Multi-back-propagation Algorithm for Signal Neural Network Decomposition

In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural processing letters Jg. 56; H. 2; S. 100
Hauptverfasser: Salgado, Paulo, Perdicoúlis, T.-P. Azevedo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 12.03.2024
Springer Nature B.V
Schlagworte:
ISSN:1573-773X, 1370-4621, 1573-773X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer function of every neurone (where the output variables are the components of the decomposition) and, consequently, to be written as the invariant sum of orthogonal functions, with the safeguard of preserving information This orthogonality is proven using Fourier theory. (2) In a second mode, a tuned neural network that occupies one of the channels of the neural network can see the weights of its supplementary channels adjusted to retain additional information. Only the decomposition algorithm of the network is presented here—Multi-back-propagation algorithm. The adopted methodology is validated step-by-step with some representative examples. Namely, to assess the performance of the splitting method, two different examples have been constructed from scratch: (1) a 2D classification problem and (2) a 3D surface. In both problems, the signal and transfer functions of the neural network are successfully decomposed without information losses. Therefore, since the main contribution of this work is to allow for the organisation of the information stored in neural network structure, through a split process, this promising method shows potential use in various areas—e.g. classification and/or pattern recognition problems, data analysis, modelling and so on. In the future, we expect to work further in the method computational aspects to render it more efficient, versatile and robust.
AbstractList In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose the neurones by transforming their variables, weights, and scalar functions into vectors. This conveys for the decomposition of the transfer function of every neurone (where the output variables are the components of the decomposition) and, consequently, to be written as the invariant sum of orthogonal functions, with the safeguard of preserving information This orthogonality is proven using Fourier theory. (2) In a second mode, a tuned neural network that occupies one of the channels of the neural network can see the weights of its supplementary channels adjusted to retain additional information. Only the decomposition algorithm of the network is presented here—Multi-back-propagation algorithm. The adopted methodology is validated step-by-step with some representative examples. Namely, to assess the performance of the splitting method, two different examples have been constructed from scratch: (1) a 2D classification problem and (2) a 3D surface. In both problems, the signal and transfer functions of the neural network are successfully decomposed without information losses. Therefore, since the main contribution of this work is to allow for the organisation of the information stored in neural network structure, through a split process, this promising method shows potential use in various areas—e.g. classification and/or pattern recognition problems, data analysis, modelling and so on. In the future, we expect to work further in the method computational aspects to render it more efficient, versatile and robust.
ArticleNumber 100
Author Perdicoúlis, T.-P. Azevedo
Salgado, Paulo
Author_xml – sequence: 1
  givenname: Paulo
  orcidid: 0000-0003-0041-0256
  surname: Salgado
  fullname: Salgado, Paulo
  organization: Department of Engineering, ECT & CITAB, UTAD
– sequence: 2
  givenname: T.-P. Azevedo
  orcidid: 0000-0002-3281-5357
  surname: Perdicoúlis
  fullname: Perdicoúlis, T.-P. Azevedo
  email: tazevedo@utad.pt
  organization: ISR, University of Coimbra & Department of Engineering, ECT, UTAD
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxGzwR-M4Y1U-ilRgACQ2y0ns4DaNg-0I9d_jNkggBqa74Z67954JGLW2VQCcY3SJEcquPMaIUYjIDGKcYg53R2CM04zCLKNvo1_9CZh4v0YoYgSNwfKhb4KBhSw3sHO2k7UMxrbJvKmtM-F9m2jrkmdTt7JJHlXvDiV8WrdJrlVpt531Zk-cgmMtG6_OvusUvN7evCyWcPV0d7-Yr2BJGQ2QqKpilVY4LzHLtOaEF0qVkqqZZhlSM1mkWiGOFakwk4TleYUzQgsqOaKFpFNwMeyNaT965YNY297FdF6QPGXxL05pnCLDVOms905p0TmzlW4nMBJ7Y2IwJqIxcTAmdhHif6DShIOO4KRp_kfpgPp4p62V-0n1D_UF5GeEBQ
CitedBy_id crossref_primary_10_1016_j_enganabound_2024_106042
crossref_primary_10_1016_j_net_2025_103914
Cites_doi 10.1007/BF01411371
10.1017/CBO9781139165372
10.1016/j.aml.2012.03.007
10.55630/sjc.2023.17.1-16
10.1093/oso/9780198538493.001.0001
10.24963/ijcai.2021/351
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Apr 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Apr 2024
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-024-11518-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
ExternalDocumentID 10_1007_s11063_024_11518_y
GrantInformation_xml – fundername: FCT
  grantid: UIDB/04033/2020; UIDB/00048/2020
– fundername: Universidade de Trás-os-Montes e Alto Douro (UTAD)
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29N
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACACY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGXO
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BGNMA
C24
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHPBZ
AHWEU
AIXLP
ARAPS
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
PSYQQ
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-2edd6dfe19c167ff828beeca3e4f670e4ab5fe081e2d16a2699d1723b3a803ba3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001181399700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-773X
1370-4621
IngestDate Sat Oct 18 22:52:42 EDT 2025
Tue Nov 18 22:05:16 EST 2025
Sat Nov 29 02:27:57 EST 2025
Fri Feb 21 02:40:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Network decomposition
Back-propagation
Orthogonal decomposition
Fourier series
Multivariable neurone
Network splitting
Neural network training
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2edd6dfe19c167ff828beeca3e4f670e4ab5fe081e2d16a2699d1723b3a803ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3281-5357
0000-0003-0041-0256
OpenAccessLink https://link.springer.com/10.1007/s11063-024-11518-y
PQID 2956010833
PQPubID 2043838
ParticipantIDs proquest_journals_2956010833
crossref_primary_10_1007_s11063_024_11518_y
crossref_citationtrail_10_1007_s11063_024_11518_y
springer_journals_10_1007_s11063_024_11518_y
PublicationCentury 2000
PublicationDate 2024-03-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-12
  day: 12
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kevin, Keller (CR3) 2005
CR4
Nebioglu, Iliev (CR14) 2023; 17
CR6
CR5
CR8
CR19
CR7
CR18
Bishop (CR2) 1995
Cohen, Tan (CR13) 2012; 25
CR16
Baughman, Liu, Baughman, Liu (CR1) 1995
CR12
CR11
Bishop (CR17) 2006
CR10
Wynne-Jones (CR9) 1993; 1
Katznelson (CR15) 2004
B Nebioglu (11518_CR14) 2023; 17
M Wynne-Jones (11518_CR9) 1993; 1
Y Katznelson (11518_CR15) 2004
MA Cohen (11518_CR13) 2012; 25
11518_CR10
11518_CR12
11518_CR11
CM Bishop (11518_CR17) 2006
11518_CR16
11518_CR5
11518_CR18
DR Baughman (11518_CR1) 1995
CM Bishop (11518_CR2) 1995
11518_CR4
11518_CR19
LP Kevin (11518_CR3) 2005
11518_CR8
11518_CR7
11518_CR6
References_xml – ident: CR19
– ident: CR18
– year: 2005
  ident: CR3
  publication-title: Artificial neural networks: an introduction
– volume: 1
  start-page: 17
  issue: 1
  year: 1993
  end-page: 22
  ident: CR9
  article-title: Node splitting: a constructive algorithm for feedforward neural networks
  publication-title: Neural Comput Appl
  doi: 10.1007/BF01411371
– year: 2004
  ident: CR15
  publication-title: An introduction to harmonic analysis
  doi: 10.1017/CBO9781139165372
– ident: CR4
– ident: CR16
– ident: CR12
– ident: CR10
– ident: CR11
– volume: 25
  start-page: 1947
  issue: 11
  year: 2012
  end-page: 1952
  ident: CR13
  article-title: A polynomial approximation for arbitrary functions
  publication-title: Appl Math. Lett.
  doi: 10.1016/j.aml.2012.03.007
– start-page: 21
  year: 1995
  end-page: 109
  ident: CR1
  article-title: 2—Fundamental and practical aspects of neural computing
  publication-title: Neural networks in bioprocessing and chemical engineering
– volume: 17
  start-page: 1
  issue: 1
  year: 2023
  end-page: 16
  ident: CR14
  article-title: Higher order orthogonal polynomials as activation functions in artificial neural networks
  publication-title: Serdica J. Comput.
  doi: 10.55630/sjc.2023.17.1-16
– ident: CR6
– ident: CR5
– year: 2006
  ident: CR17
  publication-title: Pattern recognition and machine learning
– ident: CR7
– ident: CR8
– year: 1995
  ident: CR2
  publication-title: Neural networks for pattern recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 11518_CR12
– ident: 11518_CR11
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 11518_CR2
  doi: 10.1093/oso/9780198538493.001.0001
– ident: 11518_CR10
– ident: 11518_CR4
– ident: 11518_CR18
– volume-title: An introduction to harmonic analysis
  year: 2004
  ident: 11518_CR15
  doi: 10.1017/CBO9781139165372
– ident: 11518_CR16
– start-page: 21
  volume-title: Neural networks in bioprocessing and chemical engineering
  year: 1995
  ident: 11518_CR1
– ident: 11518_CR6
– ident: 11518_CR7
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 11518_CR17
– ident: 11518_CR19
– ident: 11518_CR5
– ident: 11518_CR8
  doi: 10.24963/ijcai.2021/351
– volume: 1
  start-page: 17
  issue: 1
  year: 1993
  ident: 11518_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/BF01411371
– volume: 17
  start-page: 1
  issue: 1
  year: 2023
  ident: 11518_CR14
  publication-title: Serdica J. Comput.
  doi: 10.55630/sjc.2023.17.1-16
– volume: 25
  start-page: 1947
  issue: 11
  year: 2012
  ident: 11518_CR13
  publication-title: Appl Math. Lett.
  doi: 10.1016/j.aml.2012.03.007
– volume-title: Artificial neural networks: an introduction
  year: 2005
  ident: 11518_CR3
SSID ssj0010020
Score 2.3530943
Snippet In this paper, a novel back-propagation error technique is presented. This neural network structure allows for two fundamental basic modes: (1) To decompose...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Back propagation
Back propagation networks
Brain research
Channels
Classification
Complex Systems
Computational Intelligence
Computer Science
Data analysis
Decomposition
Mathematical functions
Neural networks
Orthogonal functions
Orthogonality
Pattern analysis
Pattern recognition
Propagation
Transfer functions
SummonAdditionalLinks – databaseName: SpringerLink Open Access Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3rwpoE2aZvkOKZjpyGosFtJk3QO5za2Kuy_N8lSi6KCnnpoEsJ7-fE98r33AVwyYYuWCYlyygoUSx4iQdPQOCRhOiEJVUo4sQk6GLDhkN_5pLBlxXavniTdSV0nu5noxb45xsigmIih1SZs2XJilsjVtTkOlW6BQUA-Peb7fp-voBpXfnkKdTdMr_m_ue3BrkeUQWe9BPZhQ08PoFmpNQR-8x5C3-XaolzIZ2RmYw4S55SgMxnNFuPy6SUw-DW4H4_saLZmh_s4knhwoy313PO7juCxd_vQ7SOvo4AkSUmJsLayUYWOuIxSWhQmyMq1loLouEhpqGORJ4U22EBjFaUCp5wrg2tITgQLSS7IMTSms6k-gSA24SaTLDLATMaSYKELrhKWCq4UUVS0IKpMm0lfZNxqXUyyujyyNVVmTJU5U2WrFlx99JmvS2z82rpdeSzz222ZYe4CS0ZIC64rD9W_fx7t9G_Nz2AHWydbPh9uQ6NcvOpz2JZv5Xi5uHDL8B2p09ku
  priority: 102
  providerName: Springer Nature
Title Multi-back-propagation Algorithm for Signal Neural Network Decomposition
URI https://link.springer.com/article/10.1007/s11063-024-11518-y
https://www.proquest.com/docview/2956010833
Volume 56
WOSCitedRecordID wos001181399700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1573-773X
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1573-773X
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1573-773X
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1573-773X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1573-773X
  databaseCode: C24
  dateStart: 20240201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5RYGDhjSiPKgMbWCR2EjsT4lVVQqoqXqpYIsd2SgWURwsS_56z61CBRBcWZ0hysfKd7e985zuAPSFt0jKpSMFFSWKVhUTyNERAEmESlnCtpSs2wdtt0e1mHb_hNvRhldWc6CZq_azsHvkhzZztIBg7enkltmqU9a76Eho1mLOZylDP507O253Lbz-CZUPO5OIhiVMa-WMz48NzaA1ZH2ZMkBVFgnz-XJomfPOXi9StPM2l__Z5GRY95wyOx0qyAjNmsApLVT2HwA_vNWi507ikkOqB4JdwqnGwBcePPZQ6un8KkOEGV_2elWazeriLCyMPzowNTvcRYOtw0zy_Pm0RX2mBKJayEaHGFpYqTZSpKOVliWZYYYySzMRlykMTyyIpDbIHQ3WUSppmmUbmwwomRcgKyTZgdvA8MJsQxGiQCiUipG4qVoxKU2Y6EanMtGaayzpE1U_OlU9DbqthPOaTBMoWmByByR0w-Wcd9r_feRkn4Zj69E6FRu4H5DCfQFGHgwrPye2_pW1Nl7YNC9SqkI3wozswO3p7N7swrz5G_eFbw6tjA2qnNMb2ghNsO8kdtpdXt1_tuunf
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO6KsOcAJLBLbcZwDQqxqBVSIReIWHNspCChLA6g_xTdiu0krkODGgVMOSUaazPMsmQ1glQs7tExIlEY8Q1TGPhIR841AQq5DEkZKCbdsImo0-NVVfDoAH2UvjC2rLHWiU9TqUdp_5Js4drEDJ2T76RnZrVE2u1qu0OjC4kh33k3I1t6q7xv5rmF8eHCxV0PFVgEkCSM5wtouUcp0EMuARVlmQo5UaymIphmLfE1FGmbaWEqNVcAEZnGsjJUnKRHcJ6kghu4gDFFCWViBod2DxulZL29hvS8X4kU-ogwHRZtOt1nPRF82Z0qR8cICjjpfTWHfv_2WknWW7nD8v32jCRgrfGpvp3sIJmFAt6ZgvNxX4RXqaxpqrtsYpULeIcOZUaUOlt7OfdNwkd88eMaD985vm5aanVriLq5M3tvXtvi-qHCbgcs_4WcWKq3Hlp4Dj5qAm0seGNdUUkmw0FmsQs5ErBRRkahCUAo1kcWYdbvt4z7pD4i2QEgMEBIHhKRThfXeO0_dISO_Pr1YSj8pFE476Yu-Chslfvq3f6Y2_zu1FRipXZwcJ8f1xtECjGILX1vNiBehkr-86iUYlm_5bftluTgKHlz_NbI-AQ2-RaE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1D74pmFt04_0cWyOiTIGKuytpPmYw9mNrQr7702y1qqoID71oUkId5fkd9z97gDOCdVFyyhDSUgk8lhkIxoGtlKIT4SP_ZBzappNhL0eGQyi_gcWv8l2L0KSS06DrtKUZo0pl42S-KY8GR1_9JBCNA5Bi1VYU65JqO26pfkORQ8DhYZyqsz38z4_RyXG_BIWNa9Np_r_fW7DVo40rebSNHZgRaS7UC26OFj5od6DruHgooSyJ6R2pi4YoyyrOR5OZqPs8dlSuNa6Gw31arqWh_mY5HGrLXRKep73tQ8Pnav7Vhfl_RUQwwHOkCt0OykpnIg5QSilcr4SIRjFwpNBaAuPJr4UCjMIlzsBdYMo4grv4ARTYuOE4gOopJNUHILlKTeUMOIowMY8hl0qZMR9EtCIc8xDWgOnEHPM8uLjugfGOC7LJmtRxUpUsRFVvKjBxfuc6bL0xq-j64X24vwYzmM3Mg4nwbgGl4W2yt8_r3b0t-FnsNFvd-Lb697NMWy6Wt865c-tQyWbvYgTWGev2Wg-OzXW-Qa6v-T3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-back-propagation+Algorithm+for+Signal+Neural+Network+Decomposition&rft.jtitle=Neural+processing+letters&rft.au=Salgado%2C+Paulo&rft.au=Perdico%C3%BAlis%2C+T.-P.+Azevedo&rft.date=2024-03-12&rft.issn=1573-773X&rft.eissn=1573-773X&rft.volume=56&rft.issue=2&rft_id=info:doi/10.1007%2Fs11063-024-11518-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11063_024_11518_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-773X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-773X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-773X&client=summon