A surrogate-based cooperative optimization framework for computationally expensive black-box problems
Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimizat...
Gespeichert in:
| Veröffentlicht in: | Optimization and engineering Jg. 21; H. 3; S. 1053 - 1093 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.09.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1389-4420, 1573-2924 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a
Sequential Multipoint Infill Sampling Algorithm
(SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the
ε
-constrained method, revisiting the Parallel
Constrained Optimization using Response Surfaces
(CORS-RBF) method and the
Efficient Global Optimization with Pseudo Expected Improvement
(EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the
Lower Confidence Bound-based
(LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors. |
|---|---|
| AbstractList | Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the ε-constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors. Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the $$\varepsilon $$ ε -constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors. Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the ε -constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors. |
| Author | Codina, Esteve García-Ródenas, Ricardo García-García, José Carlos |
| Author_xml | – sequence: 1 givenname: José Carlos surname: García-García fullname: García-García, José Carlos email: josecarlos.garcia@uclm.es organization: Departamento de Matemáticas, Escuela Superior de Informática, Universidad de Castilla-La Mancha, Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha – sequence: 2 givenname: Ricardo surname: García-Ródenas fullname: García-Ródenas, Ricardo organization: Departamento de Matemáticas, Escuela Superior de Informática, Universidad de Castilla-La Mancha, Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha – sequence: 3 givenname: Esteve surname: Codina fullname: Codina, Esteve organization: Estadística i Investigació Operativa, Universitat Politécnica de Catalunya |
| BookMark | eNp9kMtOwzAQRS1UJFrgB1hFYm2wx4ntLKuKl1SJDawtx3GqtEkc7BRavh63QUJi0dXMaO6Zx52hSec6i9ANJXeUEHEfKCWSYgIEkzwDjsUZmtJMMAw5pJOYM5njNAVygWYhrAmhPAM5RXaehK33bqUHiwsdbJkY53rr9VB_2sT1Q93W37FwXVJ53dov5zdJ5XyUtf12OHZ00-wTu-ttFw5Q0WizwYXbJb13RWPbcIXOK90Ee_0bL9H748Pb4hkvX59eFvMlNoyzAbNSZgaokRZAV5zkQLMCCGMlF6mmuRVUl0ZQk3NeFlklgUhCc80ZFFRQwS7R7Tg3Lv7Y2jCotdv6eF9QkELGIeUiiyo5qox3IXhbKVOPjwxe142iRB1MVaOpKpqqjqaqwwL4h_a-brXfn4bYCIUo7lbW_111gvoBaNqNAQ |
| CitedBy_id | crossref_primary_10_1016_j_apm_2022_03_031 crossref_primary_10_1109_TVT_2025_3532752 crossref_primary_10_1080_0305215X_2021_2004409 crossref_primary_10_1007_s11081_022_09740_5 |
| Cites_doi | 10.1155/2016/9420460 10.1145/2463372.2465805 10.2118/163676-PA 10.1023/A:1008306431147 10.1016/j.asoc.2019.03.011 10.1016/j.paerosci.2008.11.001 10.1111/itor.12292 10.1109/TEVC.2013.2248012 10.1109/CEC.2011.5949881 10.1109/TEVC.2018.2869247 10.1007/978-3-642-10701-6_6 10.1287/ijoc.1060.0182 10.1007/978-3-319-09584-4_17 10.1007/s10898-012-9892-5 10.1109/4235.585893 10.1007/s10898-016-0407-7 10.1162/evco_a_00214 10.1007/3-540-58484-6_269 10.1007/s11081-009-9087-1 10.1109/SSCI.2016.7850221 10.1109/TEVC.2005.859463 10.1007/BF02564711 10.1007/s10898-016-0484-7 10.1007/s10898-006-9040-1 10.1109/CEC.2017.7969396 10.1007/s00158-016-1432-3 10.1109/TEVC.2017.2694221 10.1007/3-540-50871-6 10.1145/3319619.3328527 10.1007/s00158-004-0397-9 10.1080/0305215X.2011.637556 10.1007/s00158-016-1546-7 10.1109/CEC.2019.8790114 10.1016/0378-3758(90)90122-B 10.1016/S0378-3758(00)00105-1 10.1287/ijoc.1090.0325 10.1023/A:1011255519438 10.1287/mnsc.12.7.609 10.1016/j.ejor.2006.08.040 10.1007/s10898-004-0570-0 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1007/s11081-020-09526-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2924 |
| EndPage | 1093 |
| ExternalDocumentID | 10_1007_s11081_020_09526_7 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS S0W 7TB 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c363t-3d85c21c8e22af609215b2033d674a19e71adc71c966db5f8208019a632b17173 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545068500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-4420 |
| IngestDate | Thu Sep 25 00:45:36 EDT 2025 Tue Nov 18 22:28:08 EST 2025 Sat Nov 29 01:39:09 EST 2025 Fri Feb 21 02:33:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Cooperative optimization Expected improvement Radial basis functions Parallel surrogate-based optimization Black-box function |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-3d85c21c8e22af609215b2033d674a19e71adc71c966db5f8208019a632b17173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s11081-020-09526-7 |
| PQID | 2425624675 |
| PQPubID | 326265 |
| PageCount | 41 |
| ParticipantIDs | proquest_journals_2425624675 crossref_citationtrail_10_1007_s11081_020_09526_7 crossref_primary_10_1007_s11081_020_09526_7 springer_journals_10_1007_s11081_020_09526_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
| PublicationTitle | Optimization and engineering |
| PublicationTitleAbbrev | Optim Eng |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | RegisRGShoemakerCAParallel radial basis function methods for the global optimization of expensive functionsEur J Oper Res20071822514535232454510.1016/j.ejor.2006.08.040 García-Ródenas R, Linares LJ, López-Gómez JA (2017) A cooperative brain storm optimization algorithm. In: 2017 IEEE congress on evolutionary computation (CEC), pp 838–845 ParrJMKeaneAJForresterAIJHoldenCMEInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim201244101147116610.1080/0305215X.2011.637556 GutmannH-MA radial basis function method for global optimizationJ Glob Optim2001193201227183321710.1023/A:1011255519438 JagannathanROn some properties of programming problems in parametric form pertaining to fractional programmingManag Sci196612760961519165710.1287/mnsc.12.7.609 García-RódenasRLinaresLJLópez-GómezJAA memetic chaotic gravitational search algorithm for unconstrained global optimization problemsAppl Soft Comput J201979142910.1016/j.asoc.2019.03.011 Torn A, Zilinskas A (1989) Global optimization, vol 350. Lecture Notes in Computer Science, Springer, Berlin KrigeDGA statistical approach to some basic mine valuation problems on the WitwatersrandJ Chem Met Min Soc S Afr1951526119139 JakobssonSPatrikssonMRudholmJWojciechowskiAA method for simulation based optimization using radial basis functionsOptim Eng2010114501532274074810.1007/s11081-009-9087-1 RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ Glob Optim2005311153171214217110.1007/s10898-004-0570-0 ZhanDQianJChengYPseudo expected improvement criterion for parallel EGO algorithmJ Glob Optim2017683641662366109210.1007/s10898-016-0484-7 BischlBWessingSBauerNFriedrichsKWeihsCPardalosPMResendeMGCVogiatzisCWalterosJLMOI-MBO: multiobjective infill for parallel model-based optimization. Revised Selected PapersLearning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 20142014ChamSpringer17318610.1007/978-3-319-09584-4_17 Müller J (2012) User guide for Modularized Surrogate Model Toolbox RezaveisiMSepehrnooriKJohnsRTTie-simplex-based phase-behavior modeling in an IMPEC reservoir simulatorSPE J201419232733910.2118/163676-PA JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Glob Optim1998134455492167346010.1023/A:1008306431147 DixonLCWSzegöGThe global optimization problem: an introductionTowards Glob Optim19782115 JohnsonMEMooreLMYlvisakerDMinimax and maximin distance designsJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J Comput2007194497509236400710.1287/ijoc.1060.0182 RegisRGShoemakerCAParallel stochastic global optimization using radial basis functionsINFORMS J Comput2009213411426254696210.1287/ijoc.1090.0325 Díaz-Manríquez A, Toscano G, Barron-Zambrano JH, Tello-Leal E (2016) A review of surrogate assisted multiobjective evolutionary algorithms. Computational intelligence and neuroscience 2016. Hindawi Publishing Corporation Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th international conference on international conference on machine learning, ICML’10, Madison, WI, USA. Omnipress, pp 1015–1022 RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ Glob Optim2007371113135228456210.1007/s10898-006-9040-1 YiMXiaodongLXinYOmidvarMNA competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimizationACM Trans Math Soft20164221243511633 EmmerichMTMGiannakoglouKCNaujoksBSingle- and multiobjective evolutionary optimization assisted by Gaussian random field metamodelsIEEE Trans Evol Comput200610442143910.1109/TEVC.2005.859463 HaftkaRTVillanuevaDChaudhuriAParallel surrogate-assisted global optimization with expensive functions—a surveyStruct Multidiscip Optim2016541313350814310.1007/s00158-016-1432-3 WangYLiuHWeiFZongTLiXCooperative coevolution with formula-based variable grouping for large-scale global optimizationEvol Comput201826456959610.1162/evco_a_00214 GinsbourgerDRicheRCarraroLTenneYGohC-KKriging is well-suited to parallelize optimization, chapter 6Computational intelligence in expensive optimization problems2010BerlinSpringer13116210.1007/978-3-642-10701-6_6 LiuJSongW-PHanZ-HZhangYEfficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate modelsStruct Multidiscip Optim201755392594310.1007/s00158-016-1546-7 Martinez Zapotecas S, Coello Coello C (2013) MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. In: Genetic and evolutionary computation conference, GECCO ’13, Amsterdam, The Netherlands, July 6–10, 2013, pp 1405–1412 KrityakierneTAkhtarTShoemakerCASOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problemsJ Glob Optim2016663417437355741810.1007/s10898-016-0407-7 OmidvarMNYangMMeiYLiXYaoXDG2: a faster and more accurate differential grouping for large-scale black-box optimizationIEEE Trans Evol Comput201721692994210.1109/TEVC.2017.2694221 Potter MA, Jong KAD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The Third conference on parallel problem solving from nature: parallel problem solving from nature, pp 249–257 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893 DennisJETorczonVAlexandrovNMHussainiNManaging approximation models in optimisationMultidisciplinary design optimisation: state-of-the-art1997PhiladelphiaSIAM330347 SóbesterALearySJKeaneAJA parallel updating scheme for approximating and optimizing high fidelity computer simulationsStruct Multidiscip Optim200427537138310.1007/s00158-004-0397-9 RódenasRGLópezMLVerasteguiDExtensions of Dinkelbach’s algorithm for solving non-linear fractional programming problemsTop1999713370171493110.1007/BF02564711 Beaucaire P, Beauthier Ch, Sainvitu C (2019) Multi-point infill sampling strategies exploiting multiple surrogate models. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’19, New York, NY, USA. Association for Computing Machinery, pp 1559–1567 VuKKD’AmbrosioCHamadiYLibertiLSurrogate-based methods for black-box optimizationInt Trans Oper Res2017243393424360000710.1111/itor.12292 Horn D, Bischl B (2016) Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8 VianaFAHaftkaRTWatsonLTEfficient global optimization algorithm assisted by multiple surrogate techniquesJ Glob Optim201356266968910.1007/s10898-012-9892-5 LiuBZhangQGielenGA Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problemsIEEE Trans Evol Comput201418218019210.1109/TEVC.2013.2248012 Blanchard J, Beauthier C, Carletti T (2019) A surrogate-assisted cooperative co-evolutionary algorithm using recursive differential grouping as decomposition strategy. In: 2019 IEEE congress on evolutionary computation, CEC 2019—proceedings, pp 689–696 Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical Report RR-6829, INRIA Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On the selection of surrogate models in evolutionary optimization algorithms. In: 2011 IEEE congress of evolutionary computation (CEC), pp 2155–2162 YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric Latin hypercube designsJ Stat Plan Inference200090145159179158610.1016/S0378-3758(00)00105-1 Lophaven SN, Nielsen H, Sndergaard J (2002) DACE—a MATLAB kriging toolbox TianJTanYZengJSunCJinYMulti-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problemsIEEE Trans Evol Comput201923345947210.1109/TEVC.2018.2869247 ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001 MTM Emmerich (9526_CR8) 2006; 10 9526_CR15 9526_CR3 9526_CR16 D Zhan (9526_CR49) 2017; 68 R García-Ródenas (9526_CR11) 2019; 79 DR Jones (9526_CR20) 1998; 13 9526_CR5 FA Viana (9526_CR43) 2013; 56 9526_CR1 S Jakobsson (9526_CR18) 2010; 11 M Rezaveisi (9526_CR36) 2014; 19 9526_CR6 MN Omidvar (9526_CR28) 2017; 21 RG Ródenas (9526_CR37) 1999; 7 DG Krige (9526_CR21) 1951; 52 ME Johnson (9526_CR19) 1990; 26 JE Dennis (9526_CR4) 1997 DH Wolpert (9526_CR46) 1997; 1 RT Haftka (9526_CR14) 2016; 54 9526_CR10 T Krityakierne (9526_CR22) 2016; 66 RG Regis (9526_CR34) 2007; 182 KQ Ye (9526_CR47) 2000; 90 9526_CR26 M Yi (9526_CR48) 2016; 42 9526_CR27 9526_CR25 RG Regis (9526_CR35) 2009; 21 R Jagannathan (9526_CR17) 1966; 12 H-M Gutmann (9526_CR13) 2001; 19 J Liu (9526_CR24) 2017; 55 LCW Dixon (9526_CR7) 1978; 2 9526_CR38 B Bischl (9526_CR2) 2014 RG Regis (9526_CR31) 2005; 31 B Liu (9526_CR23) 2014; 18 AIJ Forrester (9526_CR9) 2009; 45 KK Vu (9526_CR44) 2017; 24 9526_CR30 RG Regis (9526_CR32) 2007; 19 JM Parr (9526_CR29) 2012; 44 RG Regis (9526_CR33) 2007; 37 9526_CR40 Y Wang (9526_CR45) 2018; 26 J Tian (9526_CR41) 2019; 23 A Sóbester (9526_CR39) 2004; 27 D Ginsbourger (9526_CR12) 2010 9526_CR42 |
| References_xml | – reference: RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J Comput2007194497509236400710.1287/ijoc.1060.0182 – reference: RegisRGShoemakerCAParallel radial basis function methods for the global optimization of expensive functionsEur J Oper Res20071822514535232454510.1016/j.ejor.2006.08.040 – reference: Torn A, Zilinskas A (1989) Global optimization, vol 350. Lecture Notes in Computer Science, Springer, Berlin – reference: HaftkaRTVillanuevaDChaudhuriAParallel surrogate-assisted global optimization with expensive functions—a surveyStruct Multidiscip Optim2016541313350814310.1007/s00158-016-1432-3 – reference: WangYLiuHWeiFZongTLiXCooperative coevolution with formula-based variable grouping for large-scale global optimizationEvol Comput201826456959610.1162/evco_a_00214 – reference: JakobssonSPatrikssonMRudholmJWojciechowskiAA method for simulation based optimization using radial basis functionsOptim Eng2010114501532274074810.1007/s11081-009-9087-1 – reference: ParrJMKeaneAJForresterAIJHoldenCMEInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim201244101147116610.1080/0305215X.2011.637556 – reference: RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ Glob Optim2005311153171214217110.1007/s10898-004-0570-0 – reference: García-Ródenas R, Linares LJ, López-Gómez JA (2017) A cooperative brain storm optimization algorithm. In: 2017 IEEE congress on evolutionary computation (CEC), pp 838–845 – reference: LiuJSongW-PHanZ-HZhangYEfficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate modelsStruct Multidiscip Optim201755392594310.1007/s00158-016-1546-7 – reference: Martinez Zapotecas S, Coello Coello C (2013) MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. In: Genetic and evolutionary computation conference, GECCO ’13, Amsterdam, The Netherlands, July 6–10, 2013, pp 1405–1412 – reference: RezaveisiMSepehrnooriKJohnsRTTie-simplex-based phase-behavior modeling in an IMPEC reservoir simulatorSPE J201419232733910.2118/163676-PA – reference: Horn D, Bischl B (2016) Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8 – reference: YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric Latin hypercube designsJ Stat Plan Inference200090145159179158610.1016/S0378-3758(00)00105-1 – reference: Lophaven SN, Nielsen H, Sndergaard J (2002) DACE—a MATLAB kriging toolbox – reference: Blanchard J, Beauthier C, Carletti T (2019) A surrogate-assisted cooperative co-evolutionary algorithm using recursive differential grouping as decomposition strategy. In: 2019 IEEE congress on evolutionary computation, CEC 2019—proceedings, pp 689–696 – reference: ZhanDQianJChengYPseudo expected improvement criterion for parallel EGO algorithmJ Glob Optim2017683641662366109210.1007/s10898-016-0484-7 – reference: EmmerichMTMGiannakoglouKCNaujoksBSingle- and multiobjective evolutionary optimization assisted by Gaussian random field metamodelsIEEE Trans Evol Comput200610442143910.1109/TEVC.2005.859463 – reference: Díaz-Manríquez A, Toscano G, Barron-Zambrano JH, Tello-Leal E (2016) A review of surrogate assisted multiobjective evolutionary algorithms. Computational intelligence and neuroscience 2016. Hindawi Publishing Corporation – reference: KrityakierneTAkhtarTShoemakerCASOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problemsJ Glob Optim2016663417437355741810.1007/s10898-016-0407-7 – reference: Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada – reference: SóbesterALearySJKeaneAJA parallel updating scheme for approximating and optimizing high fidelity computer simulationsStruct Multidiscip Optim200427537138310.1007/s00158-004-0397-9 – reference: RegisRGShoemakerCAParallel stochastic global optimization using radial basis functionsINFORMS J Comput2009213411426254696210.1287/ijoc.1090.0325 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893 – reference: JohnsonMEMooreLMYlvisakerDMinimax and maximin distance designsJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B – reference: Beaucaire P, Beauthier Ch, Sainvitu C (2019) Multi-point infill sampling strategies exploiting multiple surrogate models. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’19, New York, NY, USA. Association for Computing Machinery, pp 1559–1567 – reference: JagannathanROn some properties of programming problems in parametric form pertaining to fractional programmingManag Sci196612760961519165710.1287/mnsc.12.7.609 – reference: RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ Glob Optim2007371113135228456210.1007/s10898-006-9040-1 – reference: YiMXiaodongLXinYOmidvarMNA competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimizationACM Trans Math Soft20164221243511633 – reference: Müller J (2012) User guide for Modularized Surrogate Model Toolbox – reference: DixonLCWSzegöGThe global optimization problem: an introductionTowards Glob Optim19782115 – reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Glob Optim1998134455492167346010.1023/A:1008306431147 – reference: GinsbourgerDRicheRCarraroLTenneYGohC-KKriging is well-suited to parallelize optimization, chapter 6Computational intelligence in expensive optimization problems2010BerlinSpringer13116210.1007/978-3-642-10701-6_6 – reference: DennisJETorczonVAlexandrovNMHussainiNManaging approximation models in optimisationMultidisciplinary design optimisation: state-of-the-art1997PhiladelphiaSIAM330347 – reference: KrigeDGA statistical approach to some basic mine valuation problems on the WitwatersrandJ Chem Met Min Soc S Afr1951526119139 – reference: GutmannH-MA radial basis function method for global optimizationJ Glob Optim2001193201227183321710.1023/A:1011255519438 – reference: TianJTanYZengJSunCJinYMulti-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problemsIEEE Trans Evol Comput201923345947210.1109/TEVC.2018.2869247 – reference: LiuBZhangQGielenGA Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problemsIEEE Trans Evol Comput201418218019210.1109/TEVC.2013.2248012 – reference: Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical Report RR-6829, INRIA – reference: Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th international conference on international conference on machine learning, ICML’10, Madison, WI, USA. Omnipress, pp 1015–1022 – reference: OmidvarMNYangMMeiYLiXYaoXDG2: a faster and more accurate differential grouping for large-scale black-box optimizationIEEE Trans Evol Comput201721692994210.1109/TEVC.2017.2694221 – reference: VuKKD’AmbrosioCHamadiYLibertiLSurrogate-based methods for black-box optimizationInt Trans Oper Res2017243393424360000710.1111/itor.12292 – reference: García-RódenasRLinaresLJLópez-GómezJAA memetic chaotic gravitational search algorithm for unconstrained global optimization problemsAppl Soft Comput J201979142910.1016/j.asoc.2019.03.011 – reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001 – reference: Potter MA, Jong KAD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The Third conference on parallel problem solving from nature: parallel problem solving from nature, pp 249–257 – reference: RódenasRGLópezMLVerasteguiDExtensions of Dinkelbach’s algorithm for solving non-linear fractional programming problemsTop1999713370171493110.1007/BF02564711 – reference: BischlBWessingSBauerNFriedrichsKWeihsCPardalosPMResendeMGCVogiatzisCWalterosJLMOI-MBO: multiobjective infill for parallel model-based optimization. Revised Selected PapersLearning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 20142014ChamSpringer17318610.1007/978-3-319-09584-4_17 – reference: Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On the selection of surrogate models in evolutionary optimization algorithms. In: 2011 IEEE congress of evolutionary computation (CEC), pp 2155–2162 – reference: VianaFAHaftkaRTWatsonLTEfficient global optimization algorithm assisted by multiple surrogate techniquesJ Glob Optim201356266968910.1007/s10898-012-9892-5 – ident: 9526_CR5 doi: 10.1155/2016/9420460 – ident: 9526_CR25 doi: 10.1145/2463372.2465805 – volume: 19 start-page: 327 issue: 2 year: 2014 ident: 9526_CR36 publication-title: SPE J doi: 10.2118/163676-PA – ident: 9526_CR26 – volume: 13 start-page: 455 issue: 4 year: 1998 ident: 9526_CR20 publication-title: J Glob Optim doi: 10.1023/A:1008306431147 – volume: 42 start-page: 1 issue: 2 year: 2016 ident: 9526_CR48 publication-title: ACM Trans Math Soft – volume: 79 start-page: 14 year: 2019 ident: 9526_CR11 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.03.011 – volume: 45 start-page: 50 issue: 1–3 year: 2009 ident: 9526_CR9 publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2008.11.001 – volume: 24 start-page: 393 issue: 3 year: 2017 ident: 9526_CR44 publication-title: Int Trans Oper Res doi: 10.1111/itor.12292 – volume: 18 start-page: 180 issue: 2 year: 2014 ident: 9526_CR23 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2248012 – ident: 9526_CR6 doi: 10.1109/CEC.2011.5949881 – volume: 23 start-page: 459 issue: 3 year: 2019 ident: 9526_CR41 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2869247 – start-page: 131 volume-title: Computational intelligence in expensive optimization problems year: 2010 ident: 9526_CR12 doi: 10.1007/978-3-642-10701-6_6 – volume: 19 start-page: 497 issue: 4 year: 2007 ident: 9526_CR32 publication-title: INFORMS J Comput doi: 10.1287/ijoc.1060.0182 – start-page: 173 volume-title: Learning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 2014 year: 2014 ident: 9526_CR2 doi: 10.1007/978-3-319-09584-4_17 – volume: 56 start-page: 669 issue: 2 year: 2013 ident: 9526_CR43 publication-title: J Glob Optim doi: 10.1007/s10898-012-9892-5 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 9526_CR46 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 66 start-page: 417 issue: 3 year: 2016 ident: 9526_CR22 publication-title: J Glob Optim doi: 10.1007/s10898-016-0407-7 – volume: 26 start-page: 569 issue: 4 year: 2018 ident: 9526_CR45 publication-title: Evol Comput doi: 10.1162/evco_a_00214 – ident: 9526_CR30 doi: 10.1007/3-540-58484-6_269 – volume: 11 start-page: 501 issue: 4 year: 2010 ident: 9526_CR18 publication-title: Optim Eng doi: 10.1007/s11081-009-9087-1 – volume: 52 start-page: 119 issue: 6 year: 1951 ident: 9526_CR21 publication-title: J Chem Met Min Soc S Afr – ident: 9526_CR16 doi: 10.1109/SSCI.2016.7850221 – volume: 2 start-page: 1 year: 1978 ident: 9526_CR7 publication-title: Towards Glob Optim – volume: 10 start-page: 421 issue: 4 year: 2006 ident: 9526_CR8 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.859463 – volume: 7 start-page: 33 issue: 1 year: 1999 ident: 9526_CR37 publication-title: Top doi: 10.1007/BF02564711 – volume: 68 start-page: 641 issue: 3 year: 2017 ident: 9526_CR49 publication-title: J Glob Optim doi: 10.1007/s10898-016-0484-7 – volume: 37 start-page: 113 issue: 1 year: 2007 ident: 9526_CR33 publication-title: J Glob Optim doi: 10.1007/s10898-006-9040-1 – ident: 9526_CR10 doi: 10.1109/CEC.2017.7969396 – volume: 54 start-page: 3 issue: 1 year: 2016 ident: 9526_CR14 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1432-3 – volume: 21 start-page: 929 issue: 6 year: 2017 ident: 9526_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2694221 – ident: 9526_CR42 doi: 10.1007/3-540-50871-6 – ident: 9526_CR1 doi: 10.1145/3319619.3328527 – volume: 27 start-page: 371 issue: 5 year: 2004 ident: 9526_CR39 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-004-0397-9 – volume: 44 start-page: 1147 issue: 10 year: 2012 ident: 9526_CR29 publication-title: Eng Optim doi: 10.1080/0305215X.2011.637556 – ident: 9526_CR38 – ident: 9526_CR15 – volume: 55 start-page: 925 issue: 3 year: 2017 ident: 9526_CR24 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-016-1546-7 – ident: 9526_CR3 doi: 10.1109/CEC.2019.8790114 – volume: 26 start-page: 131 year: 1990 ident: 9526_CR19 publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(90)90122-B – volume: 90 start-page: 145 year: 2000 ident: 9526_CR47 publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(00)00105-1 – volume: 21 start-page: 411 issue: 3 year: 2009 ident: 9526_CR35 publication-title: INFORMS J Comput doi: 10.1287/ijoc.1090.0325 – ident: 9526_CR27 – ident: 9526_CR40 – start-page: 330 volume-title: Multidisciplinary design optimisation: state-of-the-art year: 1997 ident: 9526_CR4 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: 9526_CR13 publication-title: J Glob Optim doi: 10.1023/A:1011255519438 – volume: 12 start-page: 609 issue: 7 year: 1966 ident: 9526_CR17 publication-title: Manag Sci doi: 10.1287/mnsc.12.7.609 – volume: 182 start-page: 514 issue: 2 year: 2007 ident: 9526_CR34 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.08.040 – volume: 31 start-page: 153 issue: 1 year: 2005 ident: 9526_CR31 publication-title: J Glob Optim doi: 10.1007/s10898-004-0570-0 |
| SSID | ssj0016528 |
| Score | 2.2161083 |
| Snippet | Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1053 |
| SubjectTerms | Algorithms Control Cooperation Engineering Environmental Management Financial Engineering Global optimization Mathematical models Mathematics Mathematics and Statistics Multiple objective analysis Operations Research/Decision Theory Optimization Optimization algorithms Performance enhancement Redevelopment Research Article Response surface methodology Sampling Search process Systems Theory |
| Title | A surrogate-based cooperative optimization framework for computationally expensive black-box problems |
| URI | https://link.springer.com/article/10.1007/s11081-020-09526-7 https://www.proquest.com/docview/2425624675 |
| Volume | 21 |
| WOSCitedRecordID | wos000545068500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: RSV dateStart: 20000601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl400CTtEl7XMTFi4vgg72V5lEQdLu0u6L_3qRNd1VU0GNpGkomyTeTyXwfwKmmMjPGBDgTMsdhoimWihDMExUKi495bBqxCTEcxqNRcuOLwqr2tnubkqx36kWxG7HwhV24Y90CyrFYhpXIsc24GP32YZ474FGtqOoycDgMaeBLZb7v4zMcLXzML2nRGm0Gm__7zy3Y8N4l6jfTYRuWzHgH1j9wDtqn6zlRa7ULpo-qWVkW7jANO0TTSBXFxDR84KiwG8qzr9REeXuPC1lHF6laDsIfJT69IScVUN-FR9KdCWJZvCKvVlPtwf3g8u7iCnvlBawYZ1PMdBwpSlRsKM1yHiTWMZA0YExzEWYkMYJkWgmibLCkZZRbN8IiXZJxRiVxef196IyLsTkAJCNhWM3az2zspmQsmLDLPmCJZjpSpAukNUCqPC25U8d4SheEym5AUzugaT2gqejC2fybSUPK8WvrXmvX1C_QKnWRFqcWJaIunLd2XLz-ubfDvzU_gjXaTAUckB50puXMHMOqepk-VuVJPXHfAQr35s8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah5800CTtE37OMQxcQ7BC3srzaUg6CrrJvrvTdp0U1FBH0vTUHKSfOfk5HwfwLGiItVaezjlIsN-rCgWkhAcxtLnBh-zSFdiE7zfjwaD-NoVhRX1bfc6JVnu1LNiN2LgC9twx7gFNMR8HhZ8K7NjY_Sb-2nuIAxKRVWbgcO-Tz1XKvN9H5_haOZjfkmLlmjTWfvff67DqvMuUbuaDhswp4ebsPKBc9A8XU2JWost0G1UTEaj3B6mYYtoCsk8f9YVHzjKzYby5Co1UVbf40LG0UWylINwR4mPb8hKBZR34ZGwZ4JY5K_IqdUU23DXOb8962KnvIAlC9kYMxUFkhIZaUrTLPRi4xgI6jGmQu6nJNacpEpyIk2wpESQGTfCIF2chowKYvP6O9AY5kO9C0gEXLOStZ-Z2E2KiDNulr3HYsVUIEkTSG2ARDpacquO8ZjMCJXtgCZmQJNyQBPehJPpN88VKcevrVu1XRO3QIvERlohNSgRNOG0tuPs9c-97f2t-REsdW-veknvon-5D8u0mhbYIy1ojEcTfQCL8mX8UIwOy0n8DuS46bM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5807AmaZv2cahDUcfwhm-luRSEuY51E_33Jr1sKiqIj6VJKEma75ycc74P4FBREWutHRxzkWA3VBQLSQj2Q-lyg49JoAuxCd7pBI-PYfdDFX-e7V6FJIuaBsvS1B81ByppTgvfiIEybF0fYyJQH_NZmHONJ2OTum5uHyZxBN_L1VVtNA67LnXKspnvx_gMTVN780uINEee9sr_v3kVlkurE7WKbbIGM7q_DksfuAjN0_WEwDXbAN1C2Xg4TO0lG7ZIp5BM04EueMJRag6a57KCEyVVfhcyBjCSuUxEecXYe0NWQiDPkUfC3hVikb6iUsUm24T79tndyTkuFRmwZD4bYaYCT1IiA01pnPhOaAwGQR3GlM_dmISak1hJTqRxopTwEmNeGAQMY59RQWy8fwtq_bSvtwEJj2uWs_kz49NJEXDGzXHgsFAx5UlSB1ItRiRLunKrmtGLpkTLdkIjM6FRPqERr8PRpM-gIOv4tXWjWuOo_HGzyHpgPjXo4dXhuFrT6eufR9v5W_MDWOietqOri87lLizSYldghzSgNhqO9R7My5fRUzbcz_fzO2jg8pc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surrogate-based+cooperative+optimization+framework+for+computationally+expensive+black-box+problems&rft.jtitle=Optimization+and+engineering&rft.au=Garc%C3%ADa-Garc%C3%ADa%2C+Jos%C3%A9+Carlos&rft.au=Garc%C3%ADa-R%C3%B3denas%2C+Ricardo&rft.au=Codina%2C+Esteve&rft.date=2020-09-01&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=21&rft.issue=3&rft.spage=1053&rft.epage=1093&rft_id=info:doi/10.1007%2Fs11081-020-09526-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11081_020_09526_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |