Feature Fusion Using Deep Learning Algorithms in Image Classification for Security Purposes by Random Weight Network
Automated threat detection in X-ray security imagery is a critical yet challenging task, where conventional deep learning models often struggle with low accuracy and overfitting. This study addresses these limitations by introducing a novel framework based on feature fusion. The proposed method extr...
Saved in:
| Published in: | Applied sciences Vol. 15; no. 16; p. 9053 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2025
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Automated threat detection in X-ray security imagery is a critical yet challenging task, where conventional deep learning models often struggle with low accuracy and overfitting. This study addresses these limitations by introducing a novel framework based on feature fusion. The proposed method extracts features from multiple and diverse deep learning architectures and classifies them using a Random Weight Network (RWN), whose hyperparameters are optimized for maximum performance. The results show substantial improvements at each stage: while the best standalone deep learning model achieved a test accuracy of 83.55%, applying the RWN to a single feature set increased accuracy to 94.82%. Notably, the proposed feature fusion framework achieved a state-of-the-art test accuracy of 97.44%. These findings demonstrate that a modular approach combining multi-model feature fusion with an efficient classifier is a highly effective strategy for improving the accuracy and generalization capability of automated threat detection systems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2076-3417 2076-3417 |
| DOI: | 10.3390/app15169053 |