Multi-back-propagation Algorithm for Signal Neural Network Decomposition
In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer fu...
Gespeichert in:
| Veröffentlicht in: | Neural processing letters Jg. 56; H. 2; S. 100 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
12.03.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1573-773X, 1370-4621, 1573-773X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer function of every neurone (where the output variables are the components of the decomposition) and, consequently, to be written as the invariant sum of orthogonal functions, with the safeguard of preserving information This orthogonality is proven using Fourier theory. (2) In a second mode, a tuned neural network that occupies one of the channels of the neural network can see the weights of its supplementary channels adjusted to retain additional information. Only the decomposition algorithm of the network is presented here—Multi-back-propagation algorithm. The adopted methodology is validated step-by-step with some representative examples. Namely, to assess the performance of the splitting method, two different examples have been constructed from scratch: (1) a 2D classification problem and (2) a 3D surface. In both problems, the signal and transfer functions of the neural network are successfully decomposed without information losses. Therefore, since the main contribution of this work is to allow for the organisation of the information stored in neural network structure, through a split process, this promising method shows potential use in various areas—e.g. classification and/or pattern recognition problems, data analysis, modelling and so on. In the future, we expect to work further in the method computational aspects to render it more efficient, versatile and robust. |
|---|---|
| AbstractList | In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer function of every neurone (where the output variables are the components of the decomposition) and, consequently, to be written as the invariant sum of orthogonal functions, with the safeguard of preserving information This orthogonality is proven using Fourier theory. (2) In a second mode, a tuned neural network that occupies one of the channels of the neural network can see the weights of its supplementary channels adjusted to retain additional information. Only the decomposition algorithm of the network is presented here—Multi-back-propagation algorithm. The adopted methodology is validated step-by-step with some representative examples. Namely, to assess the performance of the splitting method, two different examples have been constructed from scratch: (1) a 2D classification problem and (2) a 3D surface. In both problems, the signal and transfer functions of the neural network are successfully decomposed without information losses. Therefore, since the main contribution of this work is to allow for the organisation of the information stored in neural network structure, through a split process, this promising method shows potential use in various areas—e.g. classification and/or pattern recognition problems, data analysis, modelling and so on. In the future, we expect to work further in the method computational aspects to render it more efficient, versatile and robust. |
| ArticleNumber | 100 |
| Author | Perdicoúlis, T.-P. Azevedo Salgado, Paulo |
| Author_xml | – sequence: 1 givenname: Paulo orcidid: 0000-0003-0041-0256 surname: Salgado fullname: Salgado, Paulo organization: Department of Engineering, ECT & CITAB, UTAD – sequence: 2 givenname: T.-P. Azevedo orcidid: 0000-0002-3281-5357 surname: Perdicoúlis fullname: Perdicoúlis, T.-P. Azevedo email: tazevedo@utad.pt organization: ISR, University of Coimbra & Department of Engineering, ECT, UTAD |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxGzwR-M4Y1U-ilRgACQ2y0ns4DaNg-0I9d_jNkggBqa74Z67954JGLW2VQCcY3SJEcquPMaIUYjIDGKcYg53R2CM04zCLKNvo1_9CZh4v0YoYgSNwfKhb4KBhSw3sHO2k7UMxrbJvKmtM-F9m2jrkmdTt7JJHlXvDiV8WrdJrlVpt531Zk-cgmMtG6_OvusUvN7evCyWcPV0d7-Yr2BJGQ2QqKpilVY4LzHLtOaEF0qVkqqZZhlSM1mkWiGOFakwk4TleYUzQgsqOaKFpFNwMeyNaT965YNY297FdF6QPGXxL05pnCLDVOms905p0TmzlW4nMBJ7Y2IwJqIxcTAmdhHif6DShIOO4KRp_kfpgPp4p62V-0n1D_UF5GeEBQ |
| CitedBy_id | crossref_primary_10_1016_j_enganabound_2024_106042 crossref_primary_10_1016_j_net_2025_103914 |
| Cites_doi | 10.1007/BF01411371 10.1017/CBO9781139165372 10.1016/j.aml.2012.03.007 10.55630/sjc.2023.17.1-16 10.1093/oso/9780198538493.001.0001 10.24963/ijcai.2021/351 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Apr 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Apr 2024 |
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ |
| DOI | 10.1007/s11063-024-11518-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Psychology |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-773X |
| ExternalDocumentID | 10_1007_s11063_024_11518_y |
| GrantInformation_xml | – fundername: FCT grantid: UIDB/04033/2020; UIDB/00048/2020 – fundername: Universidade de Trás-os-Montes e Alto Douro (UTAD) |
| GroupedDBID | -4Z -5F -5G -BR -EM -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGXO AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BGNMA C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC AEZWR AFFHD AFHIU AFKRA AHPBZ AHWEU AIXLP ARAPS AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB PSYQQ 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-2edd6dfe19c167ff828beeca3e4f670e4ab5fe081e2d16a2699d1723b3a803ba3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181399700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-773X 1370-4621 |
| IngestDate | Sat Oct 18 22:52:42 EDT 2025 Tue Nov 18 22:05:16 EST 2025 Sat Nov 29 02:27:57 EST 2025 Fri Feb 21 02:40:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Network decomposition Back-propagation Orthogonal decomposition Fourier series Multivariable neurone Network splitting Neural network training |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-2edd6dfe19c167ff828beeca3e4f670e4ab5fe081e2d16a2699d1723b3a803ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3281-5357 0000-0003-0041-0256 |
| OpenAccessLink | https://link.springer.com/10.1007/s11063-024-11518-y |
| PQID | 2956010833 |
| PQPubID | 2043838 |
| ParticipantIDs | proquest_journals_2956010833 crossref_primary_10_1007_s11063_024_11518_y crossref_citationtrail_10_1007_s11063_024_11518_y springer_journals_10_1007_s11063_024_11518_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-12 |
| PublicationDateYYYYMMDD | 2024-03-12 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Kevin, Keller (CR3) 2005 CR4 Nebioglu, Iliev (CR14) 2023; 17 CR6 CR5 CR8 CR19 CR7 CR18 Bishop (CR2) 1995 Cohen, Tan (CR13) 2012; 25 CR16 Baughman, Liu, Baughman, Liu (CR1) 1995 CR12 CR11 Bishop (CR17) 2006 CR10 Wynne-Jones (CR9) 1993; 1 Katznelson (CR15) 2004 B Nebioglu (11518_CR14) 2023; 17 M Wynne-Jones (11518_CR9) 1993; 1 Y Katznelson (11518_CR15) 2004 MA Cohen (11518_CR13) 2012; 25 11518_CR10 11518_CR12 11518_CR11 CM Bishop (11518_CR17) 2006 11518_CR16 11518_CR5 11518_CR18 DR Baughman (11518_CR1) 1995 CM Bishop (11518_CR2) 1995 11518_CR4 11518_CR19 LP Kevin (11518_CR3) 2005 11518_CR8 11518_CR7 11518_CR6 |
| References_xml | – ident: CR19 – ident: CR18 – year: 2005 ident: CR3 publication-title: Artificial neural networks: an introduction – volume: 1 start-page: 17 issue: 1 year: 1993 end-page: 22 ident: CR9 article-title: Node splitting: a constructive algorithm for feedforward neural networks publication-title: Neural Comput Appl doi: 10.1007/BF01411371 – year: 2004 ident: CR15 publication-title: An introduction to harmonic analysis doi: 10.1017/CBO9781139165372 – ident: CR4 – ident: CR16 – ident: CR12 – ident: CR10 – ident: CR11 – volume: 25 start-page: 1947 issue: 11 year: 2012 end-page: 1952 ident: CR13 article-title: A polynomial approximation for arbitrary functions publication-title: Appl Math. Lett. doi: 10.1016/j.aml.2012.03.007 – start-page: 21 year: 1995 end-page: 109 ident: CR1 article-title: 2—Fundamental and practical aspects of neural computing publication-title: Neural networks in bioprocessing and chemical engineering – volume: 17 start-page: 1 issue: 1 year: 2023 end-page: 16 ident: CR14 article-title: Higher order orthogonal polynomials as activation functions in artificial neural networks publication-title: Serdica J. Comput. doi: 10.55630/sjc.2023.17.1-16 – ident: CR6 – ident: CR5 – year: 2006 ident: CR17 publication-title: Pattern recognition and machine learning – ident: CR7 – ident: CR8 – year: 1995 ident: CR2 publication-title: Neural networks for pattern recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: 11518_CR12 – ident: 11518_CR11 – volume-title: Neural networks for pattern recognition year: 1995 ident: 11518_CR2 doi: 10.1093/oso/9780198538493.001.0001 – ident: 11518_CR10 – ident: 11518_CR4 – ident: 11518_CR18 – volume-title: An introduction to harmonic analysis year: 2004 ident: 11518_CR15 doi: 10.1017/CBO9781139165372 – ident: 11518_CR16 – start-page: 21 volume-title: Neural networks in bioprocessing and chemical engineering year: 1995 ident: 11518_CR1 – ident: 11518_CR6 – ident: 11518_CR7 – volume-title: Pattern recognition and machine learning year: 2006 ident: 11518_CR17 – ident: 11518_CR19 – ident: 11518_CR5 – ident: 11518_CR8 doi: 10.24963/ijcai.2021/351 – volume: 1 start-page: 17 issue: 1 year: 1993 ident: 11518_CR9 publication-title: Neural Comput Appl doi: 10.1007/BF01411371 – volume: 17 start-page: 1 issue: 1 year: 2023 ident: 11518_CR14 publication-title: Serdica J. Comput. doi: 10.55630/sjc.2023.17.1-16 – volume: 25 start-page: 1947 issue: 11 year: 2012 ident: 11518_CR13 publication-title: Appl Math. Lett. doi: 10.1016/j.aml.2012.03.007 – volume-title: Artificial neural networks: an introduction year: 2005 ident: 11518_CR3 |
| SSID | ssj0010020 |
| Score | 2.3530943 |
| Snippet | In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 100 |
| SubjectTerms | Algorithms Approximation Artificial Intelligence Back propagation Back propagation networks Brain research Channels Classification Complex Systems Computational Intelligence Computer Science Data analysis Decomposition Mathematical functions Neural networks Orthogonal functions Orthogonality Pattern analysis Pattern recognition Propagation Transfer functions |
| SummonAdditionalLinks | – databaseName: SpringerLink Open Access Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3rwpoE2aZvkOKZjpyGosFtJk3QO5za2Kuy_N8lSi6KCnnpoEsJ7-fE98r33AVwyYYuWCYlyygoUSx4iQdPQOCRhOiEJVUo4sQk6GLDhkN_5pLBlxXavniTdSV0nu5noxb45xsigmIih1SZs2XJilsjVtTkOlW6BQUA-Peb7fp-voBpXfnkKdTdMr_m_ue3BrkeUQWe9BPZhQ08PoFmpNQR-8x5C3-XaolzIZ2RmYw4S55SgMxnNFuPy6SUw-DW4H4_saLZmh_s4knhwoy313PO7juCxd_vQ7SOvo4AkSUmJsLayUYWOuIxSWhQmyMq1loLouEhpqGORJ4U22EBjFaUCp5wrg2tITgQLSS7IMTSms6k-gSA24SaTLDLATMaSYKELrhKWCq4UUVS0IKpMm0lfZNxqXUyyujyyNVVmTJU5U2WrFlx99JmvS2z82rpdeSzz222ZYe4CS0ZIC64rD9W_fx7t9G_Nz2AHWydbPh9uQ6NcvOpz2JZv5Xi5uHDL8B2p09ku priority: 102 providerName: Springer Nature |
| Title | Multi-back-propagation Algorithm for Signal Neural Network Decomposition |
| URI | https://link.springer.com/article/10.1007/s11063-024-11518-y https://www.proquest.com/docview/2956010833 |
| Volume | 56 |
| WOSCitedRecordID | wos001181399700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-773X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0010020 issn: 1573-773X databaseCode: P5Z dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-773X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0010020 issn: 1573-773X databaseCode: K7- dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-773X dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0010020 issn: 1573-773X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals New Starts & Take-Overs Collection customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1573-773X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1573-773X databaseCode: C24 dateStart: 20240201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5RYGDhjSiPKgMbWCR2EjsT4lVVQqoqXqpYIsd2SgWURwsS_56z61CBRBcWZ0hysfKd7e985zuAPSFt0jKpSMFFSWKVhUTyNERAEmESlnCtpSs2wdtt0e1mHb_hNvRhldWc6CZq_azsHvkhzZztIBg7enkltmqU9a76Eho1mLOZylDP507O253Lbz-CZUPO5OIhiVMa-WMz48NzaA1ZH2ZMkBVFgnz-XJomfPOXi9StPM2l__Z5GRY95wyOx0qyAjNmsApLVT2HwA_vNWi507ikkOqB4JdwqnGwBcePPZQ6un8KkOEGV_2elWazeriLCyMPzowNTvcRYOtw0zy_Pm0RX2mBKJayEaHGFpYqTZSpKOVliWZYYYySzMRlykMTyyIpDbIHQ3WUSppmmUbmwwomRcgKyTZgdvA8MJsQxGiQCiUipG4qVoxKU2Y6EanMtGaayzpE1U_OlU9DbqthPOaTBMoWmByByR0w-Wcd9r_feRkn4Zj69E6FRu4H5DCfQFGHgwrPye2_pW1Nl7YNC9SqkI3wozswO3p7N7swrz5G_eFbw6tjA2qnNMb2ghNsO8kdtpdXt1_tuunf |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO6KsOcAJLBLbcZwDQqxqBVSIReIWHNspCChLA6g_xTdiu0krkODGgVMOSUaazPMsmQ1glQs7tExIlEY8Q1TGPhIR841AQq5DEkZKCbdsImo0-NVVfDoAH2UvjC2rLHWiU9TqUdp_5Js4drEDJ2T76RnZrVE2u1qu0OjC4kh33k3I1t6q7xv5rmF8eHCxV0PFVgEkCSM5wtouUcp0EMuARVlmQo5UaymIphmLfE1FGmbaWEqNVcAEZnGsjJUnKRHcJ6kghu4gDFFCWViBod2DxulZL29hvS8X4kU-ogwHRZtOt1nPRF82Z0qR8cICjjpfTWHfv_2WknWW7nD8v32jCRgrfGpvp3sIJmFAt6ZgvNxX4RXqaxpqrtsYpULeIcOZUaUOlt7OfdNwkd88eMaD985vm5aanVriLq5M3tvXtvi-qHCbgcs_4WcWKq3Hlp4Dj5qAm0seGNdUUkmw0FmsQs5ErBRRkahCUAo1kcWYdbvt4z7pD4i2QEgMEBIHhKRThfXeO0_dISO_Pr1YSj8pFE476Yu-Chslfvq3f6Y2_zu1FRipXZwcJ8f1xtECjGILX1vNiBehkr-86iUYlm_5bftluTgKHlz_NbI-AQ2-RaE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1D74pmFt04_0cWyOiTIGKuytpPmYw9mNrQr7702y1qqoID71oUkId5fkd9z97gDOCdVFyyhDSUgk8lhkIxoGtlKIT4SP_ZBzappNhL0eGQyi_gcWv8l2L0KSS06DrtKUZo0pl42S-KY8GR1_9JBCNA5Bi1VYU65JqO26pfkORQ8DhYZyqsz38z4_RyXG_BIWNa9Np_r_fW7DVo40rebSNHZgRaS7UC26OFj5od6DruHgooSyJ6R2pi4YoyyrOR5OZqPs8dlSuNa6Gw31arqWh_mY5HGrLXRKep73tQ8Pnav7Vhfl_RUQwwHOkCt0OykpnIg5QSilcr4SIRjFwpNBaAuPJr4UCjMIlzsBdYMo4grv4ARTYuOE4gOopJNUHILlKTeUMOIowMY8hl0qZMR9EtCIc8xDWgOnEHPM8uLjugfGOC7LJmtRxUpUsRFVvKjBxfuc6bL0xq-j64X24vwYzmM3Mg4nwbgGl4W2yt8_r3b0t-FnsNFvd-Lb697NMWy6Wt865c-tQyWbvYgTWGev2Wg-OzXW-Qa6v-T3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-back-propagation+Algorithm+for+Signal+Neural+Network+Decomposition&rft.jtitle=Neural+processing+letters&rft.au=Salgado%2C+Paulo&rft.au=Perdico%C3%BAlis%2C+T.-P.+Azevedo&rft.date=2024-03-12&rft.issn=1573-773X&rft.eissn=1573-773X&rft.volume=56&rft.issue=2&rft_id=info:doi/10.1007%2Fs11063-024-11518-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11063_024_11518_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-773X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-773X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-773X&client=summon |