A Hybrid Forecasting System Based on Comprehensive Feature Selection and Intelligent Optimization for Stock Price Index Forecasting

Accurate forecasts of stock indexes can not only provide reference information for investors to formulate relevant strategies but also provide effective channels for the government to regulate the market. However, due to its volatility and complexity, predicting the stock price index has always been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 12; číslo 23; s. 3778
Hlavní autoři: He, Xuecheng, Wang, Jujie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2024
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate forecasts of stock indexes can not only provide reference information for investors to formulate relevant strategies but also provide effective channels for the government to regulate the market. However, due to its volatility and complexity, predicting the stock price index has always been a challenging task. This paper proposes a hybrid forecasting system based on comprehensive feature selection and intelligent optimization for stock price index forecasting. First, a recursive feature elimination with a cross-validation (RFECV) algorithm is designed to filter variables that have a significant impact on the target data from multiple datasets. Then, the stack autoencoder (SAE) algorithm is constructed to compress the feature variables. At last, an enhanced least squares support vector machine (LSSVM) algorithm is established to obtain high-precision point prediction results, and the Gaussian process regression (GPR) algorithm is used to obtain reasonable interval prediction results. Taking the Shanghai Stock Exchange (SSE) as an example, the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the model were 6.989 and 0.158%, respectively. In addition, the prediction interval coverage probability (PICP) is 99.792%. Through experimental comparison, the model shows high prediction accuracy and generalization ability.
AbstractList Accurate forecasts of stock indexes can not only provide reference information for investors to formulate relevant strategies but also provide effective channels for the government to regulate the market. However, due to its volatility and complexity, predicting the stock price index has always been a challenging task. This paper proposes a hybrid forecasting system based on comprehensive feature selection and intelligent optimization for stock price index forecasting. First, a recursive feature elimination with a cross-validation (RFECV) algorithm is designed to filter variables that have a significant impact on the target data from multiple datasets. Then, the stack autoencoder (SAE) algorithm is constructed to compress the feature variables. At last, an enhanced least squares support vector machine (LSSVM) algorithm is established to obtain high-precision point prediction results, and the Gaussian process regression (GPR) algorithm is used to obtain reasonable interval prediction results. Taking the Shanghai Stock Exchange (SSE) as an example, the root mean square error (RMSE) and mean absolute percentage error (MAPE) of the model were 6.989 and 0.158%, respectively. In addition, the prediction interval coverage probability (PICP) is 99.792%. Through experimental comparison, the model shows high prediction accuracy and generalization ability.
Audience Academic
Author Wang, Jujie
He, Xuecheng
Author_xml – sequence: 1
  givenname: Xuecheng
  surname: He
  fullname: He, Xuecheng
– sequence: 2
  givenname: Jujie
  surname: Wang
  fullname: Wang, Jujie
BookMark eNpNkU9rGzEQxZeSQNMkt34AQa91qv-7OrqmTgyBFNyehVaadeTuSq4klzrXfPEocSmWDhrmvflp4H1ozkIM0DQfCb5hTOEvkymPhFLG2rZ711xQSttZW4Wzk_p9c53zFtejCOu4umie5-ju0Cfv0DImsCYXHzZofcgFJvTVZHAoBrSI0y7BI4Ts_wBagin7BGgNI9jiq26CQ6tQYBz9BkJBD7viJ_9k3sQhJrQu0f5C35O3UI0O_p5-d9WcD2bMcP3vvWx-Lr_9WNzN7h9uV4v5_cwyycqMOt4r1jFQqhOcW9lKAUZK3oOyyslWWK5ahgl_9VshCe6JcBID5YAdY5fN6sh10Wz1LvnJpIOOxuu3RkwbbVLxdgRtCZGdgE4MznDu2g7IQNVQaZySvpeV9enI2qX4ew-56G3cp1DX14xwTgQnBFfXzdG1MRXqwxBLMrZeB5O3Nb_B1_68I0oJrBipA5-PAzbFnBMM_9ckWL_GrE9jZi8miJwd
Cites_doi 10.1016/j.matpr.2021.10.460
10.1109/ICIEV.2015.7334054
10.1093/bib/bbz021
10.1016/j.compag.2016.01.019
10.1021/acsptsci.0c00197
10.1016/j.eswa.2023.120935
10.2166/hydro.2017.013
10.1016/j.procs.2019.01.008
10.1109/ACCESS.2020.3031640
10.1016/j.apenergy.2019.114033
10.1007/s40745-021-00344-x
10.1016/j.ejor.2016.02.056
10.1016/j.asoc.2019.03.028
10.1016/j.engappai.2023.106106
10.2991/ssmi-18.2019.51
10.1016/j.engappai.2022.104908
10.1007/s11269-021-02913-4
10.1016/j.egyr.2020.03.003
10.2166/nh.2018.023
10.1109/TIM.2019.2919375
10.1016/j.fuel.2019.01.077
10.1039/D0CP05509C
10.1016/j.jclepro.2023.136701
10.1109/ACCESS.2020.3008681
10.20944/preprints202310.1799.v1
10.1016/j.specom.2020.11.003
10.1016/j.eswa.2023.119617
10.1016/j.asoc.2021.107898
10.1016/j.asr.2022.12.054
10.1016/j.eswa.2014.10.001
10.1109/ACCESS.2020.3046685
10.1016/j.apm.2019.10.022
10.1016/j.jprocont.2020.05.015
10.1016/j.knosys.2018.08.027
10.1016/j.resourpol.2023.103614
10.1007/s00521-017-3272-5
10.1016/j.eswa.2023.120902
10.1016/j.advengsoft.2022.103358
10.3390/math12010025
10.1016/j.ijforecast.2020.02.002
10.1016/j.asoc.2024.111365
10.1016/j.advengsoft.2013.12.007
10.1002/for.2971
10.1016/j.tust.2017.06.019
10.1016/j.ejor.2020.07.002
10.1016/j.engappai.2014.09.008
10.1016/j.eswa.2022.117252
10.1016/j.asoc.2024.111394
10.1016/j.annals.2020.102986
10.1109/ACCESS.2019.2936639
10.1016/j.asoc.2017.03.007
10.1109/ACCESS.2021.3053291
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12233778
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_c11685e85fda44d78e1f29f5d6421bb6
A819950931
10_3390_math12233778
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-2d4b9383e998544c6765ea664be9c9d675c4973014c363c5610b15d60e24e0d33
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001376365100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:34:18 EST 2025
Fri Jul 25 11:46:02 EDT 2025
Tue Nov 04 18:25:15 EST 2025
Sat Nov 29 07:12:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2d4b9383e998544c6765ea664be9c9d675c4973014c363c5610b15d60e24e0d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/c11685e85fda44d78e1f29f5d6421bb6
PQID 3144154110
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_c11685e85fda44d78e1f29f5d6421bb6
proquest_journals_3144154110
gale_infotracacademiconefile_A819950931
crossref_primary_10_3390_math12233778
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_9) 2019; 163
ref_14
Rastegari (ref_15) 2021; 289
Hua (ref_52) 2020; 8
Razavi (ref_13) 2019; 243
Oztekin (ref_6) 2016; 253
ref_16
Li (ref_37) 2020; 69
Su (ref_40) 2019; 21
Jamal (ref_49) 2020; 8
Yang (ref_18) 2019; 80
Kuo (ref_31) 2024; 154
Li (ref_30) 2024; 154
Li (ref_39) 2020; 84
Abolmakarem (ref_19) 2024; 24
Tian (ref_48) 2020; 6
Langone (ref_44) 2015; 37
Cretu (ref_51) 2021; 23
Kadkhodazadeh (ref_29) 2021; 35
Illa (ref_20) 2022; 56
Shaikh (ref_54) 2023; 71
Berradi (ref_27) 2019; 148
Zhang (ref_55) 2023; 218
Wu (ref_50) 2021; 9
Atmaja (ref_10) 2021; 126
Faris (ref_32) 2018; 30
Kuranga (ref_33) 2023; 233
Yang (ref_22) 2023; 401
Kurani (ref_1) 2023; 10
Zhang (ref_43) 2021; 9
Lv (ref_2) 2022; 202
Wang (ref_7) 2022; 113
Emir (ref_26) 2012; 2
Tian (ref_36) 2020; 79
Yu (ref_46) 2016; 122
Mirjalili (ref_47) 2014; 69
ref_35
Tang (ref_24) 2020; 257
Wang (ref_12) 2021; 113
Wang (ref_42) 2020; 92
Bai (ref_5) 2023; 122
Zhu (ref_23) 2021; 2
Mohan (ref_34) 2023; 175
Cui (ref_4) 2023; 232
Zhu (ref_53) 2018; 50
Mughal (ref_11) 2021; 4
(ref_25) 2015; 42
Xu (ref_17) 2023; 83
Hao (ref_21) 2023; 42
ref_3
Xue (ref_8) 2017; 69
Luo (ref_28) 2017; 56
Farajzadeh (ref_45) 2017; 20
Li (ref_38) 2022; 38
Wang (ref_41) 2019; 7
References_xml – volume: 56
  start-page: 1776
  year: 2022
  ident: ref_20
  article-title: Stock Price Prediction Methodology Using Random Forest Algorithm and Support Vector Machine
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.10.460
– ident: ref_35
  doi: 10.1109/ICIEV.2015.7334054
– volume: 21
  start-page: 687
  year: 2019
  ident: ref_40
  article-title: MinE-RFE: Determine the Optimal Subset from RFE by Minimizing the Subset-Accuracy–Defined Energy
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz021
– volume: 122
  start-page: 94
  year: 2016
  ident: ref_46
  article-title: Prediction of the Temperature in a Chinese Solar Greenhouse Based on LSSVM Optimized by Improved PSO
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.01.019
– volume: 4
  start-page: 338
  year: 2021
  ident: ref_11
  article-title: Random Forest Model Prediction of Compound Oral Exposure in the Mouse
  publication-title: ACS Pharmacol. Transl. Sci.
  doi: 10.1021/acsptsci.0c00197
– volume: 233
  start-page: 120935
  year: 2023
  ident: ref_33
  article-title: A Multi-Population Particle Swarm Optimization-Based Time Series Predictive Technique
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120935
– volume: 20
  start-page: 246
  year: 2017
  ident: ref_45
  article-title: A Hybrid Linear–Nonlinear Approach to Predict the Monthly Rainfall over the Urmia Lake Watershed Using Wavelet-SARIMAX-LSSVM Conjugated Model
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2017.013
– volume: 148
  start-page: 55
  year: 2019
  ident: ref_27
  article-title: Integration of Principal Component Analysis and Recurrent Neural Network to Forecast the Stock Price of Casablanca Stock Exchange
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.01.008
– volume: 8
  start-page: 202596
  year: 2020
  ident: ref_49
  article-title: A Novel Nature Inspired Meta-Heuristic Optimization Approach of GWO Optimizer for Optimal Reactive Power Dispatch Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031640
– volume: 257
  start-page: 114033
  year: 2020
  ident: ref_24
  article-title: A Multi-Scale Method for Forecasting Oil Price with Multi-Factor Search Engine Data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114033
– volume: 10
  start-page: 183
  year: 2023
  ident: ref_1
  article-title: A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-021-00344-x
– volume: 253
  start-page: 697
  year: 2016
  ident: ref_6
  article-title: A Data Analytic Approach to Forecasting Daily Stock Returns in an Emerging Market
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.02.056
– volume: 80
  start-page: 820
  year: 2019
  ident: ref_18
  article-title: A Novel Hybrid Stock Selection Method with Stock Prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.028
– volume: 122
  start-page: 106106
  year: 2023
  ident: ref_5
  article-title: Intelligent Forecasting Model of Stock Price Using Neighborhood Rough Set and Multivariate Empirical Mode Decomposition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106106
– volume: 2
  start-page: 100176
  year: 2021
  ident: ref_23
  article-title: Intelligent Financial Fraud Detection Practices in Post-Pandemic Era
  publication-title: Innovation
– volume: 24
  start-page: 200449
  year: 2024
  ident: ref_19
  article-title: A Multi-Stage Machine Learning Approach for Stock Price Prediction: Engineered and Derivative Indices
  publication-title: Intell. Syst. Appl.
– ident: ref_16
  doi: 10.2991/ssmi-18.2019.51
– volume: 113
  start-page: 104908
  year: 2022
  ident: ref_7
  article-title: Asian Stock Markets Closing Index Forecast Based on Secondary Decomposition, Multi-Factor Analysis and Attention-Based LSTM Model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104908
– volume: 35
  start-page: 3939
  year: 2021
  ident: ref_29
  article-title: A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02913-4
– volume: 6
  start-page: 620
  year: 2020
  ident: ref_48
  article-title: Predictive Model of Energy Consumption for Office Building by Using Improved GWO-BP
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.03.003
– volume: 50
  start-page: 200
  year: 2018
  ident: ref_53
  article-title: Seasonal Streamflow Forecasts Using Mixture-Kernel GPR and Advanced Methods of Input Variable Selection
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2018.023
– volume: 69
  start-page: 1981
  year: 2020
  ident: ref_37
  article-title: Damage Localization of Stacker’s Track Based on EEMD-EMD and DBSCAN Cluster Algorithms
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2919375
– volume: 243
  start-page: 133
  year: 2019
  ident: ref_13
  article-title: An Insight into the Estimation of Fatty Acid Methyl Ester Based Biodiesel Properties Using a LSSVM Model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.01.077
– volume: 23
  start-page: 2891
  year: 2021
  ident: ref_51
  article-title: Predicting Second Virial Coefficients of Organic and Inorganic Compounds Using Gaussian Process Regression
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05509C
– volume: 401
  start-page: 136701
  year: 2023
  ident: ref_22
  article-title: Forecasting Carbon Price in China Using a Novel Hybrid Model Based on Secondary Decomposition, Multi-Complexity and Error Correction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136701
– volume: 8
  start-page: 129679
  year: 2020
  ident: ref_52
  article-title: LAK: Lasso and K-Means Based Single-Cell RNA-Seq Data Clustering Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008681
– ident: ref_3
  doi: 10.20944/preprints202310.1799.v1
– volume: 2
  start-page: 106
  year: 2012
  ident: ref_26
  article-title: A Stock Selection Model Based on Fundamental and Technical Analysis Variables by Using Artificial Neural Networks and Support Vector Machines
  publication-title: Rev. Econ. Financ.
– volume: 126
  start-page: 9
  year: 2021
  ident: ref_10
  article-title: Two-Stage Dimensional Emotion Recognition by Fusing Predictions of Acoustic and Text Networks Using SVM
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2020.11.003
– volume: 218
  start-page: 119617
  year: 2023
  ident: ref_55
  article-title: Oil Price Forecasting: A Hybrid GRU Neural Network Based on Decomposition–Reconstruction Methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119617
– volume: 113
  start-page: 107898
  year: 2021
  ident: ref_12
  article-title: Stock Index Prediction and Uncertainty Analysis Using Multi-Scale Nonlinear Ensemble Paradigm of Optimal Feature Extraction, Two-Stage Deep Learning and Gaussian Process Regression
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107898
– volume: 71
  start-page: 4361
  year: 2023
  ident: ref_54
  article-title: Forecasting Total Electron Content (TEC) Using CEEMDAN LSTM Model
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2022.12.054
– volume: 42
  start-page: 1797
  year: 2015
  ident: ref_25
  article-title: Using Volume Weighted Support Vector Machines with Walk Forward Testing and Feature Selection for the Purpose of Creating Stock Trading Strategy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.001
– volume: 9
  start-page: 458
  year: 2021
  ident: ref_50
  article-title: A Novel GPR-Based Prediction Model for Strip Crown in Hot Rolling by Using the Improved Local Outlier Factor
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046685
– volume: 79
  start-page: 126
  year: 2020
  ident: ref_36
  article-title: Point and Interval Forecasting for Carbon Price Based on an Improved Analysis-Forecast System
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.10.022
– volume: 92
  start-page: 79
  year: 2020
  ident: ref_42
  article-title: Deep Learning for Fault-Relevant Feature Extraction and Fault Classification with Stacked Supervised Auto-Encoder
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.05.015
– volume: 163
  start-page: 159
  year: 2019
  ident: ref_9
  article-title: Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machines
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.027
– volume: 83
  start-page: 103614
  year: 2023
  ident: ref_17
  article-title: Using Econometric and Machine Learning Models to Forecast Crude Oil Prices: Insights from Economic History
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2023.103614
– volume: 30
  start-page: 413
  year: 2018
  ident: ref_32
  article-title: Grey Wolf Optimizer: A Review of Recent Variants and Applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3272-5
– volume: 232
  start-page: 120902
  year: 2023
  ident: ref_4
  article-title: McVCsB: A New Hybrid Deep Learning Network for Stock Index Prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120902
– volume: 175
  start-page: 103358
  year: 2023
  ident: ref_34
  article-title: A Novel Automated SuperLearner Using a Genetic Algorithm-Based Hyperparameter Optimization
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2022.103358
– ident: ref_14
  doi: 10.3390/math12010025
– volume: 38
  start-page: 35
  year: 2022
  ident: ref_38
  article-title: A Novel Text-Based Framework for Forecasting Agricultural Futures Using Massive Online News Headlines
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2020.02.002
– volume: 154
  start-page: 111365
  year: 2024
  ident: ref_30
  article-title: Stock Price Series Forecasting Using Multi-Scale Modeling with Boruta Feature Selection and Adaptive Denoising
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111365
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_47
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 42
  start-page: 1385
  year: 2023
  ident: ref_21
  article-title: A Bi-Level Ensemble Learning Approach to Complex Time Series Forecasting: Taking Exchange Rates as an Example
  publication-title: J. Forecast.
  doi: 10.1002/for.2971
– volume: 69
  start-page: 171
  year: 2017
  ident: ref_8
  article-title: Deformation Evaluation on Surrounding Rocks of Underground Caverns Based on PSO-LSSVM
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.06.019
– volume: 289
  start-page: 350
  year: 2021
  ident: ref_15
  article-title: Option Pricing with Conditional GARCH Models
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2020.07.002
– volume: 37
  start-page: 268
  year: 2015
  ident: ref_44
  article-title: LS-SVM Based Spectral Clustering and Regression for Predicting Maintenance of Industrial Machines
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.09.008
– volume: 202
  start-page: 117252
  year: 2022
  ident: ref_2
  article-title: Modal Decomposition-Based Hybrid Model for Stock Index Prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117252
– volume: 154
  start-page: 111394
  year: 2024
  ident: ref_31
  article-title: Hybrid of Jellyfish and Particle Swarm Optimization Algorithm-Based Support Vector Machine for Stock Market Trend Prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111394
– volume: 84
  start-page: 102986
  year: 2020
  ident: ref_39
  article-title: Tourism Companies’ Risk Exposures on Text Disclosure
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2020.102986
– volume: 7
  start-page: 118030
  year: 2019
  ident: ref_41
  article-title: Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936639
– volume: 56
  start-page: 199
  year: 2017
  ident: ref_28
  article-title: Improving the Integration of Piece Wise Linear Representation and Weighted Support Vector Machine for Stock Trading Signal Prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.007
– volume: 9
  start-page: 17641
  year: 2021
  ident: ref_43
  article-title: Integrating Stacked Sparse Auto-Encoder Into Matrix Factorization for Rating Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053291
SSID ssj0000913849
Score 2.2758827
Snippet Accurate forecasts of stock indexes can not only provide reference information for investors to formulate relevant strategies but also provide effective...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3778
SubjectTerms Accuracy
Algorithms
Analysis
Data compression
Efficiency
Forecasting
Forecasts and trends
Gaussian process
interval prediction
Investments
Machine learning
Multivariate analysis
Optimization
Political aspects
Prices and rates
recursive feature elimination with cross-validation
Root-mean-square errors
stack autoencoder
Statistical analysis
Stock exchanges
stock index forecasting
Stock price indexes
Stock prices
Stocks
Support vector machines
Trends
Variables
Volatility
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKy4EeKOVDXSjIBypOURPbcewT2lZU5UBB2lbqzfJXKAeyJUkRnPnjzDjeZS9w4ZJDYimWXjzzxhm_R8hrpLlSOV80LXOFsNIVKqDkPmsFC6x0irlkNtFcXKjra_0pb7gNua1yFRNToA5Lj3vkxzwxfwHZ6u3ttwJdo_DvarbQuEd2UCWhSq17i_UeC2peKqGnfncO1f0xsMCbCjIib9BXbSMTJcH-v4XllGvO9v53lo_Iw8wy6Xz6LPbJVuwek90Pa4nW4Qn5NafnP_G4FkV3Tm8H7H-mk4A5PYHcFuiyoxgu-ngzdblT5It3faSLZJ4DiFLbBfp-reo50o8Qgb7mo50U-DBdjBBwaTKXh4Eh_th83VNydfbu8vS8yI4MheeSjwULwmmoaSMUabUQXjayjlZK4aL2OkDx4YXGmCFwvEdu5qo6yDIyEcvA-TOy3S27eECojtK2wLdUbLyAi1XchtaHMmqgbDzOyNEKHXM7CW8YKFgQRbOJ4oycIHTrMSiXnW4s-88mrz7jq0qqOqq6DVaI0KhYtUy3MDPBKufkjLxB4A0u6rG33uazCTBVlMcyc4Un2UvNqxk5XAFv8mofzB_Un__78QvygAEpmtphDsn22N_Fl-S-_z5-GfpX6eP9DbAK-cc
  priority: 102
  providerName: ProQuest
Title A Hybrid Forecasting System Based on Comprehensive Feature Selection and Intelligent Optimization for Stock Price Index Forecasting
URI https://www.proquest.com/docview/3144154110
https://doaj.org/article/c11685e85fda44d78e1f29f5d6421bb6
Volume 12
WOSCitedRecordID wos001376365100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ4QCHilIQS9uVDyBOURPbcezjbrVVK9RlxRapnCx_ReVAirJpBZde-OPMOOkql4oLFx8SS7H8MjNvpJk3hLxHmiuV81lVM5cJK12mAkrus1qwwHKnmEvDJqrlUl1d6dVo1BfWhPXywP3FHfuikKqMqqyDFSJUKhY103UZsEPTuSS2nVd6lEwlH6wLroTuK9055PXHwP-uC4iFvMKJaqMYlKT6H3PIKcqcviS7Az2ks_5Ye-RJbF6RFxdbbdXNPvkzo2e_sc-K4lhNbzdYuEx75XE6h6AU6E1D0c7beN2Xp1MkerdtpOs09QagoLYJ9Hwrx9nRz-A6fgw9mRSILF134ClpmgoPG0P8Nf7ca_L1dHF5cpYNoxQyzyXvMhaE05CMRsiuSiG8rGQZrZTCRe11gKzBC43GLnC_R1LlCrjjPDIR88D5G7LT3DTxLaE6SlsDUVKx8gIWq7gNtQ951MC1eJyQDw-Xa372ihkGMg0EwYxBmJA53vx2D-pcpweAvhnQN_9Cf0I-Im4GrbFrrbdDUwEcFXWtzExhC3queTEhhw_QmsFMN4andFIABXr3P05zQJ4z4Dx9tcsh2ena23hEnvm77vumnZKn88Vy9WWa_lRYP1XZFEtN17jeL-D96vxi9e0vGfLyWw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQceFcsFPCBilPUxPY69gGhLVDtatulUovUm_ErlAPZkqRAz_wffiMzeSx7gVsPXHJILMVyPs9848x8Q8gLpLlSOZ_kBXOJsNIlKqDkPisECyx1irm22US-WKjTU320QX4NtTCYVjnYxNZQh6XHM_Jd3jJ_Ad7q9fnXBLtG4d_VoYVGB4t5vPwOIVv9avYWvu8OY_vvTt5Mk76rQOK55E3CgnAa4rIIgcZYCC9zOY5WSuGi9joAgfZCI-4FjvfIL1w2DjKNTMQ04AEomPxrgqsc99U8T1ZnOqixqYTu8us51-kusM6zDDwwz7GP25rnaxsE_M0NtL5t_87_tip3ye2eRdNJB_t7ZCOW98mtw5UEbf2A_JzQ6SWWo1HsPuptjfndtBNop3vguwNdlhTNYRXPuix-inz4oor0uG0OBIiltgx0tlItbeh7sLBf-tJVCnyfHjfgUOgRSjPBwBB_rL_uIflwJauwRTbLZRkfEaqjtAXwSRVzL-BiFbeh8CGNGigpjyOyM6DBnHfCIgYCMkSNWUfNiOwhVFZjUA68vbGsPpneuhifZVKNoxoXwQoRchWzgukCZiZY5pwckZcININGq6mst33tBUwV5b_MRGGlfqp5NiLbA9BMb81q8wdlj__9-Dm5MT05PDAHs8X8CbnJgAB2qT_bZLOpLuJTct1_az7X1bN241Dy8aox-Rvs71MH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLUJw4I1YKOADFadoE8dx7ANCW8qqq9JlpYJUTsavUA5kS5ICPfOv-HXM5LHsBW49cMkhsRTL-TzzjTPzDSHPkOYKaV2UF8xG3AgbSY-S-6zgzLPYSmbbZhP5YiFPTtRyi_waamEwrXKwia2h9iuHZ-STtGX-HLzVpOjTIpb7s5dnXyPsIIV_Wod2Gh1EDsPFdwjf6hfzffjWu4zNXr97dRD1HQYil4q0iZjnVkGMFiDoyDh3IhdZMEJwG5RTHsi04wr3AMfxDrmGTTIv4sB4iD0ehoL53wZKztmIbC_nR8sP6xMeVNyUXHXZ9mmq4glw0NME_HGaY1e3DT_Ytgv4m1NoPd3s5v-8RrfIjZ5f02m3IW6TrVDeIdeP1uK09V3yc0oPLrBQjWJfUmdqzPymnXQ73QOv7umqpGgoq3Da5fdTZMrnVaDHbdsgwDI1pafztZ5pQ9-C7f3SF7VSiATocQOuhi5RtAkG-vBj83X3yPtLWYX7ZFSuyvCAUBWEKYBpypA7DhcjU-ML5-OggKymYUx2B2Tos05yREOohgjSmwgakz2EzXoMCoW3N1bVJ93bHe2SRMgsyKzwhnOfy5AUTBUwM84Sa8WYPEfQaTRnTWWc6asyYKooDKanEmv4Y5UmY7IzgE73dq7WfxD38N-Pn5KrAEX9Zr44fESuMWCGXU7QDhk11Xl4TK64b83nunrS7yJKPl42KH8DyNldiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Forecasting+System+Based+on+Comprehensive+Feature+Selection+and+Intelligent+Optimization+for+Stock+Price+Index+Forecasting&rft.jtitle=Mathematics+%28Basel%29&rft.au=Xuecheng+He&rft.au=Jujie+Wang&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=23&rft.spage=3778&rft_id=info:doi/10.3390%2Fmath12233778&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c11685e85fda44d78e1f29f5d6421bb6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon