Test case selection and prioritization using machine learning: a systematic literature review

Regression testing is an essential activity to assure that software code changes do not adversely affect existing functionalities. With the wide adoption of Continuous Integration (CI) in software projects, which increases the frequency of running software builds, running all tests can be time-consu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Empirical software engineering : an international journal Ročník 27; číslo 2
Hlavní autoři: Pan, Rongqi, Bagherzadeh, Mojtaba, Ghaleb, Taher A., Briand, Lionel
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:1382-3256, 1573-7616
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Regression testing is an essential activity to assure that software code changes do not adversely affect existing functionalities. With the wide adoption of Continuous Integration (CI) in software projects, which increases the frequency of running software builds, running all tests can be time-consuming and resource-intensive. To alleviate that problem, Test case Selection and Prioritization (TSP) techniques have been proposed to improve regression testing by selecting and prioritizing test cases in order to provide early feedback to developers. In recent years, researchers have relied on Machine Learning (ML) techniques to achieve effective TSP (ML-based TSP). Such techniques help combine information about test cases, from partial and imperfect sources, into accurate prediction models. This work conducts a systematic literature review focused on ML-based TSP techniques, aiming to perform an in-depth analysis of the state of the art, thus gaining insights regarding future avenues of research. To that end, we analyze 29 primary studies published from 2006 to 2020, which have been identified through a systematic and documented process. This paper addresses five research questions addressing variations in ML-based TSP techniques and feature sets for training and testing ML models, alternative metrics used for evaluating the techniques, the performance of techniques, and the reproducibility of the published studies. We summarize the results related to our research questions in a high-level summary that can be used as a taxonomy for classifying future TSP studies.
AbstractList Regression testing is an essential activity to assure that software code changes do not adversely affect existing functionalities. With the wide adoption of Continuous Integration (CI) in software projects, which increases the frequency of running software builds, running all tests can be time-consuming and resource-intensive. To alleviate that problem, Test case Selection and Prioritization (TSP) techniques have been proposed to improve regression testing by selecting and prioritizing test cases in order to provide early feedback to developers. In recent years, researchers have relied on Machine Learning (ML) techniques to achieve effective TSP (ML-based TSP). Such techniques help combine information about test cases, from partial and imperfect sources, into accurate prediction models. This work conducts a systematic literature review focused on ML-based TSP techniques, aiming to perform an in-depth analysis of the state of the art, thus gaining insights regarding future avenues of research. To that end, we analyze 29 primary studies published from 2006 to 2020, which have been identified through a systematic and documented process. This paper addresses five research questions addressing variations in ML-based TSP techniques and feature sets for training and testing ML models, alternative metrics used for evaluating the techniques, the performance of techniques, and the reproducibility of the published studies. We summarize the results related to our research questions in a high-level summary that can be used as a taxonomy for classifying future TSP studies.
ArticleNumber 29
Author Ghaleb, Taher A.
Briand, Lionel
Pan, Rongqi
Bagherzadeh, Mojtaba
Author_xml – sequence: 1
  givenname: Rongqi
  surname: Pan
  fullname: Pan, Rongqi
  organization: School of Electrical Engineering and Computer Science (EECS), University of Ottawa
– sequence: 2
  givenname: Mojtaba
  surname: Bagherzadeh
  fullname: Bagherzadeh, Mojtaba
  organization: School of Electrical Engineering and Computer Science (EECS), University of Ottawa
– sequence: 3
  givenname: Taher A.
  orcidid: 0000-0001-9336-7298
  surname: Ghaleb
  fullname: Ghaleb, Taher A.
  email: tghaleb@uottawa.ca
  organization: School of Electrical Engineering and Computer Science (EECS), University of Ottawa
– sequence: 4
  givenname: Lionel
  surname: Briand
  fullname: Briand, Lionel
  organization: School of Electrical Engineering and Computer Science (EECS), University of Ottawa, SnT Centre for Security, Reliability and Trust, University of Luxembourg
BookMark eNp9kM9PwyAUx4mZidv0H_BE4rlKgVLqzSz-Sky8zKMhlL5Olo5OoJr514uriYmHnYCX74f33meGJq53gNB5Ti5zQsqrkBMheEZonqW3EJk4QtO8KFlWilxM0p1JmjFaiBM0C2FNCKlKXkzR6xJCxEYHwAE6MNH2DmvX4K23vbfRful9aQjWrfBGmzfrAHegvUuFa6xx2IUIm5QyuLMRvI6DB-zhw8LnKTpudRfg7Peco5e72-XiIXt6vn9c3DxlhgkWM2ZY23Ba07qqpeGmJrRoCWdQyaZiDJqirDTwludSUEPbgummaWjNtWgLzg2bo4vx363v34e0kVr3g3eppaKCVFJIIWRKyTFlfB-Ch1YZG_frRa9tp3KifmSqUaZKMtVephIJpf_Q5Gej_e4wxEYopLBbgf-b6gD1DYw1itE
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3488904
crossref_primary_10_1145_3576038
crossref_primary_10_1109_TSE_2024_3469582
crossref_primary_10_1016_j_jss_2025_112360
crossref_primary_10_3390_app142311168
crossref_primary_10_1145_3680467
crossref_primary_10_1016_j_eswa_2024_126086
crossref_primary_10_1109_TSE_2024_3479421
crossref_primary_10_1142_S0219649224500126
crossref_primary_10_1109_ACCESS_2024_3459656
crossref_primary_10_1002_smr_2708
crossref_primary_10_1145_3719006
crossref_primary_10_1016_j_procs_2025_04_658
crossref_primary_10_1002_smr_2506
crossref_primary_10_1007_s11257_024_09398_x
crossref_primary_10_1007_s10664_023_10286_y
crossref_primary_10_1007_s10664_024_10497_x
crossref_primary_10_1007_s10664_024_10539_4
crossref_primary_10_1145_3616372
crossref_primary_10_1145_3730435
crossref_primary_10_1109_TSE_2022_3222160
crossref_primary_10_1007_s00521_022_07627_1
crossref_primary_10_1007_s11219_023_09650_4
crossref_primary_10_3390_app15158596
crossref_primary_10_1016_j_infsof_2024_107448
crossref_primary_10_1016_j_engappai_2024_109776
crossref_primary_10_1007_s10515_022_00344_y
crossref_primary_10_1145_3707450
crossref_primary_10_22367_jem_2025_47_05
crossref_primary_10_32604_cmc_2023_032308
crossref_primary_10_3389_fnano_2025_1627210
crossref_primary_10_3390_electronics14071463
crossref_primary_10_1007_s11760_024_03236_8
crossref_primary_10_1109_ACCESS_2024_3490453
crossref_primary_10_1007_s10515_024_00447_8
crossref_primary_10_1109_MS_2025_3546511
crossref_primary_10_1002_smr_70035
crossref_primary_10_2478_jee_2024_0018
crossref_primary_10_3390_app15042243
crossref_primary_10_1145_3644388
crossref_primary_10_1016_j_jss_2022_111419
crossref_primary_10_1109_TSE_2025_3554403
crossref_primary_10_1145_3579851
crossref_primary_10_1145_3511805
crossref_primary_10_1109_TSE_2022_3184842
crossref_primary_10_1109_ACCESS_2024_3424276
crossref_primary_10_1109_TSE_2025_3583027
crossref_primary_10_1007_s10664_025_10708_z
crossref_primary_10_1109_MPOT_2023_3342366
crossref_primary_10_1145_3757912
crossref_primary_10_1145_3736758
crossref_primary_10_1109_TSE_2024_3418191
crossref_primary_10_1016_j_scico_2024_103157
Cites_doi 10.1145/3057269
10.1007/978-1-4614-7138-7
10.3233/JIFS-181998
10.1037/0033-2909.114.3.494
10.1162/evco.1995.3.2.149
10.1109/32.962562
10.1109/32.988497
10.2200/S00348ED1V01Y201104HLT012
10.1109/TR.2019.2892517
10.1016/j.infsof.2008.09.009
10.1007/s10664-012-9219-7
10.1109/TSE.2006.92
10.1109/ACCESS.2020.3039931
10.1090/S0002-9904-1952-09620-8
10.35940/ijeat.A9762.109119
10.1007/s11063-019-09999-3
10.1007/s11219-016-9339-1
10.1002/smr.1794
10.1162/neco.1997.9.8.1735
10.1016/j.infsof.2020.106269
10.1016/j.infsof.2020.106268
10.1145/3290353
10.1016/j.infsof.2017.08.014
10.1016/j.jss.2017.03.044
10.1145/2610384.2628055
10.1145/581339.581357
10.1109/SEAA51224.2020.00023
10.1145/1572272.1572296
10.1109/ICSM.2007.4362638
10.1145/775047.775067
10.1145/1277741.1277790
10.1145/3377811.3380369
10.1145/3382025.3414967
10.3917/audi.014.0163
10.1145/3236024.3236053
10.1109/APSIPAASC47483.2019.9023052
10.1145/3127005.3127006
10.1109/ICSE.2001.919106
10.1109/DSAA49011.2020.00076
10.1109/ICMLA.2016.0065
10.1109/ICSM.2011.6080805
10.1109/ICSM.2006.74
10.1109/ICST.2011.38
10.1145/3379597.3387458
10.1145/2950290.2983954
10.18653/v1/2020.findings-emnlp.139
10.1111/j.2517-6161.1974.tb00994.x
10.1109/IEMCON.2019.8936202
10.1109/ICST.2010.47
10.1109/MSR.2017.24
10.1145/3273934.3273944
10.1145/3092703.3092709
10.1109/SERE.2012.18
10.1145/3425174.3425210
10.1145/3377929.3398128
10.1109/ICST.2008.57
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-021-10066-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_021_10066_6
GrantInformation_xml – fundername: mitacs
  funderid: https://doi.org/10.13039/501100004489
– fundername: canada research chairs
  funderid: https://doi.org/10.13039/501100001804
– fundername: huawei technologies
  funderid: https://doi.org/10.13039/501100003816
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-3c3fd42b2b9b8c4cb025f043e98d933ed579ae4f41862c2f53addd2b4a6f544c3
IEDL.DBID M7S
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000730174900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 16:49:16 EST 2025
Sat Nov 29 05:37:45 EST 2025
Tue Nov 18 22:10:51 EST 2025
Fri Feb 21 02:46:17 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Software testing
Continuous integration
Test case selection
Test case prioritization
Machine learning
Systematic literature review
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3c3fd42b2b9b8c4cb025f043e98d933ed579ae4f41862c2f53addd2b4a6f544c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9336-7298
OpenAccessLink http://orbilu.uni.lu/handle/10993/48384
PQID 2609868668
PQPubID 326341
ParticipantIDs proquest_journals_2609868668
crossref_citationtrail_10_1007_s10664_021_10066_6
crossref_primary_10_1007_s10664_021_10066_6
springer_journals_10_1007_s10664_021_10066_6
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR39
Manning, Schutze (CR42) 1999
Khatibsyarbini, Isa, Jawawi, Tumeng (CR31) 2018; 93
CR37
CR35
Jahan, Feng, Mahmud, Dong (CR24) 2019; 36
Robbins (CR53) 1952; 58
CR32
CR30
Kandil, Moussa, Badr (CR28) 2017; 29
CR71
CR70
Rothermel, Untch, Chu, Harrold (CR55) 2001; 27
Almaghairbe, Roper (CR1) 2017; 25
Kitchenham (CR33) 2004; 33
Hochreiter, Schmidhuber (CR23) 1997; 9
CR4
CR3
CR6
CR5
Kazmi, Jawawi, Mohamad, Ghani (CR29) 2017; 50
CR8
CR7
CR9
CR49
Sutton, Barto (CR62) 2018
CR47
CR46
Sharma, Agrawal (CR57) 2019; 9
CR44
CR43
CR40
Mahdieh, Mirian-Hosseinabadi, Etemadi, Nosrati, Jalali (CR41) 2020; 121
Li (CR36) 2011; 4
Medhat, Moussa, Badr, Tolba (CR45) 2020; 8
CR19
CR17
CR16
CR14
CR58
Singh, Bhatia, Singhrova (CR59) 2019; 8
Do, Rothermel (CR13) 2006; 32
CR12
CR56
Cliff (CR10) 1993; 114
CR11
Wilson (CR67) 1995; 3
Zhang, Zhang, Shi, Almpanidis, Fan, Shen (CR72) 2019; 50
CR54
CR52
CR51
CR50
Durelli, Durelli, Borges, Endo, Eler, Dias, Guimaraes (CR15) 2019; 68
Freund, Iyer, Schapire, Singer (CR21) 2003; 4
Lima, Vergilio (CR38) 2020; 121
Thomas, Hemmati, Hassan, Blostein (CR63) 2014; 19
Wilks (CR66) 2011
CR27
CR26
CR69
CR68
CR22
CR65
CR20
Kitchenham, Brereton, Budgen, Turner, Bailey, Linkman (CR34) 2009; 51
CR64
Stone (CR61) 1974; 36
Alon, Zilberstein, Levy, Yahav (CR2) 2019; 3
CR60
Nuñez-Varela, Pérez-Gonzalez, Martínez-Perez, Soubervielle-Montalvo (CR48) 2017; 128
Elbaum, Malishevsky, Rothermel (CR18) 2002; 28
James, Witten, Hastie, Tibshirani (CR25) 2013
N Cliff (10066_CR10) 1993; 114
G Rothermel (10066_CR55) 2001; 27
H Robbins (10066_CR53) 1952; 58
N Medhat (10066_CR45) 2020; 8
JAP Lima (10066_CR38) 2020; 121
AS Nuñez-Varela (10066_CR48) 2017; 128
10066_CR37
H Li (10066_CR36) 2011; 4
10066_CR39
10066_CR4
10066_CR43
10066_CR3
10066_CR44
10066_CR46
MM Sharma (10066_CR57) 2019; 9
10066_CR40
S Hochreiter (10066_CR23) 1997; 9
C Manning (10066_CR42) 1999
10066_CR9
10066_CR8
10066_CR7
RS Sutton (10066_CR62) 2018
10066_CR6
S Elbaum (10066_CR18) 2002; 28
10066_CR5
DS Wilks (10066_CR66) 2011
R Kazmi (10066_CR29) 2017; 50
10066_CR69
10066_CR26
10066_CR27
H Do (10066_CR13) 2006; 32
10066_CR32
10066_CR35
10066_CR30
R Almaghairbe (10066_CR1) 2017; 25
B Kitchenham (10066_CR34) 2009; 51
10066_CR70
Y Freund (10066_CR21) 2003; 4
10066_CR71
A Singh (10066_CR59) 2019; 8
M Khatibsyarbini (10066_CR31) 2018; 93
10066_CR19
10066_CR14
10066_CR58
10066_CR16
10066_CR17
SW Wilson (10066_CR67) 1995; 3
SW Thomas (10066_CR63) 2014; 19
10066_CR65
10066_CR22
10066_CR68
G James (10066_CR25) 2013
10066_CR20
10066_CR64
U Alon (10066_CR2) 2019; 3
10066_CR60
VHS Durelli (10066_CR15) 2019; 68
P Kandil (10066_CR28) 2017; 29
M Mahdieh (10066_CR41) 2020; 121
10066_CR47
10066_CR49
B Kitchenham (10066_CR33) 2004; 33
10066_CR54
M Stone (10066_CR61) 1974; 36
10066_CR11
10066_CR12
10066_CR56
10066_CR50
10066_CR51
10066_CR52
C Zhang (10066_CR72) 2019; 50
H Jahan (10066_CR24) 2019; 36
References_xml – ident: CR70
– ident: CR22
– ident: CR49
– ident: CR68
– ident: CR4
– ident: CR39
– year: 1999
  ident: CR42
  publication-title: Foundations of statistical natural language processing
– ident: CR16
– year: 2018
  ident: CR62
  publication-title: Reinforcement learning: An introduction
– ident: CR51
– ident: CR12
– ident: CR35
– ident: CR54
– volume: 8
  start-page: 700
  issue: 3
  year: 2019
  end-page: 707
  ident: CR59
  article-title: Machine learning based test case prioritization in object oriented testing
  publication-title: Int J Recent Technol Eng
– ident: CR8
– volume: 50
  start-page: 1
  issue: 2
  year: 2017
  end-page: 32
  ident: CR29
  article-title: Effective regression test case selection: A systematic literature review
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3057269
– ident: CR58
– ident: CR46
– ident: CR71
– ident: CR19
– year: 2013
  ident: CR25
  publication-title: An introduction to statistical learning, vol 112
  doi: 10.1007/978-1-4614-7138-7
– volume: 36
  start-page: 6181
  issue: 6
  year: 2019
  end-page: 6194
  ident: CR24
  article-title: Version specific test case prioritization approach based on artificial neural network
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-181998
– volume: 114
  start-page: 494
  issue: 3
  year: 1993
  ident: CR10
  article-title: Dominance statistics: Ordinal analyses to answer ordinal questions
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.114.3.494
– ident: CR50
– volume: 3
  start-page: 149
  issue: 2
  year: 1995
  end-page: 175
  ident: CR67
  article-title: Classifier fitness based on accuracy
  publication-title: Evol Comput
  doi: 10.1162/evco.1995.3.2.149
– volume: 27
  start-page: 929
  issue: 10
  year: 2001
  end-page: 948
  ident: CR55
  article-title: Prioritizing test cases for regression testing
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.962562
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR60
– ident: CR5
– volume: 28
  start-page: 159
  issue: 2
  year: 2002
  end-page: 182
  ident: CR18
  article-title: Test case prioritization: A family of empirical studies
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.988497
– ident: CR64
– ident: CR26
– volume: 4
  start-page: 1
  issue: 1
  year: 2011
  end-page: 113
  ident: CR36
  article-title: Learning to rank for information retrieval and natural language processing
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00348ED1V01Y201104HLT012
– ident: CR43
– ident: CR47
– volume: 68
  start-page: 1189
  issue: 3
  year: 2019
  end-page: 1212
  ident: CR15
  article-title: Machine learning applied to software testing: A systematic mapping study
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2892517
– volume: 4
  start-page: 933
  issue: Nov
  year: 2003
  end-page: 969
  ident: CR21
  article-title: An efficient boosting algorithm for combining preferences
  publication-title: J Mach Learn Res
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  end-page: 15
  ident: CR34
  article-title: Systematic literature reviews in software engineering–a systematic literature review
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2008.09.009
– ident: CR14
– volume: 19
  start-page: 182
  issue: 1
  year: 2014
  end-page: 212
  ident: CR63
  article-title: Static test case prioritization using topic models
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-012-9219-7
– volume: 32
  start-page: 733
  issue: 9
  year: 2006
  end-page: 752
  ident: CR13
  article-title: On the use of mutation faults in empirical assessments of test case prioritization techniques
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2006.92
– ident: CR37
– volume: 8
  start-page: 215716
  year: 2020
  end-page: 215726
  ident: CR45
  article-title: A framework for continuous regression and integration testing in iot systems based on deep learning and search-based techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039931
– ident: CR30
– year: 2011
  ident: CR66
  publication-title: Statistical methods in the atmospheric sciences, vol 100
– volume: 58
  start-page: 527
  issue: 5
  year: 1952
  end-page: 535
  ident: CR53
  article-title: Some aspects of the sequential design of experiments
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0002-9904-1952-09620-8
– volume: 9
  start-page: 2742
  issue: 1
  year: 2019
  end-page: 2748
  ident: CR57
  article-title: Test case design and test case prioritization using machine learning
  publication-title: Int J Eng Adv Technol
  doi: 10.35940/ijeat.A9762.109119
– volume: 50
  start-page: 957
  issue: 1
  year: 2019
  end-page: 987
  ident: CR72
  article-title: On incremental learning for gradient boosting decision trees
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-09999-3
– volume: 33
  start-page: 1
  issue: 2004
  year: 2004
  end-page: 26
  ident: CR33
  article-title: Procedures for performing systematic reviews
  publication-title: Keele, UK, Keele University
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  end-page: 133
  ident: CR61
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J R Stat Soc Ser B (Methodol)
– ident: CR6
– ident: CR56
– volume: 25
  start-page: 803
  issue: 3
  year: 2017
  end-page: 840
  ident: CR1
  article-title: Separating passing and failing test executions by clustering anomalies
  publication-title: Softw Qual J
  doi: 10.1007/s11219-016-9339-1
– volume: 29
  start-page: e1794
  issue: 6
  year: 2017
  ident: CR28
  article-title: Cluster-based test cases prioritization and selection technique for agile regression testing
  publication-title: J Softw Evol Process
  doi: 10.1002/smr.1794
– ident: CR40
– ident: CR27
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR23
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR69
– ident: CR44
– volume: 121
  start-page: 106269
  year: 2020
  ident: CR41
  article-title: Incorporating fault-proneness estimations into coverage-based test case prioritization methods
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2020.106269
– ident: CR65
– ident: CR3
– volume: 121
  start-page: 106268
  year: 2020
  ident: CR38
  article-title: Test case prioritization in continuous integration environments A systematic mapping study
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2020.106268
– ident: CR52
– ident: CR17
– volume: 3
  start-page: 1
  issue: POPL
  year: 2019
  end-page: 29
  ident: CR2
  article-title: code2vec: Learning distributed representations of code
  publication-title: Proc ACM Programm Lang
  doi: 10.1145/3290353
– volume: 93
  start-page: 74
  year: 2018
  end-page: 93
  ident: CR31
  article-title: Test case prioritization approaches in regression testing: A systematic literature review
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2017.08.014
– volume: 128
  start-page: 164
  year: 2017
  end-page: 197
  ident: CR48
  article-title: Source code metrics: A systematic mapping study
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.03.044
– ident: CR7
– ident: CR20
– volume: 4
  start-page: 933
  issue: Nov
  year: 2003
  ident: 10066_CR21
  publication-title: J Mach Learn Res
– ident: 10066_CR52
– ident: 10066_CR27
  doi: 10.1145/2610384.2628055
– volume: 8
  start-page: 700
  issue: 3
  year: 2019
  ident: 10066_CR59
  publication-title: Int J Recent Technol Eng
– ident: 10066_CR32
  doi: 10.1145/581339.581357
– ident: 10066_CR3
  doi: 10.1109/SEAA51224.2020.00023
– ident: 10066_CR70
  doi: 10.1145/1572272.1572296
– ident: 10066_CR14
– volume: 33
  start-page: 1
  issue: 2004
  year: 2004
  ident: 10066_CR33
  publication-title: Keele, UK, Keele University
– ident: 10066_CR68
  doi: 10.1109/ICSM.2007.4362638
– ident: 10066_CR26
  doi: 10.1145/775047.775067
– ident: 10066_CR37
– volume: 50
  start-page: 957
  issue: 1
  year: 2019
  ident: 10066_CR72
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-09999-3
– ident: 10066_CR56
– ident: 10066_CR71
  doi: 10.1145/1277741.1277790
– volume: 8
  start-page: 215716
  year: 2020
  ident: 10066_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039931
– ident: 10066_CR5
  doi: 10.1145/3377811.3380369
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  ident: 10066_CR34
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2008.09.009
– ident: 10066_CR40
  doi: 10.1145/3382025.3414967
– ident: 10066_CR51
– volume: 19
  start-page: 182
  issue: 1
  year: 2014
  ident: 10066_CR63
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-012-9219-7
– ident: 10066_CR11
  doi: 10.3917/audi.014.0163
– volume: 3
  start-page: 149
  issue: 2
  year: 1995
  ident: 10066_CR67
  publication-title: Evol Comput
  doi: 10.1162/evco.1995.3.2.149
– volume: 29
  start-page: e1794
  issue: 6
  year: 2017
  ident: 10066_CR28
  publication-title: J Softw Evol Process
  doi: 10.1002/smr.1794
– volume: 93
  start-page: 74
  year: 2018
  ident: 10066_CR31
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2017.08.014
– ident: 10066_CR9
  doi: 10.1145/3236024.3236053
– ident: 10066_CR22
  doi: 10.1109/APSIPAASC47483.2019.9023052
– volume: 3
  start-page: 1
  issue: POPL
  year: 2019
  ident: 10066_CR2
  publication-title: Proc ACM Programm Lang
  doi: 10.1145/3290353
– volume: 28
  start-page: 159
  issue: 2
  year: 2002
  ident: 10066_CR18
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.988497
– volume: 25
  start-page: 803
  issue: 3
  year: 2017
  ident: 10066_CR1
  publication-title: Softw Qual J
  doi: 10.1007/s11219-016-9339-1
– ident: 10066_CR47
  doi: 10.1145/3127005.3127006
– ident: 10066_CR17
  doi: 10.1109/ICSE.2001.919106
– ident: 10066_CR20
– ident: 10066_CR58
  doi: 10.1109/DSAA49011.2020.00076
– volume: 27
  start-page: 929
  issue: 10
  year: 2001
  ident: 10066_CR55
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/32.962562
– ident: 10066_CR35
  doi: 10.1109/ICMLA.2016.0065
– ident: 10066_CR7
  doi: 10.1109/ICSM.2011.6080805
– volume: 36
  start-page: 6181
  issue: 6
  year: 2019
  ident: 10066_CR24
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-181998
– volume: 121
  start-page: 106269
  year: 2020
  ident: 10066_CR41
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2020.106269
– ident: 10066_CR64
  doi: 10.1109/ICSM.2006.74
– ident: 10066_CR8
  doi: 10.1109/ICST.2011.38
– ident: 10066_CR43
  doi: 10.1145/3379597.3387458
– volume-title: Reinforcement learning: An introduction
  year: 2018
  ident: 10066_CR62
– ident: 10066_CR6
  doi: 10.1145/2950290.2983954
– ident: 10066_CR16
– ident: 10066_CR44
– ident: 10066_CR12
– volume: 32
  start-page: 733
  issue: 9
  year: 2006
  ident: 10066_CR13
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2006.92
– ident: 10066_CR19
  doi: 10.18653/v1/2020.findings-emnlp.139
– volume-title: An introduction to statistical learning, vol 112
  year: 2013
  ident: 10066_CR25
  doi: 10.1007/978-1-4614-7138-7
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 10066_CR61
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: 10066_CR30
  doi: 10.1109/IEMCON.2019.8936202
– ident: 10066_CR69
  doi: 10.1109/ICST.2010.47
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10066_CR23
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 128
  start-page: 164
  year: 2017
  ident: 10066_CR48
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.03.044
– volume: 50
  start-page: 1
  issue: 2
  year: 2017
  ident: 10066_CR29
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3057269
– ident: 10066_CR4
  doi: 10.1109/MSR.2017.24
– volume-title: Statistical methods in the atmospheric sciences, vol 100
  year: 2011
  ident: 10066_CR66
– volume: 68
  start-page: 1189
  issue: 3
  year: 2019
  ident: 10066_CR15
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2892517
– ident: 10066_CR49
  doi: 10.1145/3273934.3273944
– ident: 10066_CR60
  doi: 10.1145/3092703.3092709
– volume-title: Foundations of statistical natural language processing
  year: 1999
  ident: 10066_CR42
– volume: 58
  start-page: 527
  issue: 5
  year: 1952
  ident: 10066_CR53
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0002-9904-1952-09620-8
– volume: 114
  start-page: 494
  issue: 3
  year: 1993
  ident: 10066_CR10
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.114.3.494
– volume: 9
  start-page: 2742
  issue: 1
  year: 2019
  ident: 10066_CR57
  publication-title: Int J Eng Adv Technol
  doi: 10.35940/ijeat.A9762.109119
– ident: 10066_CR65
  doi: 10.1109/SERE.2012.18
– ident: 10066_CR39
  doi: 10.1145/3425174.3425210
– ident: 10066_CR50
  doi: 10.1145/3425174.3425210
– volume: 4
  start-page: 1
  issue: 1
  year: 2011
  ident: 10066_CR36
  publication-title: Synth Lect Hum Lang Technol
  doi: 10.2200/S00348ED1V01Y201104HLT012
– volume: 121
  start-page: 106268
  year: 2020
  ident: 10066_CR38
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2020.106268
– ident: 10066_CR54
  doi: 10.1145/3377929.3398128
– ident: 10066_CR46
  doi: 10.1109/ICST.2008.57
SSID ssj0009745
Score 2.609264
Snippet Regression testing is an essential activity to assure that software code changes do not adversely affect existing functionalities. With the wide adoption of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Compilers
Computer Science
Interpreters
Literature reviews
Machine learning
Prediction models
Programming Languages
Questions
Software
Software Engineering/Programming and Operating Systems
Systematic review
Taxonomy
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PXhx_sTplBy8aaBL0jTxJuLwIEN0yi5S0vwYwuxknf79Jmm7qqig56ZJeO8lLyHv-z4AjqnVQlsmkY00RjTRFGWRUUhamWiZSBdGwdPXyWDARyNxU4HCirravX6SDDv1B7AbYxT5koKeT5SILYMVl-64F2y4vXtoqHaTIE3syfUQcRm9gsp838fndNScMb88i4Zs02__b54bYL06XcLzMhw2wZLJt0C7Vm6A1ULeBo9DNzxULoPBIgjhOO9AmWvohpp6mqMSnAl9VfwYPoeCSwMrhYnxGZSwYYCGkwUzMyyBMDvgvn85vLhCldACUoSROSKKWE1xhjORcUVV5g5CNqLECK4FIUbHiZCGWuochxW2MXG7osYZlczGlCqyC1r5NDd7HgJu3QUsJopjQkkkZEaIVtxd-6Q1QvIO6NX2TlXFQu7FMCZpw5_s7Zc6-6XBfinrgJPFPy8lB8evrbu1G9NqPRapu7UJzjhjbgKntduazz_3tv-35gdgDXt8RChS64LWfPZqDsGqeps_FbOjEKfv9z3i1g
  priority: 102
  providerName: Springer Nature
Title Test case selection and prioritization using machine learning: a systematic literature review
URI https://link.springer.com/article/10.1007/s10664-021-10066-6
https://www.proquest.com/docview/2609868668
Volume 27
WOSCitedRecordID wos000730174900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9-Hbz4LU7nyMGbBrcmTRMvouLwIGNsU4YgJc3HEGY33fTvN0nTFQW9eMmlbQj9veS9JO_9fgCcEKO4MlQg01QRIokiKGtqiYQRiRKJsGbkkb5POh02HPJuOHCbhbTKck30C7WaSHdGfm7jbs4oo5RdTt-QU41yt6tBQmMZrDqWhJZP3etXpLuJFyl2NHsIW98eimZC6RylBLkEhZZzu4h-d0xVtPnjgtT7nfbmf0e8BTZCxAmvChPZBks63wGbpZoDDJN7FzwPbNdQWq8GZ14cxyIGRa6gHdjEUR8VBZvQZcqP4KtPwtQwqE6MLqCAFSs0HC_YmmFRHLMHHtq3g5s7FMQXkMQUzxGW2CgSZVHGMyaJzGxwZJoEa84Ux1irOOFCE0MsmJGMTIztSqmijAhqYkIk3gcr-STXB64s3NhNWYwlizDBTS4yjJVkdisojOaC1UCr_POpDMzkTiBjnFacyg6t1KKVerRSWgOni2-mBS_Hn2_XS4jSMEdnaYVPDZyVIFePf-_t8O_ejsB65GokfKJaHazM3z_0MViTn_OX2XsDrF7fdrq9hrdU23bjJ9v2-o9fA2bw2A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bSxwxFD5YFdqXemnFrbc86JMNXZNsJhFExAuK61LoCr6UaSYXEeyudbct_il_oyeZGQcL9c0Hn2cmTCZfzmVyzvcBrIvgtAvS0NB2jIrMCVq0vaUmmMyZzCCM0kp3s15PXVzorxNwX_fCxLLK2iYmQ-2GNv4j_4Jxt1ZSSal2b37RqBoVT1drCY0SFqf-7i-mbKOdkwNc3w3Gjg77-8e0UhWglks-ptzy4AQrWKELZYUt0OuHtuBeK4fZvXedTBsvgsC3ZJaFDkcT4FghjAwdISzHcd_AFIYRTKdSwW8NyW-WRJEjrR_lGEtUTTpVq56UgsaCiK3o5ql86gib6PafA9nk545mXtsXmoX3VURN9sotMAcTfjAPM7VaBamM1wf43sepEItem4yS-A8ikpiBI_ghhpHaqWxIJbET4JL8TEWmnlSqGpfbxJCG9ZpcP7JRk7L55yOcv8gkF2ByMBz4xdj2HjDp7HCrGBe8rU3BubMKU10TvDaqBVv1Sue2Yl6PAiDXecMZHdGRIzryhI5ctmDz8Zmbknfk2buXa0jklQ0a5Q0eWvC5BlVz-f-jfXp-tDV4e9w_6-bdk97pErxjsR8kFeUtw-T49rdfgWn7Z3w1ul1Nu4PAj5cG2wP4Y0t-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dSxwxFL2oLdKXWq3Sba3mQZ_a4G6SyWQEkaJdFGXZBwtSKGMmHyLYXetuK_61_jpvMhkHhfrmQ59nJkwmJ_djcu85ABvC28J6qanvWkZFbgWtus5Q7XVuda4RRnGlj_PBQJ2eFsMZ-Nv0woSyysYmRkNtxyb8I9_CuLtQUkmptnwqixju93evftGgIBVOWhs5jRoiR-72BtO3yc7hPq71JmP9ryd7BzQpDFDDJZ9Sbri3glWsKiplhKkwAvBdwV2hLGb6zmZ5oZ3wAt-YGeYzjubAskpo6TMhDMdxZ-FFjjlmKCccZt9bwt88CiQHij_KMa5IDTupbU9KQUNxRC-4fCofOsU20n10OBt9Xn_hf_5ab-B1irTJl3prLMKMGy3BQqNiQZJRews_TnBaxKA3J5MoCoRIJXpkCX6UcaB8qhtVSegQOCc_Y_GpI0lt43ybaNKyYZPLe5ZqUjcFLcO3Z5nkCsyNxiP3LrTDe0xGM24U44J3C11xbo3CFFh7V2jVgV6z6qVJjOxBGOSybLmkA1JKREoZkVLKDny6f-aq5iN58u7VBh5lsk2TssVGBz43AGsv_3u090-Ptg7ziLHy-HBw9AFesdAmEmv1VmFuev3bfYSX5s_0YnK9FjcKgbPnxtodnApUVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+case+selection+and+prioritization+using+machine+learning%3A+a+systematic+literature+review&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Pan+Rongqi&rft.au=Bagherzadeh+Mojtaba&rft.au=Ghaleb%2C+Taher+A&rft.au=Briand%2C+Lionel&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=27&rft.issue=2&rft_id=info:doi/10.1007%2Fs10664-021-10066-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon