Turing Kernelization for Finding Long Paths in Graph Classes Excluding a Topological Minor

The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k - Path admits a polynomial Tur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 81; H. 10; S. 3936 - 3967
Hauptverfasser: Jansen, Bart M. P., Pilipczuk, Marcin, Wrochna, Marcin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2019
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k - Path admits a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected graph has a simple path of length  k , using an oracle that answers queries of size  k O ( 1 ) ? We show this can be done when the input graph avoids a fixed graph  H as a topological minor, thereby significantly generalizing an earlier result for bounded-degree and  K 3 , t -minor-free graphs. Moreover, we show that k - Path even admits a polynomial Turing kernel when the input graph is not H -topological-minor-free itself, but contains a known vertex modulator of size bounded polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on the graph minors decomposition to show that any H -topological-minor-free graph that does not contain a k -path, has a separation that can safely be reduced after communication with the oracle.
AbstractList The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k - Path admits a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected graph has a simple path of length  k , using an oracle that answers queries of size  k O ( 1 ) ? We show this can be done when the input graph avoids a fixed graph  H as a topological minor, thereby significantly generalizing an earlier result for bounded-degree and  K 3 , t -minor-free graphs. Moreover, we show that k - Path even admits a polynomial Turing kernel when the input graph is not H -topological-minor-free itself, but contains a known vertex modulator of size bounded polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on the graph minors decomposition to show that any H -topological-minor-free graph that does not contain a k -path, has a separation that can safely be reduced after communication with the oracle.
The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be queried for the answers to bounded-size subproblems. One of the main open problems in this direction is whether k-Path admits a polynomial Turing kernel: can a polynomial-time algorithm determine whether an undirected graph has a simple path of length k, using an oracle that answers queries of size kO(1)? We show this can be done when the input graph avoids a fixed graph H as a topological minor, thereby significantly generalizing an earlier result for bounded-degree and K3,t-minor-free graphs. Moreover, we show that k-Path even admits a polynomial Turing kernel when the input graph is not H-topological-minor-free itself, but contains a known vertex modulator of size bounded polynomially in the parameter, whose deletion makes it so. To obtain our results, we build on the graph minors decomposition to show that any H-topological-minor-free graph that does not contain a k-path, has a separation that can safely be reduced after communication with the oracle.
Author Jansen, Bart M. P.
Pilipczuk, Marcin
Wrochna, Marcin
Author_xml – sequence: 1
  givenname: Bart M. P.
  surname: Jansen
  fullname: Jansen, Bart M. P.
  organization: Eindhoven University of Technology
– sequence: 2
  givenname: Marcin
  surname: Pilipczuk
  fullname: Pilipczuk, Marcin
  organization: University of Warsaw
– sequence: 3
  givenname: Marcin
  orcidid: 0000-0001-9346-2172
  surname: Wrochna
  fullname: Wrochna, Marcin
  email: m.wrochna@mimuw.edu.pl
  organization: University of Warsaw
BookMark eNp9kLtOwzAUhi0EEm3hBZgsMQd8i52MqGoLogiGsrBYjmu3roId7EQCnp60QUJi6OIz-P_O5RuDUx-8AeAKoxuMkLhNCLGcZgiXGUIcs4ydgBFmlGQoZ_gUjBAWRcY4FudgnNIOIUxEyUfgbdVF5zfw0URvavetWhc8tCHCufPr_c8y9M-LarcJOg8XUTVbOK1VSibB2aeuu0NKwVVoQh02TqsaPjkf4gU4s6pO5vK3TsDrfLaa3mfL58XD9G6Zacppm1FsuREix0ZXhFe5pmuiDK5YJdbMlFwZZnSpc5rT0lpuBcPYqqIPaassLegEXA99mxg-OpNauQtd9P1ISUiBOKE5Jn2qGFI6hpSisVK79nBtG5WrJUZyb1IOJmVvUh5MStaj5B_aRPeu4tdxiA5QavaCTfzb6gj1AwumiKg
CitedBy_id crossref_primary_10_1016_j_ic_2025_105355
crossref_primary_10_1016_j_jcss_2021_02_005
crossref_primary_10_1137_22M1518943
Cites_doi 10.1007/s00453-015-0083-x
10.1007/978-3-662-46078-8_21
10.1007/s11590-011-0311-5
10.1137/120892234
10.1006/jctb.1999.1919
10.1137/1.9781611973730.42
10.1007/978-3-642-27875-4
10.1145/2344422.2344428
10.1016/j.jctb.2012.07.003
10.1145/3196276
10.1145/2591796.2591852
10.1007/s00453-014-9910-8
10.1137/120880240
10.1016/j.jctb.2011.02.002
10.1016/0095-8956(86)90030-4
10.1137/050633263
10.1007/978-3-642-17493-3_4
10.1016/j.jctb.2012.07.001
10.1016/j.tcs.2016.02.001
10.1016/j.tcs.2016.04.034
10.1112/plms/s3-2.1.69
10.3138/9781487584863
10.1007/978-3-642-14279-6
10.1016/j.jcss.2016.09.002
10.1006/jctb.2002.2113
10.1016/0095-8956(91)90061-N
10.1016/j.jcss.2016.10.008
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Springer Nature B.V. 2019
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-019-00614-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 3967
ExternalDocumentID 10_1007_s00453_019_00614_4
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: Veni grant 639.021.437 “Frontiers in Parameterized Preprocessing”; Gravitation grant 024.002.003 “Networks”
  funderid: http://dx.doi.org/10.13039/501100003246
– fundername: Narodowe Centrum Nauki
  grantid: 2013/11/D/ST6/03073
  funderid: http://dx.doi.org/10.13039/501100004281
– fundername: Fundacja na rzecz Nauki Polskiej
  grantid: START
  funderid: http://dx.doi.org/10.13039/501100001870
– fundername: Fundacja na rzecz Nauki Polskiej
  grantid: HOMING “Recent trends in kernelization: theory and experimental evaluation”
  funderid: http://dx.doi.org/10.13039/501100001870
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
ID FETCH-LOGICAL-c363t-31f6e7751ecb26b5c3d2ae1b4b7d4e96ae4ec9c53539ff6f7411fa8d2acfaf383
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482896500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 07:46:52 EST 2025
Sat Nov 29 02:20:29 EST 2025
Tue Nov 18 21:35:38 EST 2025
Fri Feb 21 02:43:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords path
Graph minors decomposition
Turing kernelization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-31f6e7751ecb26b5c3d2ae1b4b7d4e96ae4ec9c53539ff6f7411fa8d2acfaf383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9346-2172
OpenAccessLink https://link.springer.com/10.1007/s00453-019-00614-4
PQID 2280623512
PQPubID 2043795
PageCount 32
ParticipantIDs proquest_journals_2280623512
crossref_citationtrail_10_1007_s00453_019_00614_4
crossref_primary_10_1007_s00453_019_00614_4
springer_journals_10_1007_s00453_019_00614_4
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenGYuXLong cycles in 3-connected graphsJ. Comb. Theory Ser. B20028618099193012410.1006/jctb.2002.21131025.05036
Ambalath, A.M., Balasundaram, R.,Rao, R., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Proceedings of the 5th IPEC, pp. 14–25 (2010). https://doi.org/10.1007/978-3-642-17493-3_4
GajarskýJHlinenýPObdrzálekJOrdyniakSReidlFRossmanithPVillaamilFSSikdarSKernelization using structural parameters on sparse graph classesJ. Comput. Syst. Sci.201784219242357017810.1016/j.jcss.2016.09.0021353.68127
Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-27875-4
Shan, S.: Homeomorphically irreducible spanning trees, Halin graphs, and long cycles in 3-connected graphs with bounded maximum degrees. Ph.D. thesis, Georgia State University (2015). http://scholarworks.gsu.edu/math_diss/23/. Accessed 5 Nov 2015
ThomasséSTrotignonNVuskovicKA polynomial turing-kernel for weighted independent set in bull-free graphsAlgorithmica2017773619641360438710.1007/s00453-015-0083-x1364.68233
ChenGYuXZangWThe circumference of a graph with no K3,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3, t}$$\end{document}-minor, IIJ. Comb. Theory Ser. B201210261211124010.1016/j.jctb.2012.07.0031256.05228
ArchdeaconDTopological graph theory: a surveyCongr. Numerantium19961155–541814112360897.05026
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: Proceedings of STOC 2014, pp. 323–332. ACM (2014). https://doi.org/10.1145/2591796.2591852
GroheMMarxDStructure theorem and isomorphism test for graphs with excluded topological subgraphsSIAM J. Comput.2015441114159331356910.1137/1208922341314.05134
Hüffner, F., Komusiewicz, C., Sorge, M.: Finding highly connected subgraphs. In: Proceedings of 41st SOFSEM, pp. 254–265 (2015). https://doi.org/10.1007/978-3-662-46078-8_21
Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Manuscript (2019)
Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r,ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \ell )$$\end{document}-graphs. In: Proceedings of 35th FSTTCS, pp. 420–433 (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.420
BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/319627606979228
SchäferAKomusiewiczCMoserHNiedermeierRParameterized computational complexity of finding small-diameter subgraphsOptim. Lett.201265883891292562410.1007/s11590-011-0311-51254.90279
Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels. In: Proceedings of 26th SODA, pp. 616–629 (2015). https://doi.org/10.1137/1.9781611973730.42
DiestelRKawarabayashiKMüllerTWollanPOn the excluded minor structure theorem for graphs of large tree-widthJ. Comb. Theory Ser. B2012102611891210299297610.1016/j.jctb.2012.07.0011256.05229
JansenBMPTuring kernelization for finding long paths and cycles in restricted graph classesJ. Comput. Syst. Sci.2017851837358410910.1016/j.jcss.2016.10.0081356.68099
FröhlichJMüllerTLinear connectivity forces large complete bipartite minors: an alternative approachJ. Comb. Theory Ser. B20111016502508283281610.1016/j.jctb.2011.02.0021234.05221
RobertsonNSeymourPDGraph minors. V. Excluding a planar graphJ. Comb. Theory Ser. B19864119211485460610.1016/0095-8956(86)90030-40598.05055
GiacomoEDLiottaGMchedlidzeTLower and upper bounds for long induced paths in 3-connected planar graphsTheor. Comput. Sci.20166364755350653810.1016/j.tcs.2016.04.0341342.05071
Binkele-RaibleDFernauHFominFVLokshtanovDSaurabhSVillangerYKernel(s) for problems with no kernel: on out-trees with many leavesACM Trans. Algorithms20128438298191610.1145/2344422.23444281295.68120
DiestelRGraph Theory20104HeidelbergSpringer10.1007/978-3-642-14279-61204.05001
RobertsonNSeymourPDGraph minors: XVII. Taming a vortexJ. Comb. Theory Ser. B1999771162210171053810.1006/jctb.1999.19191027.05088
RobertsonNSeymourPDGraph minors. X. Obstructions to tree-decompositionJ. Comb. Theory Ser. B1991522153190111046810.1016/0095-8956(91)90061-N0764.05069
Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Lokshtanov, D., Müller, M., Raman, V., Rooij, J.V., Rosamond, F.A.: Open problems in parameterized and exact computation—IWPEC 2008. Technical Report UU-CS-2008-017, Utrecht University (2008)
BodlaenderHLJansenBMPKratschSKernelization lower bounds by cross-compositionSIAM J. Discrete Math.2014281277305316695610.1137/1208802401295.05222
DiracGASome theorems on abstract graphsProc. Lond. Math. Soc.1952s3–2169814730810.1112/plms/s3-2.1.690047.17001
TutteWTConnectivity in Graphs. Mathematical expositions1966TorontoUniversity of Toronto Press
ChenGGaoZYuXZangWApproximating longest cycles in graphs with bounded degreesSIAM J. Comput.2006363635656226300510.1137/0506332631118.05047
HermelinDKratschSSoltysKWahlströmMWuXA completeness theory for polynomial (Turing) kernelizationAlgorithmica2015713702730331524410.1007/s00453-014-9910-81312.68102
GarneroVWellerMParameterized certificate dispersal and its variantsTheor. Comput. Sci.20166226678346183210.1016/j.tcs.2016.02.0011335.68104
WT Tutte (614_CR32) 1966
S Thomassé (614_CR31) 2017; 77
N Robertson (614_CR27) 1991; 52
HL Bodlaender (614_CR6) 2014; 28
614_CR1
BMP Jansen (614_CR21) 2017; 85
J Fröhlich (614_CR14) 2011; 101
ED Giacomo (614_CR17) 2016; 636
D Hermelin (614_CR19) 2015; 71
V Garnero (614_CR16) 2016; 622
D Binkele-Raible (614_CR4) 2012; 8
N Robertson (614_CR28) 1999; 77
N Robertson (614_CR26) 1986; 41
614_CR10
R Diestel (614_CR11) 2010
614_CR30
M Grohe (614_CR18) 2015; 44
J Gajarský (614_CR15) 2017; 84
D Archdeacon (614_CR2) 1996; 115
A Schäfer (614_CR29) 2012; 6
GA Dirac (614_CR13) 1952; s3–2
R Diestel (614_CR12) 2012; 102
614_CR24
614_CR23
614_CR22
614_CR20
614_CR5
F Barbero (614_CR3) 2018; 14
G Chen (614_CR9) 2012; 102
G Chen (614_CR8) 2002; 86
G Chen (614_CR7) 2006; 36
614_CR25
References_xml – reference: BarberoFPaulCPilipczukMExploring the complexity of layout parameters in tournaments and semicomplete digraphsACM Trans. Algorithms201814338:138:31384134010.1145/319627606979228
– reference: GarneroVWellerMParameterized certificate dispersal and its variantsTheor. Comput. Sci.20166226678346183210.1016/j.tcs.2016.02.0011335.68104
– reference: ArchdeaconDTopological graph theory: a surveyCongr. Numerantium19961155–541814112360897.05026
– reference: Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-27875-4
– reference: DiracGASome theorems on abstract graphsProc. Lond. Math. Soc.1952s3–2169814730810.1112/plms/s3-2.1.690047.17001
– reference: Jansen, B.M.P., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels. In: Proceedings of 26th SODA, pp. 616–629 (2015). https://doi.org/10.1137/1.9781611973730.42
– reference: ThomasséSTrotignonNVuskovicKA polynomial turing-kernel for weighted independent set in bull-free graphsAlgorithmica2017773619641360438710.1007/s00453-015-0083-x1364.68233
– reference: DiestelRKawarabayashiKMüllerTWollanPOn the excluded minor structure theorem for graphs of large tree-widthJ. Comb. Theory Ser. B2012102611891210299297610.1016/j.jctb.2012.07.0011256.05229
– reference: SchäferAKomusiewiczCMoserHNiedermeierRParameterized computational complexity of finding small-diameter subgraphsOptim. Lett.201265883891292562410.1007/s11590-011-0311-51254.90279
– reference: BodlaenderHLJansenBMPKratschSKernelization lower bounds by cross-compositionSIAM J. Discrete Math.2014281277305316695610.1137/1208802401295.05222
– reference: RobertsonNSeymourPDGraph minors: XVII. Taming a vortexJ. Comb. Theory Ser. B1999771162210171053810.1006/jctb.1999.19191027.05088
– reference: GajarskýJHlinenýPObdrzálekJOrdyniakSReidlFRossmanithPVillaamilFSSikdarSKernelization using structural parameters on sparse graph classesJ. Comput. Syst. Sci.201784219242357017810.1016/j.jcss.2016.09.0021353.68127
– reference: Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Manuscript (2019)
– reference: HermelinDKratschSSoltysKWahlströmMWuXA completeness theory for polynomial (Turing) kernelizationAlgorithmica2015713702730331524410.1007/s00453-014-9910-81312.68102
– reference: DiestelRGraph Theory20104HeidelbergSpringer10.1007/978-3-642-14279-61204.05001
– reference: GroheMMarxDStructure theorem and isomorphism test for graphs with excluded topological subgraphsSIAM J. Comput.2015441114159331356910.1137/1208922341314.05134
– reference: ChenGYuXLong cycles in 3-connected graphsJ. Comb. Theory Ser. B20028618099193012410.1006/jctb.2002.21131025.05036
– reference: Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: Proceedings of STOC 2014, pp. 323–332. ACM (2014). https://doi.org/10.1145/2591796.2591852
– reference: RobertsonNSeymourPDGraph minors. X. Obstructions to tree-decompositionJ. Comb. Theory Ser. B1991522153190111046810.1016/0095-8956(91)90061-N0764.05069
– reference: RobertsonNSeymourPDGraph minors. V. Excluding a planar graphJ. Comb. Theory Ser. B19864119211485460610.1016/0095-8956(86)90030-40598.05055
– reference: Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Lokshtanov, D., Müller, M., Raman, V., Rooij, J.V., Rosamond, F.A.: Open problems in parameterized and exact computation—IWPEC 2008. Technical Report UU-CS-2008-017, Utrecht University (2008)
– reference: TutteWTConnectivity in Graphs. Mathematical expositions1966TorontoUniversity of Toronto Press
– reference: Ambalath, A.M., Balasundaram, R.,Rao, R., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the kernelization complexity of colorful motifs. In: Proceedings of the 5th IPEC, pp. 14–25 (2010). https://doi.org/10.1007/978-3-642-17493-3_4
– reference: Shan, S.: Homeomorphically irreducible spanning trees, Halin graphs, and long cycles in 3-connected graphs with bounded maximum degrees. Ph.D. thesis, Georgia State University (2015). http://scholarworks.gsu.edu/math_diss/23/. Accessed 5 Nov 2015
– reference: ChenGGaoZYuXZangWApproximating longest cycles in graphs with bounded degreesSIAM J. Comput.2006363635656226300510.1137/0506332631118.05047
– reference: Kolay, S., Panolan, F.: Parameterized algorithms for deletion to (r,ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \ell )$$\end{document}-graphs. In: Proceedings of 35th FSTTCS, pp. 420–433 (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.420
– reference: ChenGYuXZangWThe circumference of a graph with no K3,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3, t}$$\end{document}-minor, IIJ. Comb. Theory Ser. B201210261211124010.1016/j.jctb.2012.07.0031256.05228
– reference: FröhlichJMüllerTLinear connectivity forces large complete bipartite minors: an alternative approachJ. Comb. Theory Ser. B20111016502508283281610.1016/j.jctb.2011.02.0021234.05221
– reference: Hüffner, F., Komusiewicz, C., Sorge, M.: Finding highly connected subgraphs. In: Proceedings of 41st SOFSEM, pp. 254–265 (2015). https://doi.org/10.1007/978-3-662-46078-8_21
– reference: Binkele-RaibleDFernauHFominFVLokshtanovDSaurabhSVillangerYKernel(s) for problems with no kernel: on out-trees with many leavesACM Trans. Algorithms20128438298191610.1145/2344422.23444281295.68120
– reference: GiacomoEDLiottaGMchedlidzeTLower and upper bounds for long induced paths in 3-connected planar graphsTheor. Comput. Sci.20166364755350653810.1016/j.tcs.2016.04.0341342.05071
– reference: JansenBMPTuring kernelization for finding long paths and cycles in restricted graph classesJ. Comput. Syst. Sci.2017851837358410910.1016/j.jcss.2016.10.0081356.68099
– volume: 77
  start-page: 619
  issue: 3
  year: 2017
  ident: 614_CR31
  publication-title: Algorithmica
  doi: 10.1007/s00453-015-0083-x
– ident: 614_CR23
– ident: 614_CR20
  doi: 10.1007/978-3-662-46078-8_21
– volume: 6
  start-page: 883
  issue: 5
  year: 2012
  ident: 614_CR29
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-011-0311-5
– volume: 115
  start-page: 18
  issue: 5–54
  year: 1996
  ident: 614_CR2
  publication-title: Congr. Numerantium
– volume: 44
  start-page: 114
  issue: 1
  year: 2015
  ident: 614_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/120892234
– volume: 77
  start-page: 162
  issue: 1
  year: 1999
  ident: 614_CR28
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1006/jctb.1999.1919
– ident: 614_CR22
  doi: 10.1137/1.9781611973730.42
– ident: 614_CR25
  doi: 10.1007/978-3-642-27875-4
– volume: 8
  start-page: 38
  issue: 4
  year: 2012
  ident: 614_CR4
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2344422.2344428
– volume: 102
  start-page: 1211
  issue: 6
  year: 2012
  ident: 614_CR9
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2012.07.003
– volume: 14
  start-page: 38:1
  issue: 3
  year: 2018
  ident: 614_CR3
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/3196276
– ident: 614_CR30
– ident: 614_CR10
  doi: 10.1145/2591796.2591852
– volume: 71
  start-page: 702
  issue: 3
  year: 2015
  ident: 614_CR19
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9910-8
– volume: 28
  start-page: 277
  issue: 1
  year: 2014
  ident: 614_CR6
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880240
– volume: 101
  start-page: 502
  issue: 6
  year: 2011
  ident: 614_CR14
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2011.02.002
– ident: 614_CR24
– volume: 41
  start-page: 92
  issue: 1
  year: 1986
  ident: 614_CR26
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(86)90030-4
– volume: 36
  start-page: 635
  issue: 3
  year: 2006
  ident: 614_CR7
  publication-title: SIAM J. Comput.
  doi: 10.1137/050633263
– ident: 614_CR1
  doi: 10.1007/978-3-642-17493-3_4
– volume: 102
  start-page: 1189
  issue: 6
  year: 2012
  ident: 614_CR12
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/j.jctb.2012.07.001
– volume: 622
  start-page: 66
  year: 2016
  ident: 614_CR16
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2016.02.001
– volume: 636
  start-page: 47
  year: 2016
  ident: 614_CR17
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2016.04.034
– ident: 614_CR5
– volume: s3–2
  start-page: 69
  issue: 1
  year: 1952
  ident: 614_CR13
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/s3-2.1.69
– volume-title: Connectivity in Graphs. Mathematical expositions
  year: 1966
  ident: 614_CR32
  doi: 10.3138/9781487584863
– volume-title: Graph Theory
  year: 2010
  ident: 614_CR11
  doi: 10.1007/978-3-642-14279-6
– volume: 84
  start-page: 219
  year: 2017
  ident: 614_CR15
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2016.09.002
– volume: 86
  start-page: 80
  issue: 1
  year: 2002
  ident: 614_CR8
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1006/jctb.2002.2113
– volume: 52
  start-page: 153
  issue: 2
  year: 1991
  ident: 614_CR27
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(91)90061-N
– volume: 85
  start-page: 18
  year: 2017
  ident: 614_CR21
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2016.10.008
SSID ssj0012796
Score 2.291244
Snippet The notion of Turing kernelization investigates whether a polynomial-time algorithm can solve an NP-hard problem, when it is aided by an oracle that can be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3936
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Deletion
Kernels
Mathematics of Computing
Polynomials
Special Issue: Parameterized and Exact Computation
Theory of Computation
Topology
Title Turing Kernelization for Finding Long Paths in Graph Classes Excluding a Topological Minor
URI https://link.springer.com/article/10.1007/s00453-019-00614-4
https://www.proquest.com/docview/2280623512
Volume 81
WOSCitedRecordID wos000482896500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNNCPNGmOIpuCOoZOES8lTRMYjE7aTfzzfcnaDkUFvfTS11DeS977hffxQ-gUIIH0PB0QwZUiFBARkYYLIilnHtdwAZGxI5vgg0H8_CyGVVNYWVe71ylJ56mbZjeLPmztjyA27lJCV9EahLvYEjbcPzw1uYOAO1YuyztPKAToqlXm-zU-h6MlxvySFnXRpt_-339uoc0KXeKLxXbYRis630HtmrkBVwd5F72MXHcivtFFridVKyYG_Ir7Y9fmgm-n8BgCPCzxOMdXdqw1dgSausS9dzWZOymJRwuSBWtqfDfOp8Ueeuz3RpfXpGJZICpk4QycsGGa88jXKg1YGqkwC6T2U5ryjGrBpKZaCRWFUSiMYQYgiG9kDELKSAMX3H3Uyqe5PkDYiEh4AnyIAiOHGRMiyjhAKkA9XiZS1kF-rexEVSPILRPGJGmGJzvlJaC8xCkvoR101nzzuhjA8at0t7ZhUh3GMrETfwDlAbTpoPPaZsvXP692-DfxI7QRWLO7Ur8uas2KuT5G6-ptNi6LE7dJPwClLN7U
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MT5mQffNNC1abM8imwq-2DoFPGlpGkCg9HJuol_vpesnSgq6Etfeg3l7nL3C7m7H8AZQgLpedqngitFGSIiKg0XVDIeeVzjAUQ2HNkE7_UaT0-iXzSF5WW1e3kl6SL1otnNog9b-yOozbuMsmVYYZix7MT8u_vHxd2Bzx0rl-WdpwwTdNEq8_0an9PRB8b8ci3qsk2r-r__3ISNAl2Sy7k7bMGSzrahWjI3kGIj78DzwHUnkraeZHpUtGISxK-kNXRtLqQzxkcf4WFOhhm5tmOtiSPQ1DlpvqnRzElJMpiTLFhTk-4wG0924aHVHFzd0IJlgaogCqYYhE2kOQ_rWiV-lIQqSH2p6wlLeMq0iKRmWgkVBmEgjIkMQpC6kQ0UUkYaPODuQSUbZ3ofiBGh8ATGEIVGDtJIiDDlCKkQ9XipSKIa1Etlx6oYQW6ZMEbxYniyU16Myoud8mJWg_PFNy_zARy_Sh-VNoyLzZjHduIPojyENjW4KG328frn1Q7-Jn4KazeDbifu3Pbah7DuWxdwZX9HUJlOZvoYVtXrdJhPTpzDvgMfsOG4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED78hfji_InTqXnwTYNdmzbLo-imsjkGThFfSpomMBjd2Kb453vJ2k1FBfGlL72GcrnkvpD77gM4QUggPU_7VHClKENERKXhgkrGI49rPIDImhOb4O127elJdD6w-F21e3ElOeU02C5N2eR8mJrzGfHNIhFbBySozcGMskVYZraQ3p7X7x9n9wg-dwpdVoOeMkzWOW3m-zE-p6Y53vxyReoyT6P0_3_egPUcdZKLaZhswoLOtqBUKDqQfIFvw3PXsRZJU48y3c8pmgRxLWn0HP2FtAb46CBsHJNeRq5tu2vihDX1mNTfVP_FWUnSnYov2BAgd71sMNqBh0a9e3lDc_UFqoIomODmbCLNeVjVKvGjJFRB6ktdTVjCU6ZFJDXTSqgwCANhTGQQmlSNrKGRMtLgwXcXlrJBpveAGBEKT-DeonDygzQSIkw5Qi1EQ14qkqgM1cLxscpbk1uFjH48a6rsnBej82LnvJiV4XT2zXDamONX60oxn3G-SMex7QSE6A8hTxnOivmbv_55tP2_mR_DaueqEbdu280DWPNtBLhqwAosTUYv-hBW1OukNx4dudh9B9wd6pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turing+Kernelization+for+Finding+Long+Paths+in+Graph+Classes+Excluding+a+Topological+Minor&rft.jtitle=Algorithmica&rft.au=Jansen%2C+Bart+M.+P.&rft.au=Pilipczuk%2C+Marcin&rft.au=Wrochna%2C+Marcin&rft.date=2019-10-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=10&rft.spage=3936&rft.epage=3967&rft_id=info:doi/10.1007%2Fs00453-019-00614-4&rft.externalDocID=10_1007_s00453_019_00614_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon