On the Uniqueness of the Bounded Solution for the Fractional Nonlinear Partial Integro-Differential Equation with Approximations
This paper studies the uniqueness of the bounded solution to a new Cauchy problem of the fractional nonlinear partial integro-differential equation based on the multivariate Mittag–Leffler function as well as Banach’s contractive principle in a complete function space. Applying Babenko’s approach, w...
Uloženo v:
| Vydáno v: | Mathematics (Basel) Ročník 11; číslo 12; s. 2752 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2023
|
| Témata: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies the uniqueness of the bounded solution to a new Cauchy problem of the fractional nonlinear partial integro-differential equation based on the multivariate Mittag–Leffler function as well as Banach’s contractive principle in a complete function space. Applying Babenko’s approach, we convert the fractional nonlinear equation with variable coefficients to an implicit integral equation, which is a powerful method of studying the uniqueness of solutions. Furthermore, we construct algorithms for finding analytic and approximate solutions using Adomian’s decomposition method and recurrence relation with the order convergence analysis. Finally, an illustrative example is presented to demonstrate constructions for the numerical solution using MATHEMATICA. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math11122752 |