Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs

We define a call-by-value variant of Gödel’s system T with references, and equip it with a linear dependent type and effect system, called d ℓ T , that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning Jg. 63; H. 4; S. 813 - 855
Hauptverfasser: Baillot, Patrick, Barthe, Gilles, Dal Lago, Ugo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.12.2019
Springer Nature B.V
Schlagworte:
ISSN:0168-7433, 1573-0670
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define a call-by-value variant of Gödel’s system T with references, and equip it with a linear dependent type and effect system, called d ℓ T , that can estimate the time complexity of programs, as a function of the size of their inputs. We prove that the type system is intentionally sound, in the sense that it over-approximates the complexity of executing the programs on a variant of the CEK abstract machine. Moreover, we define a sound and complete type inference algorithm which critically exploits the subrecursive nature of d ℓ T . Finally, we demonstrate the usefulness of d ℓ T for analyzing the complexity of cryptographic reductions by providing an upper bound for the constructed adversary of the Goldreich–Levin theorem.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-019-09530-2