnAS0wFSl3lKsPwgNGE5J6iR4fztNQuAFLhKOIjMKIE-Hq0EylK3kgSvzihsyTdA8a09lU7gNiGgLQhCVKBMpzKI0SjSIU44o7VEietsCtbBxzW3ncCGBkcV0z2dgs1jaLS5vFXgvOPu55XtTd-LV1uxq62MZgHpPA18tDUxKxBefVUNWXf-7t4G_NT2CtO7jtxb3r_s0hrBPDjygzItvQKOYv8ghW-WsxzufHpZ--A4WP37o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwGP3QKeKL84rTqXnwTYNtkrXpo6hjogxFHXsrbS4w6C6sVfDfm_RiVVQQoW9N0_IlISf9vnMOwDHlyqCGjsaxwzVmHR3hwFbmSGHQSGB_juVeBINbv9_nw2Fw94HFn1e7VynJgtNgVZom2dlM6rOa-OYS4mNbXmAmncswW4QlZk2D7Hn9YVAzI2mRYzZvxbzDSEmb-b6Pz1tTjTe_pEjznafb_P83r8NaiTrReTFNNmBBTTahWTk6oHKBb8F979UyuJAVBE8SlZQkTTTVaFz56CJZmNinKB2NS_OvFGVTNLcqsAol00ii0Ti2NZNCbcNT9-rxoodL0wUsqEczTGUsHO2aiwiP04jELDLjJkTsS9fjkXQ0UYEfCCJds2Rj5SrhyRzXuD5niu5AYzKdqF1A3EADGvFIS08zh9IgMuhCc6GFQ6UScQvcKt6hKBXJrTFGEtZayjZmoYlZmMcsZC04eX9mVuhx_Nq6XQ1jWK7NNCRexxwbrVRiC06rYatv_9zb3t-aH8HK3WU3vL3u3-zDKrG0ibxQsg2NbP6sDmBZvGSjdH6YT9k36Dzong |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+parallelization+of+molecular+dynamics+simulations+to+reduce+load+imbalance&rft.jtitle=The+Journal+of+supercomputing&rft.au=Morillo%2C+Julian&rft.au=Vassaux%2C+Maxime&rft.au=Coveney%2C+Peter+V.&rft.au=Garcia-Gasulla%2C+Marta&rft.date=2022-05-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=7&rft.spage=9184&rft.epage=9215&rft_id=info:doi/10.1007%2Fs11227-021-04214-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_021_04214_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |