A surrogate-based cooperative optimization framework for computationally expensive black-box problems

Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering Jg. 21; H. 3; S. 1053 - 1093
Hauptverfasser: García-García, José Carlos, García-Ródenas, Ricardo, Codina, Esteve
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2020
Springer Nature B.V
Schlagworte:
ISSN:1389-4420, 1573-2924
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the ε -constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors.
AbstractList Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the ε-constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors.
Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the $$\varepsilon $$ ε -constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors.
Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less attention has been paid to producing them through the cooperation of several algorithms. For this purpose, a surrogate-based cooperative optimization framework is here proposed. Firstly, a class of parallel surrogate-based optimization algorithms is developed, based on the idea of viewing the infill sampling criterion as a bi-objective optimization problem. Each algorithm of this class is called a Sequential Multipoint Infill Sampling Algorithm (SMISA) and is the combination resulting from choosing a surrogate model, an exploitation measure, an exploration measure and a multi-objective optimization approach to its solution. SMISAs are the basic algorithms on which collaboration mechanisms are established. Many SMISAs can be defined, and the focus has been on scalar approaches for bi-objective problems such as the ε -constrained method, revisiting the Parallel Constrained Optimization using Response Surfaces (CORS-RBF) method and the Efficient Global Optimization with Pseudo Expected Improvement (EGO-PEI) algorithm as instances of SMISAs. In addition, a parallel version of the Lower Confidence Bound-based (LCB) algorithm is given as a member within the SMISA class. Secondly, we propose a cooperative optimization framework between the SMISAs. The cooperation between SMISAs occurs in two ways: (1) they share solutions and their objective function values to update their surrogate models and (2) they use the sampled points obtained from different SMISAs to guide their own search process. Some convergence results for this cooperative framework are given under weak conditions. A numerical comparison between EGO-PEI, Parallel CORS-RBF and a cooperative method using both, named CPEI, shows that CPEI improves the performance of the baseline algorithms. The numerical results were derived from 17 analytic tests and they show the reduction of wall-clock time with respect to the increase in the number of processors.
Author Codina, Esteve
García-Ródenas, Ricardo
García-García, José Carlos
Author_xml – sequence: 1
  givenname: José Carlos
  surname: García-García
  fullname: García-García, José Carlos
  email: josecarlos.garcia@uclm.es
  organization: Departamento de Matemáticas, Escuela Superior de Informática, Universidad de Castilla-La Mancha, Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha
– sequence: 2
  givenname: Ricardo
  surname: García-Ródenas
  fullname: García-Ródenas, Ricardo
  organization: Departamento de Matemáticas, Escuela Superior de Informática, Universidad de Castilla-La Mancha, Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha
– sequence: 3
  givenname: Esteve
  surname: Codina
  fullname: Codina, Esteve
  organization: Estadística i Investigació Operativa, Universitat Politécnica de Catalunya
BookMark eNp9kMtOwzAQRS1UJFrgB1hFYm2wx4ntLKuKl1SJDawtx3GqtEkc7BRavh63QUJi0dXMaO6Zx52hSec6i9ANJXeUEHEfKCWSYgIEkzwDjsUZmtJMMAw5pJOYM5njNAVygWYhrAmhPAM5RXaehK33bqUHiwsdbJkY53rr9VB_2sT1Q93W37FwXVJ53dov5zdJ5XyUtf12OHZ00-wTu-ttFw5Q0WizwYXbJb13RWPbcIXOK90Ee_0bL9H748Pb4hkvX59eFvMlNoyzAbNSZgaokRZAV5zkQLMCCGMlF6mmuRVUl0ZQk3NeFlklgUhCc80ZFFRQwS7R7Tg3Lv7Y2jCotdv6eF9QkELGIeUiiyo5qox3IXhbKVOPjwxe142iRB1MVaOpKpqqjqaqwwL4h_a-brXfn4bYCIUo7lbW_111gvoBaNqNAQ
CitedBy_id crossref_primary_10_1016_j_apm_2022_03_031
crossref_primary_10_1109_TVT_2025_3532752
crossref_primary_10_1080_0305215X_2021_2004409
crossref_primary_10_1007_s11081_022_09740_5
Cites_doi 10.1155/2016/9420460
10.1145/2463372.2465805
10.2118/163676-PA
10.1023/A:1008306431147
10.1016/j.asoc.2019.03.011
10.1016/j.paerosci.2008.11.001
10.1111/itor.12292
10.1109/TEVC.2013.2248012
10.1109/CEC.2011.5949881
10.1109/TEVC.2018.2869247
10.1007/978-3-642-10701-6_6
10.1287/ijoc.1060.0182
10.1007/978-3-319-09584-4_17
10.1007/s10898-012-9892-5
10.1109/4235.585893
10.1007/s10898-016-0407-7
10.1162/evco_a_00214
10.1007/3-540-58484-6_269
10.1007/s11081-009-9087-1
10.1109/SSCI.2016.7850221
10.1109/TEVC.2005.859463
10.1007/BF02564711
10.1007/s10898-016-0484-7
10.1007/s10898-006-9040-1
10.1109/CEC.2017.7969396
10.1007/s00158-016-1432-3
10.1109/TEVC.2017.2694221
10.1007/3-540-50871-6
10.1145/3319619.3328527
10.1007/s00158-004-0397-9
10.1080/0305215X.2011.637556
10.1007/s00158-016-1546-7
10.1109/CEC.2019.8790114
10.1016/0378-3758(90)90122-B
10.1016/S0378-3758(00)00105-1
10.1287/ijoc.1090.0325
10.1023/A:1011255519438
10.1287/mnsc.12.7.609
10.1016/j.ejor.2006.08.040
10.1007/s10898-004-0570-0
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1007/s11081-020-09526-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2924
EndPage 1093
ExternalDocumentID 10_1007_s11081_020_09526_7
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
~A9
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
S0W
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c363t-3d85c21c8e22af609215b2033d674a19e71adc71c966db5f8208019a632b17173
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545068500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-4420
IngestDate Thu Sep 25 00:45:36 EDT 2025
Tue Nov 18 22:28:08 EST 2025
Sat Nov 29 01:39:09 EST 2025
Fri Feb 21 02:33:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cooperative optimization
Expected improvement
Radial basis functions
Parallel surrogate-based optimization
Black-box function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3d85c21c8e22af609215b2033d674a19e71adc71c966db5f8208019a632b17173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11081-020-09526-7
PQID 2425624675
PQPubID 326265
PageCount 41
ParticipantIDs proquest_journals_2425624675
crossref_citationtrail_10_1007_s11081_020_09526_7
crossref_primary_10_1007_s11081_020_09526_7
springer_journals_10_1007_s11081_020_09526_7
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences
PublicationTitle Optimization and engineering
PublicationTitleAbbrev Optim Eng
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References RegisRGShoemakerCAParallel radial basis function methods for the global optimization of expensive functionsEur J Oper Res20071822514535232454510.1016/j.ejor.2006.08.040
García-Ródenas R, Linares LJ, López-Gómez JA (2017) A cooperative brain storm optimization algorithm. In: 2017 IEEE congress on evolutionary computation (CEC), pp 838–845
ParrJMKeaneAJForresterAIJHoldenCMEInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim201244101147116610.1080/0305215X.2011.637556
GutmannH-MA radial basis function method for global optimizationJ Glob Optim2001193201227183321710.1023/A:1011255519438
JagannathanROn some properties of programming problems in parametric form pertaining to fractional programmingManag Sci196612760961519165710.1287/mnsc.12.7.609
García-RódenasRLinaresLJLópez-GómezJAA memetic chaotic gravitational search algorithm for unconstrained global optimization problemsAppl Soft Comput J201979142910.1016/j.asoc.2019.03.011
Torn A, Zilinskas A (1989) Global optimization, vol 350. Lecture Notes in Computer Science, Springer, Berlin
KrigeDGA statistical approach to some basic mine valuation problems on the WitwatersrandJ Chem Met Min Soc S Afr1951526119139
JakobssonSPatrikssonMRudholmJWojciechowskiAA method for simulation based optimization using radial basis functionsOptim Eng2010114501532274074810.1007/s11081-009-9087-1
RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ Glob Optim2005311153171214217110.1007/s10898-004-0570-0
ZhanDQianJChengYPseudo expected improvement criterion for parallel EGO algorithmJ Glob Optim2017683641662366109210.1007/s10898-016-0484-7
BischlBWessingSBauerNFriedrichsKWeihsCPardalosPMResendeMGCVogiatzisCWalterosJLMOI-MBO: multiobjective infill for parallel model-based optimization. Revised Selected PapersLearning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 20142014ChamSpringer17318610.1007/978-3-319-09584-4_17
Müller J (2012) User guide for Modularized Surrogate Model Toolbox
RezaveisiMSepehrnooriKJohnsRTTie-simplex-based phase-behavior modeling in an IMPEC reservoir simulatorSPE J201419232733910.2118/163676-PA
JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Glob Optim1998134455492167346010.1023/A:1008306431147
DixonLCWSzegöGThe global optimization problem: an introductionTowards Glob Optim19782115
JohnsonMEMooreLMYlvisakerDMinimax and maximin distance designsJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B
RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J Comput2007194497509236400710.1287/ijoc.1060.0182
RegisRGShoemakerCAParallel stochastic global optimization using radial basis functionsINFORMS J Comput2009213411426254696210.1287/ijoc.1090.0325
Díaz-Manríquez A, Toscano G, Barron-Zambrano JH, Tello-Leal E (2016) A review of surrogate assisted multiobjective evolutionary algorithms. Computational intelligence and neuroscience 2016. Hindawi Publishing Corporation
Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada
Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th international conference on international conference on machine learning, ICML’10, Madison, WI, USA. Omnipress, pp 1015–1022
RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ Glob Optim2007371113135228456210.1007/s10898-006-9040-1
YiMXiaodongLXinYOmidvarMNA competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimizationACM Trans Math Soft20164221243511633
EmmerichMTMGiannakoglouKCNaujoksBSingle- and multiobjective evolutionary optimization assisted by Gaussian random field metamodelsIEEE Trans Evol Comput200610442143910.1109/TEVC.2005.859463
HaftkaRTVillanuevaDChaudhuriAParallel surrogate-assisted global optimization with expensive functions—a surveyStruct Multidiscip Optim2016541313350814310.1007/s00158-016-1432-3
WangYLiuHWeiFZongTLiXCooperative coevolution with formula-based variable grouping for large-scale global optimizationEvol Comput201826456959610.1162/evco_a_00214
GinsbourgerDRicheRCarraroLTenneYGohC-KKriging is well-suited to parallelize optimization, chapter 6Computational intelligence in expensive optimization problems2010BerlinSpringer13116210.1007/978-3-642-10701-6_6
LiuJSongW-PHanZ-HZhangYEfficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate modelsStruct Multidiscip Optim201755392594310.1007/s00158-016-1546-7
Martinez Zapotecas S, Coello Coello C (2013) MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. In: Genetic and evolutionary computation conference, GECCO ’13, Amsterdam, The Netherlands, July 6–10, 2013, pp 1405–1412
KrityakierneTAkhtarTShoemakerCASOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problemsJ Glob Optim2016663417437355741810.1007/s10898-016-0407-7
OmidvarMNYangMMeiYLiXYaoXDG2: a faster and more accurate differential grouping for large-scale black-box optimizationIEEE Trans Evol Comput201721692994210.1109/TEVC.2017.2694221
Potter MA, Jong KAD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The Third conference on parallel problem solving from nature: parallel problem solving from nature, pp 249–257
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
DennisJETorczonVAlexandrovNMHussainiNManaging approximation models in optimisationMultidisciplinary design optimisation: state-of-the-art1997PhiladelphiaSIAM330347
SóbesterALearySJKeaneAJA parallel updating scheme for approximating and optimizing high fidelity computer simulationsStruct Multidiscip Optim200427537138310.1007/s00158-004-0397-9
RódenasRGLópezMLVerasteguiDExtensions of Dinkelbach’s algorithm for solving non-linear fractional programming problemsTop1999713370171493110.1007/BF02564711
Beaucaire P, Beauthier Ch, Sainvitu C (2019) Multi-point infill sampling strategies exploiting multiple surrogate models. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’19, New York, NY, USA. Association for Computing Machinery, pp 1559–1567
VuKKD’AmbrosioCHamadiYLibertiLSurrogate-based methods for black-box optimizationInt Trans Oper Res2017243393424360000710.1111/itor.12292
Horn D, Bischl B (2016) Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8
VianaFAHaftkaRTWatsonLTEfficient global optimization algorithm assisted by multiple surrogate techniquesJ Glob Optim201356266968910.1007/s10898-012-9892-5
LiuBZhangQGielenGA Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problemsIEEE Trans Evol Comput201418218019210.1109/TEVC.2013.2248012
Blanchard J, Beauthier C, Carletti T (2019) A surrogate-assisted cooperative co-evolutionary algorithm using recursive differential grouping as decomposition strategy. In: 2019 IEEE congress on evolutionary computation, CEC 2019—proceedings, pp 689–696
Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical Report RR-6829, INRIA
Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On the selection of surrogate models in evolutionary optimization algorithms. In: 2011 IEEE congress of evolutionary computation (CEC), pp 2155–2162
YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric Latin hypercube designsJ Stat Plan Inference200090145159179158610.1016/S0378-3758(00)00105-1
Lophaven SN, Nielsen H, Sndergaard J (2002) DACE—a MATLAB kriging toolbox
TianJTanYZengJSunCJinYMulti-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problemsIEEE Trans Evol Comput201923345947210.1109/TEVC.2018.2869247
ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001
MTM Emmerich (9526_CR8) 2006; 10
9526_CR15
9526_CR3
9526_CR16
D Zhan (9526_CR49) 2017; 68
R García-Ródenas (9526_CR11) 2019; 79
DR Jones (9526_CR20) 1998; 13
9526_CR5
FA Viana (9526_CR43) 2013; 56
9526_CR1
S Jakobsson (9526_CR18) 2010; 11
M Rezaveisi (9526_CR36) 2014; 19
9526_CR6
MN Omidvar (9526_CR28) 2017; 21
RG Ródenas (9526_CR37) 1999; 7
DG Krige (9526_CR21) 1951; 52
ME Johnson (9526_CR19) 1990; 26
JE Dennis (9526_CR4) 1997
DH Wolpert (9526_CR46) 1997; 1
RT Haftka (9526_CR14) 2016; 54
9526_CR10
T Krityakierne (9526_CR22) 2016; 66
RG Regis (9526_CR34) 2007; 182
KQ Ye (9526_CR47) 2000; 90
9526_CR26
M Yi (9526_CR48) 2016; 42
9526_CR27
9526_CR25
RG Regis (9526_CR35) 2009; 21
R Jagannathan (9526_CR17) 1966; 12
H-M Gutmann (9526_CR13) 2001; 19
J Liu (9526_CR24) 2017; 55
LCW Dixon (9526_CR7) 1978; 2
9526_CR38
B Bischl (9526_CR2) 2014
RG Regis (9526_CR31) 2005; 31
B Liu (9526_CR23) 2014; 18
AIJ Forrester (9526_CR9) 2009; 45
KK Vu (9526_CR44) 2017; 24
9526_CR30
RG Regis (9526_CR32) 2007; 19
JM Parr (9526_CR29) 2012; 44
RG Regis (9526_CR33) 2007; 37
9526_CR40
Y Wang (9526_CR45) 2018; 26
J Tian (9526_CR41) 2019; 23
A Sóbester (9526_CR39) 2004; 27
D Ginsbourger (9526_CR12) 2010
9526_CR42
References_xml – reference: RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J Comput2007194497509236400710.1287/ijoc.1060.0182
– reference: RegisRGShoemakerCAParallel radial basis function methods for the global optimization of expensive functionsEur J Oper Res20071822514535232454510.1016/j.ejor.2006.08.040
– reference: Torn A, Zilinskas A (1989) Global optimization, vol 350. Lecture Notes in Computer Science, Springer, Berlin
– reference: HaftkaRTVillanuevaDChaudhuriAParallel surrogate-assisted global optimization with expensive functions—a surveyStruct Multidiscip Optim2016541313350814310.1007/s00158-016-1432-3
– reference: WangYLiuHWeiFZongTLiXCooperative coevolution with formula-based variable grouping for large-scale global optimizationEvol Comput201826456959610.1162/evco_a_00214
– reference: JakobssonSPatrikssonMRudholmJWojciechowskiAA method for simulation based optimization using radial basis functionsOptim Eng2010114501532274074810.1007/s11081-009-9087-1
– reference: ParrJMKeaneAJForresterAIJHoldenCMEInfill sampling criteria for surrogate-based optimization with constraint handlingEng Optim201244101147116610.1080/0305215X.2011.637556
– reference: RegisRGShoemakerCAConstrained global optimization of expensive black box functions using radial basis functionsJ Glob Optim2005311153171214217110.1007/s10898-004-0570-0
– reference: García-Ródenas R, Linares LJ, López-Gómez JA (2017) A cooperative brain storm optimization algorithm. In: 2017 IEEE congress on evolutionary computation (CEC), pp 838–845
– reference: LiuJSongW-PHanZ-HZhangYEfficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate modelsStruct Multidiscip Optim201755392594310.1007/s00158-016-1546-7
– reference: Martinez Zapotecas S, Coello Coello C (2013) MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. In: Genetic and evolutionary computation conference, GECCO ’13, Amsterdam, The Netherlands, July 6–10, 2013, pp 1405–1412
– reference: RezaveisiMSepehrnooriKJohnsRTTie-simplex-based phase-behavior modeling in an IMPEC reservoir simulatorSPE J201419232733910.2118/163676-PA
– reference: Horn D, Bischl B (2016) Multi-objective parameter configuration of machine learning algorithms using model-based optimization. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8
– reference: YeKQLiWSudjiantoAAlgorithmic construction of optimal symmetric Latin hypercube designsJ Stat Plan Inference200090145159179158610.1016/S0378-3758(00)00105-1
– reference: Lophaven SN, Nielsen H, Sndergaard J (2002) DACE—a MATLAB kriging toolbox
– reference: Blanchard J, Beauthier C, Carletti T (2019) A surrogate-assisted cooperative co-evolutionary algorithm using recursive differential grouping as decomposition strategy. In: 2019 IEEE congress on evolutionary computation, CEC 2019—proceedings, pp 689–696
– reference: ZhanDQianJChengYPseudo expected improvement criterion for parallel EGO algorithmJ Glob Optim2017683641662366109210.1007/s10898-016-0484-7
– reference: EmmerichMTMGiannakoglouKCNaujoksBSingle- and multiobjective evolutionary optimization assisted by Gaussian random field metamodelsIEEE Trans Evol Comput200610442143910.1109/TEVC.2005.859463
– reference: Díaz-Manríquez A, Toscano G, Barron-Zambrano JH, Tello-Leal E (2016) A review of surrogate assisted multiobjective evolutionary algorithms. Computational intelligence and neuroscience 2016. Hindawi Publishing Corporation
– reference: KrityakierneTAkhtarTShoemakerCASOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problemsJ Glob Optim2016663417437355741810.1007/s10898-016-0407-7
– reference: Schonlau M (1997) Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada
– reference: SóbesterALearySJKeaneAJA parallel updating scheme for approximating and optimizing high fidelity computer simulationsStruct Multidiscip Optim200427537138310.1007/s00158-004-0397-9
– reference: RegisRGShoemakerCAParallel stochastic global optimization using radial basis functionsINFORMS J Comput2009213411426254696210.1287/ijoc.1090.0325
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
– reference: JohnsonMEMooreLMYlvisakerDMinimax and maximin distance designsJ Stat Plan Inference199026131148107925810.1016/0378-3758(90)90122-B
– reference: Beaucaire P, Beauthier Ch, Sainvitu C (2019) Multi-point infill sampling strategies exploiting multiple surrogate models. In: Proceedings of the genetic and evolutionary computation conference companion, GECCO ’19, New York, NY, USA. Association for Computing Machinery, pp 1559–1567
– reference: JagannathanROn some properties of programming problems in parametric form pertaining to fractional programmingManag Sci196612760961519165710.1287/mnsc.12.7.609
– reference: RegisRGShoemakerCAImproved strategies for radial basis function methods for global optimizationJ Glob Optim2007371113135228456210.1007/s10898-006-9040-1
– reference: YiMXiaodongLXinYOmidvarMNA competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimizationACM Trans Math Soft20164221243511633
– reference: Müller J (2012) User guide for Modularized Surrogate Model Toolbox
– reference: DixonLCWSzegöGThe global optimization problem: an introductionTowards Glob Optim19782115
– reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ Glob Optim1998134455492167346010.1023/A:1008306431147
– reference: GinsbourgerDRicheRCarraroLTenneYGohC-KKriging is well-suited to parallelize optimization, chapter 6Computational intelligence in expensive optimization problems2010BerlinSpringer13116210.1007/978-3-642-10701-6_6
– reference: DennisJETorczonVAlexandrovNMHussainiNManaging approximation models in optimisationMultidisciplinary design optimisation: state-of-the-art1997PhiladelphiaSIAM330347
– reference: KrigeDGA statistical approach to some basic mine valuation problems on the WitwatersrandJ Chem Met Min Soc S Afr1951526119139
– reference: GutmannH-MA radial basis function method for global optimizationJ Glob Optim2001193201227183321710.1023/A:1011255519438
– reference: TianJTanYZengJSunCJinYMulti-objective infill criterion driven Gaussian process-assisted particle swarm optimization of high-dimensional expensive problemsIEEE Trans Evol Comput201923345947210.1109/TEVC.2018.2869247
– reference: LiuBZhangQGielenGA Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problemsIEEE Trans Evol Comput201418218019210.1109/TEVC.2013.2248012
– reference: Hansen N, Finck S, Ros R, Auger A (2009) Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical Report RR-6829, INRIA
– reference: Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th international conference on international conference on machine learning, ICML’10, Madison, WI, USA. Omnipress, pp 1015–1022
– reference: OmidvarMNYangMMeiYLiXYaoXDG2: a faster and more accurate differential grouping for large-scale black-box optimizationIEEE Trans Evol Comput201721692994210.1109/TEVC.2017.2694221
– reference: VuKKD’AmbrosioCHamadiYLibertiLSurrogate-based methods for black-box optimizationInt Trans Oper Res2017243393424360000710.1111/itor.12292
– reference: García-RódenasRLinaresLJLópez-GómezJAA memetic chaotic gravitational search algorithm for unconstrained global optimization problemsAppl Soft Comput J201979142910.1016/j.asoc.2019.03.011
– reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001
– reference: Potter MA, Jong KAD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The Third conference on parallel problem solving from nature: parallel problem solving from nature, pp 249–257
– reference: RódenasRGLópezMLVerasteguiDExtensions of Dinkelbach’s algorithm for solving non-linear fractional programming problemsTop1999713370171493110.1007/BF02564711
– reference: BischlBWessingSBauerNFriedrichsKWeihsCPardalosPMResendeMGCVogiatzisCWalterosJLMOI-MBO: multiobjective infill for parallel model-based optimization. Revised Selected PapersLearning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 20142014ChamSpringer17318610.1007/978-3-319-09584-4_17
– reference: Díaz-Manríquez A, Toscano-Pulido G, Gómez-Flores W (2011) On the selection of surrogate models in evolutionary optimization algorithms. In: 2011 IEEE congress of evolutionary computation (CEC), pp 2155–2162
– reference: VianaFAHaftkaRTWatsonLTEfficient global optimization algorithm assisted by multiple surrogate techniquesJ Glob Optim201356266968910.1007/s10898-012-9892-5
– ident: 9526_CR5
  doi: 10.1155/2016/9420460
– ident: 9526_CR25
  doi: 10.1145/2463372.2465805
– volume: 19
  start-page: 327
  issue: 2
  year: 2014
  ident: 9526_CR36
  publication-title: SPE J
  doi: 10.2118/163676-PA
– ident: 9526_CR26
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 9526_CR20
  publication-title: J Glob Optim
  doi: 10.1023/A:1008306431147
– volume: 42
  start-page: 1
  issue: 2
  year: 2016
  ident: 9526_CR48
  publication-title: ACM Trans Math Soft
– volume: 79
  start-page: 14
  year: 2019
  ident: 9526_CR11
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.03.011
– volume: 45
  start-page: 50
  issue: 1–3
  year: 2009
  ident: 9526_CR9
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 24
  start-page: 393
  issue: 3
  year: 2017
  ident: 9526_CR44
  publication-title: Int Trans Oper Res
  doi: 10.1111/itor.12292
– volume: 18
  start-page: 180
  issue: 2
  year: 2014
  ident: 9526_CR23
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2248012
– ident: 9526_CR6
  doi: 10.1109/CEC.2011.5949881
– volume: 23
  start-page: 459
  issue: 3
  year: 2019
  ident: 9526_CR41
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2869247
– start-page: 131
  volume-title: Computational intelligence in expensive optimization problems
  year: 2010
  ident: 9526_CR12
  doi: 10.1007/978-3-642-10701-6_6
– volume: 19
  start-page: 497
  issue: 4
  year: 2007
  ident: 9526_CR32
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1060.0182
– start-page: 173
  volume-title: Learning and intelligent optimization: 8th international conference, Lion 8, Gainesville, FL, USA, February 16–21, 2014
  year: 2014
  ident: 9526_CR2
  doi: 10.1007/978-3-319-09584-4_17
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  ident: 9526_CR43
  publication-title: J Glob Optim
  doi: 10.1007/s10898-012-9892-5
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 9526_CR46
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 66
  start-page: 417
  issue: 3
  year: 2016
  ident: 9526_CR22
  publication-title: J Glob Optim
  doi: 10.1007/s10898-016-0407-7
– volume: 26
  start-page: 569
  issue: 4
  year: 2018
  ident: 9526_CR45
  publication-title: Evol Comput
  doi: 10.1162/evco_a_00214
– ident: 9526_CR30
  doi: 10.1007/3-540-58484-6_269
– volume: 11
  start-page: 501
  issue: 4
  year: 2010
  ident: 9526_CR18
  publication-title: Optim Eng
  doi: 10.1007/s11081-009-9087-1
– volume: 52
  start-page: 119
  issue: 6
  year: 1951
  ident: 9526_CR21
  publication-title: J Chem Met Min Soc S Afr
– ident: 9526_CR16
  doi: 10.1109/SSCI.2016.7850221
– volume: 2
  start-page: 1
  year: 1978
  ident: 9526_CR7
  publication-title: Towards Glob Optim
– volume: 10
  start-page: 421
  issue: 4
  year: 2006
  ident: 9526_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.859463
– volume: 7
  start-page: 33
  issue: 1
  year: 1999
  ident: 9526_CR37
  publication-title: Top
  doi: 10.1007/BF02564711
– volume: 68
  start-page: 641
  issue: 3
  year: 2017
  ident: 9526_CR49
  publication-title: J Glob Optim
  doi: 10.1007/s10898-016-0484-7
– volume: 37
  start-page: 113
  issue: 1
  year: 2007
  ident: 9526_CR33
  publication-title: J Glob Optim
  doi: 10.1007/s10898-006-9040-1
– ident: 9526_CR10
  doi: 10.1109/CEC.2017.7969396
– volume: 54
  start-page: 3
  issue: 1
  year: 2016
  ident: 9526_CR14
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1432-3
– volume: 21
  start-page: 929
  issue: 6
  year: 2017
  ident: 9526_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2694221
– ident: 9526_CR42
  doi: 10.1007/3-540-50871-6
– ident: 9526_CR1
  doi: 10.1145/3319619.3328527
– volume: 27
  start-page: 371
  issue: 5
  year: 2004
  ident: 9526_CR39
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-004-0397-9
– volume: 44
  start-page: 1147
  issue: 10
  year: 2012
  ident: 9526_CR29
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.637556
– ident: 9526_CR38
– ident: 9526_CR15
– volume: 55
  start-page: 925
  issue: 3
  year: 2017
  ident: 9526_CR24
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-016-1546-7
– ident: 9526_CR3
  doi: 10.1109/CEC.2019.8790114
– volume: 26
  start-page: 131
  year: 1990
  ident: 9526_CR19
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(90)90122-B
– volume: 90
  start-page: 145
  year: 2000
  ident: 9526_CR47
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(00)00105-1
– volume: 21
  start-page: 411
  issue: 3
  year: 2009
  ident: 9526_CR35
  publication-title: INFORMS J Comput
  doi: 10.1287/ijoc.1090.0325
– ident: 9526_CR27
– ident: 9526_CR40
– start-page: 330
  volume-title: Multidisciplinary design optimisation: state-of-the-art
  year: 1997
  ident: 9526_CR4
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 9526_CR13
  publication-title: J Glob Optim
  doi: 10.1023/A:1011255519438
– volume: 12
  start-page: 609
  issue: 7
  year: 1966
  ident: 9526_CR17
  publication-title: Manag Sci
  doi: 10.1287/mnsc.12.7.609
– volume: 182
  start-page: 514
  issue: 2
  year: 2007
  ident: 9526_CR34
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.040
– volume: 31
  start-page: 153
  issue: 1
  year: 2005
  ident: 9526_CR31
  publication-title: J Glob Optim
  doi: 10.1007/s10898-004-0570-0
SSID ssj0016528
Score 2.2161083
Snippet Most parallel surrogate-based optimization algorithms focus only on the mechanisms for generating multiple updating points in each cycle, and rather less...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1053
SubjectTerms Algorithms
Control
Cooperation
Engineering
Environmental Management
Financial Engineering
Global optimization
Mathematical models
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operations Research/Decision Theory
Optimization
Optimization algorithms
Performance enhancement
Redevelopment
Research Article
Response surface methodology
Sampling
Search process
Systems Theory
Title A surrogate-based cooperative optimization framework for computationally expensive black-box problems
URI https://link.springer.com/article/10.1007/s11081-020-09526-7
https://www.proquest.com/docview/2425624675
Volume 21
WOSCitedRecordID wos000545068500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-2924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016528
  issn: 1389-4420
  databaseCode: RSV
  dateStart: 20000601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl400CTtEl7XMTFi4vgg72V5lEQdLu0u6L_3qRNd1VU0GNpGkomyTeTyXwfwKmmMjPGBDgTMsdhoimWihDMExUKi495bBqxCTEcxqNRcuOLwqr2tnubkqx36kWxG7HwhV24Y90CyrFYhpXIsc24GP32YZ474FGtqOoycDgMaeBLZb7v4zMcLXzML2nRGm0Gm__7zy3Y8N4l6jfTYRuWzHgH1j9wDtqn6zlRa7ULpo-qWVkW7jANO0TTSBXFxDR84KiwG8qzr9REeXuPC1lHF6laDsIfJT69IScVUN-FR9KdCWJZvCKvVlPtwf3g8u7iCnvlBawYZ1PMdBwpSlRsKM1yHiTWMZA0YExzEWYkMYJkWgmibLCkZZRbN8IiXZJxRiVxef196IyLsTkAJCNhWM3az2zspmQsmLDLPmCJZjpSpAukNUCqPC25U8d4SheEym5AUzugaT2gqejC2fybSUPK8WvrXmvX1C_QKnWRFqcWJaIunLd2XLz-ubfDvzU_gjXaTAUckB50puXMHMOqepk-VuVJPXHfAQr35s8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah5800CTtE37OMQxcQ7BC3srzaUg6CrrJvrvTdp0U1FBH0vTUHKSfOfk5HwfwLGiItVaezjlIsN-rCgWkhAcxtLnBh-zSFdiE7zfjwaD-NoVhRX1bfc6JVnu1LNiN2LgC9twx7gFNMR8HhZ8K7NjY_Sb-2nuIAxKRVWbgcO-Tz1XKvN9H5_haOZjfkmLlmjTWfvff67DqvMuUbuaDhswp4ebsPKBc9A8XU2JWost0G1UTEaj3B6mYYtoCsk8f9YVHzjKzYby5Co1UVbf40LG0UWylINwR4mPb8hKBZR34ZGwZ4JY5K_IqdUU23DXOb8962KnvIAlC9kYMxUFkhIZaUrTLPRi4xgI6jGmQu6nJNacpEpyIk2wpESQGTfCIF2chowKYvP6O9AY5kO9C0gEXLOStZ-Z2E2KiDNulr3HYsVUIEkTSG2ARDpacquO8ZjMCJXtgCZmQJNyQBPehJPpN88VKcevrVu1XRO3QIvERlohNSgRNOG0tuPs9c-97f2t-REsdW-veknvon-5D8u0mhbYIy1ojEcTfQCL8mX8UIwOy0n8DuS46bM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5807AmaZv2cahDUcfwhm-luRSEuY51E_33Jr1sKiqIj6VJKEma75ycc74P4FBREWutHRxzkWA3VBQLSQj2Q-lyg49JoAuxCd7pBI-PYfdDFX-e7V6FJIuaBsvS1B81ByppTgvfiIEybF0fYyJQH_NZmHONJ2OTum5uHyZxBN_L1VVtNA67LnXKspnvx_gMTVN780uINEee9sr_v3kVlkurE7WKbbIGM7q_DksfuAjN0_WEwDXbAN1C2Xg4TO0lG7ZIp5BM04EueMJRag6a57KCEyVVfhcyBjCSuUxEecXYe0NWQiDPkUfC3hVikb6iUsUm24T79tndyTkuFRmwZD4bYaYCT1IiA01pnPhOaAwGQR3GlM_dmISak1hJTqRxopTwEmNeGAQMY59RQWy8fwtq_bSvtwEJj2uWs_kz49NJEXDGzXHgsFAx5UlSB1ItRiRLunKrmtGLpkTLdkIjM6FRPqERr8PRpM-gIOv4tXWjWuOo_HGzyHpgPjXo4dXhuFrT6eufR9v5W_MDWOietqOri87lLizSYldghzSgNhqO9R7My5fRUzbcz_fzO2jg8pc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surrogate-based+cooperative+optimization+framework+for+computationally+expensive+black-box+problems&rft.jtitle=Optimization+and+engineering&rft.au=Garc%C3%ADa-Garc%C3%ADa%2C+Jos%C3%A9+Carlos&rft.au=Garc%C3%ADa-R%C3%B3denas%2C+Ricardo&rft.au=Codina%2C+Esteve&rft.date=2020-09-01&rft.issn=1389-4420&rft.eissn=1573-2924&rft.volume=21&rft.issue=3&rft.spage=1053&rft.epage=1093&rft_id=info:doi/10.1007%2Fs11081-020-09526-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11081_020_09526_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon