Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs
We define a call-by-value variant of Gödel’s system T with references, and equip it with a linear dependent type and effect system, called d ℓ T , that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in th...
Uložené v:
| Vydané v: | Journal of automated reasoning Ročník 63; číslo 4; s. 813 - 855 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.12.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0168-7433, 1573-0670 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We define a call-by-value variant of Gödel’s system
T
with references, and equip it with a linear dependent type and effect system, called
d
ℓ
T
, that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of
d
ℓ
T
. Finally, we demonstrate the usefulness of
d
ℓ
T
for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0168-7433 1573-0670 |
| DOI: | 10.1007/s10817-019-09530-2 |