On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences

In this paper, we present an extension of the Karlsson–Minton summation formula for a generalized hypergeometric function with integral parameter differences. Namely, we extend one single negative difference in Karlsson–Minton formula to a finite number of integral negative differences, some of whic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 12; číslo 11; s. 1656
Hlavní autoři: Bakhtin, Kirill, Prilepkina, Elena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2024
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we present an extension of the Karlsson–Minton summation formula for a generalized hypergeometric function with integral parameter differences. Namely, we extend one single negative difference in Karlsson–Minton formula to a finite number of integral negative differences, some of which will be repeated. Next, we continue our study of the generalized hypergeometric function evaluated at unity and with integral positive differences (IPD hypergeometric function at the unit argument). We obtain a recurrence relation that reduces the IPD hypergeometric function at the unit argument to F34. Finally, we note that Euler–Pfaff-type transformations are always based on summation formulas for finite hypergeometric functions, and we give a number of examples.
AbstractList In this paper, we present an extension of the Karlsson–Minton summation formula for a generalized hypergeometric function with integral parameter differences. Namely, we extend one single negative difference in Karlsson–Minton formula to a finite number of integral negative differences, some of which will be repeated. Next, we continue our study of the generalized hypergeometric function evaluated at unity and with integral positive differences (IPD hypergeometric function at the unit argument). We obtain a recurrence relation that reduces the IPD hypergeometric function at the unit argument to F34. Finally, we note that Euler–Pfaff-type transformations are always based on summation formulas for finite hypergeometric functions, and we give a number of examples.
Audience Academic
Author Bakhtin, Kirill
Prilepkina, Elena
Author_xml – sequence: 1
  givenname: Kirill
  surname: Bakhtin
  fullname: Bakhtin, Kirill
– sequence: 2
  givenname: Elena
  orcidid: 0000-0001-6035-4343
  surname: Prilepkina
  fullname: Prilepkina, Elena
BookMark eNpNkVtLAzEQhYMoeOubP2DBV1tz2SSbR1F7AUFBffApZLOTmtJNanaL1F9v6oqYechw5szHwDlFhyEGQOiC4AljCl-3pn8nlBAiuDhAJ5RSOZZ5cPivP0ajrlvh_BRhValO0NtjKJ63bV72MXRFdMUMAiSz9l_QFPPdBtISYgt98raYboMdfJ--fy8WoYdlthZPJplsgVTceecgQbDQnaMjZ9YdjH7_M_Q6vX-5nY8fHmeL25uHsWWC9WNa15IowmtOuDBQVs5Vile8FlBSV1W1k4yDk5RCw0wWiWHSMW4rwy0YzM7QYuA20az0JvnWpJ2OxusfIaalNqn3dg2a4kpZW2JOaV1yIRVg2xCBicTSNWWZWZcDa5Pixxa6Xq_iNoV8vmZYyJJIyUV2TQbX0mSoDy72ydhcDbTe5lScz_qNVFJhSdkeezUs2BS7LoH7O5NgvQ9P_w-PfQOP5Y2r
Cites_doi 10.1063/1.1665587
10.1007/s10092-018-0272-5
10.1216/RMJ-2013-43-1-291
10.1017/CBO9781107325937
10.1063/1.531222
10.1080/10652469.2018.1526793
10.3390/math8111966
10.1007/978-1-4757-3675-5_20
10.3390/sym14081541
10.1137/0512020
10.1063/1.1665270
10.1134/S1995080222090128
10.37394/23206.2022.21.69
10.1142/0270
10.1007/1-4020-2634-X_17
10.1134/S1995080220050029
10.1016/j.jat.2020.105484
10.3390/sym13101783
10.1007/s00029-003-0310-1
10.1063/1.530536
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12111656
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_2089cc40522b45679e0cd1601707fd44
A797907234
10_3390_math12111656
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-2bb71915b5156ae48ff89585b6e42f88bf735ef722ed3a6e41a37f35c8a5cea03
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245532600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Mon Nov 10 04:29:25 EST 2025
Fri Jul 25 12:06:12 EDT 2025
Tue Nov 04 18:21:32 EST 2025
Sat Nov 29 07:14:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2bb71915b5156ae48ff89585b6e42f88bf735ef722ed3a6e41a37f35c8a5cea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6035-4343
OpenAccessLink https://www.proquest.com/docview/3067417756?pq-origsite=%requestingapplication%
PQID 3067417756
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_2089cc40522b45679e0cd1601707fd44
proquest_journals_3067417756
gale_infotracacademiconefile_A797907234
crossref_primary_10_3390_math12111656
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kanemitsu (ref_6) 2002; Volume 8
Chu (ref_17) 1995; 36
Schlosser (ref_18) 2003; 9
ref_11
ref_22
ref_10
Minton (ref_13) 1970; 12
ref_21
Candezano (ref_23) 2020; 41
ref_1
Miller (ref_24) 2013; 43
ref_3
Karlsson (ref_14) 1971; 12
Chu (ref_16) 1994; 35
ref_2
ref_19
Lima (ref_20) 2020; 260
Quintana (ref_7) 2018; 55
Cesarano (ref_8) 2022; 21
Gasper (ref_15) 1981; 12
Karp (ref_9) 2018; 29
Karp (ref_12) 2022; 43
ref_5
ref_4
References_xml – volume: 12
  start-page: 270
  year: 1971
  ident: ref_14
  article-title: Hypergeometric functions with integral parameter differences
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665587
– volume: 55
  start-page: 30
  year: 2018
  ident: ref_7
  article-title: On an operational matrix method based on generalized Bernoulli polynomials of level m
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0272-5
– volume: 43
  start-page: 291
  year: 2013
  ident: ref_24
  article-title: Transformation formulas for the generalized hypergeometric function with integral parameter differences
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/RMJ-2013-43-1-291
– ident: ref_1
  doi: 10.1017/CBO9781107325937
– volume: 36
  start-page: 5198
  year: 1995
  ident: ref_17
  article-title: Erratum: Partial fractions and bilateral summations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.531222
– ident: ref_3
– volume: 29
  start-page: 955
  year: 2018
  ident: ref_9
  article-title: Extensions of Karlsson–Minton summation theorem and some consequences of the first Miller–Paris transformation
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652469.2018.1526793
– ident: ref_10
  doi: 10.3390/math8111966
– volume: Volume 8
  start-page: 381
  year: 2002
  ident: ref_6
  article-title: Generalized hypergeometric series and the symmetries of 3-j and 6-j coefficients
  publication-title: Number Theoretic Methods. Developments in Mathematics
  doi: 10.1007/978-1-4757-3675-5_20
– ident: ref_2
– ident: ref_11
  doi: 10.3390/sym14081541
– volume: 12
  start-page: 196
  year: 1981
  ident: ref_15
  article-title: Summation formulas for basic hypergeometric series
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0512020
– volume: 12
  start-page: 1375
  year: 1970
  ident: ref_13
  article-title: Generalized hypergeometric functions at unit argument
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665270
– volume: 43
  start-page: 1326
  year: 2022
  ident: ref_12
  article-title: Hypergeometric 4F3(1) with integral parameter differences
  publication-title: Lobachevsky J. Math.
  doi: 10.1134/S1995080222090128
– volume: 21
  start-page: 604
  year: 2022
  ident: ref_8
  article-title: New results for degenerated generalized Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials
  publication-title: Wseas Trans. Math.
  doi: 10.37394/23206.2022.21.69
– ident: ref_4
  doi: 10.1142/0270
– ident: ref_5
  doi: 10.1007/1-4020-2634-X_17
– volume: 41
  start-page: 747
  year: 2020
  ident: ref_23
  article-title: Further applications of the G function integral method
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080220050029
– ident: ref_19
– volume: 260
  start-page: 105484
  year: 2020
  ident: ref_20
  article-title: Multiple orthogonal polynomials associated with confluent hypergeometric functions
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2020.105484
– ident: ref_22
  doi: 10.3390/sym13101783
– volume: 9
  start-page: 119
  year: 2003
  ident: ref_18
  article-title: Elementary derivations of identities for bilateral basic hypergeometric series
  publication-title: Sel. Math.
  doi: 10.1007/s00029-003-0310-1
– ident: ref_21
– volume: 35
  start-page: 2036
  year: 1994
  ident: ref_16
  article-title: Partial fractions and bilateral summations
  publication-title: J. Math Phys.
  doi: 10.1063/1.530536
SSID ssj0000913849
Score 2.2573266
Snippet In this paper, we present an extension of the Karlsson–Minton summation formula for a generalized hypergeometric function with integral parameter differences....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1656
SubjectTerms Distributions, Theory of (Functional analysis)
Euler–Pfaff type transformations
Functions, Hypergeometric
generalized hypergeometric function
Hypergeometric functions
hypergeometric identity
Integrals
Mathematical research
Methods
Miller–Paris transformations
Parameter estimation
Parameters
summation formulas
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lMUCvIAYopo7MR2xvJRFQlKB5DKZDmODZWgRWlh4NdzF6dVGRALq-XhdBf73ruc3xFyEhsJJID5yPDURomJWYQa0BEqr-cFL0xhq4fCt7LfV8NhNlga9YU9YUEeODgOyLnKrAVYwVgOyV5mrm2LWKDsi_RFUimBtmW2RKaqOziLuUqy0OnOgdefA_57QTkzVJv5kYMqqf7fLuQqy3Q3yUYND2knmLVFVtx4m6zfLbRVpzvk6X5MsXYVSm104mktHT36cgXtAa8sn93kDSdlWdqFtBX2YcGV3gRxiFc6MNiUBT6lV_WEFLgvdslj9_rhshfVAxIiywWfRSzPJfCtNAdQIoxLlPcqA_yfC5cwr1TuJU-dl4y5ghtYjA2XHoKiTGqdafM90hhPxm6f0JgLkfrEWK7yBCCWAeCYSo8_aUUaC9Ykp3OX6fegg6GBP6Br9bJrm-QC_bnYg-rV1QLEVNcx1X_FtEnOMBoaz9isNNbUTwXAVFSr0h2ZSSD1jMPO1jxguj58U40sKImlTMXBf1hzSNYYIJnQH9YijVn54Y7Iqv2cjablcfXdfQMiw9s2
  priority: 102
  providerName: Directory of Open Access Journals
Title On Summations of Generalized Hypergeometric Functions with Integral Parameter Differences
URI https://www.proquest.com/docview/3067417756
https://doaj.org/article/2089cc40522b45679e0cd1601707fd44
Volume 12
WOSCitedRecordID wos001245532600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09bxQxELVCQkEKCB9RDsLJBYjKyq3ttb1VlMCdEoUcKz6kpLK8XjtEgtuwd1Ck4Lczs-s7SBGaNFvYLqx99vjNePyGkFeZ0-AE8MicyD2TLuMMNaAZKq9Xtahd7buHwu_1dGrOzooyBdzmKa1yaRM7Q103HmPke0htZaZ1rvavfjCsGoW3q6mExj2ygSoJWZe692kVY0HNSyOLPt9dgHe_ByzwK4qaoebMjZOoE-y_zSx3Z83k0V1nuUUeJpZJD_pl8ZishdkTsnm6kmidPyXnH2YUQ2B9xI42kSYF6svrUNMjcE_bi9B8x4Jbnk7g9OvHYdyWHvcaE99o6TC3C6Ch71KhFTA7z8iXyfjz2yOW6iwwL5RYMF5VGty2vAJuo1yQJkZTgBtRqSB5NKaKWuQhas5DLRw0Zk7oCNgal_vgRmKbrM-aWdghNBNK5VE6L0wlgak54J-5jnjXq_JM8QF5vfzn9qqX07DghiA29l9sBuQQAVmNQRHsrqFpL2zaU5aPTOE9ME7OK-CBuggjX2cKFYF0rKUckDcIp8Wtumidd-nFAUwVRa_sgS50MdJcwMjdJZw27eG5_Yvl8_93vyAPOFCdPoFsl6wv2p_hJbnvfy0u5-2QbByOp-XHYeftw_dEs2G3TPH7ewz95fFpef4H12_xDw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgkQ58F2xpYAPVJyiJrYTOweECmW1q90uPRSpnIzj2KVSuynZpQh-FL-RmXwscIBbD1wdK4rj55k3Y_sNwPPEKgwCeIisSF0kbcIj0oCOSHm9KEVpS9dcFJ6q2UwfH-eHa_CjvwtDxyp7m9gY6rJylCPfJWorE6XS7NXF54iqRtHual9Co4XFxH_7iiHb4uV4H-d3h_Ph26M3o6irKhA5kYllxItCYZCSFujJM-ulDkHnSJqLzEsetC6CEqkPinNfCouNiRUq4Ei0TZ23scD3XoPrUmhF62qiolVOhzQ2tczb8_VC5PEuss5PJKJGGjd_eL6mQMDf3EDj24Z3_re_chdudyya7bWwvwdrfn4fbh2sJGgXD-DDuzmjFF-bkWRVYJ3C9ul3X7IRht_1ia_OqaCYY0P07m0_ykuzcauhccYOLZ1dQ-ix_a6QDJrVh_D-Ssa2Cevzau4fAUtElqVBWid0IZGJWuTXqQq0l52lScYHsNPPsblo5UIMhlmEBfM7FgbwmgCw6kMi301DVZ-YzmYYHuvcOWTUnBfIc1XuY1cmGSkeqVBKOYAXBB9DpmhZW2e7GxX4qSTqZfZUrvJYcYE9t3v4mM5GLcwv7Gz9-_EzuDk6Opia6Xg2eQwbHGlde1huG9aX9Rf_BG64y-Xpon7aLAcGH68aaT8BwnhH-g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUL0wGdRFwr4QMUp2sR24uSAUGG76qrtkgNI7ck4jl0q0U2bXUDw0_h1zORjgUO59cDVsaI4eZl5Mx6_AXgRGYVBAPeBEbENpIl4QBrQASmvF6UoTWmbg8KHajZLj4-zfA1-9mdhqKyyt4mNoS4rSznyEVFbGSkVJyPflUXk48nri8uAOkjRTmvfTqOFyIH7_g3Dt8Wr6Ri_9Q7nk733b_eDrsNAYEUilgEvCoUBS1ygV0-Mk6n3aYYEukic5D5NC69E7Lzi3JXC4GBkhPK4qtTE1plQ4H1vwDpScskHsJ5Pj_KTVYaHFDdTmbXV9kJk4Qg56CeSVCPFm7_8YNMu4Cqn0Hi6yd3_-R3dgzsdv2a77Q9xH9bc_AFsHK3EaRcP4eTdnFHyr81VssqzTnv77Icr2T4G5vWpq86p1ZhlE_T77TzKWLNpq67xmeWGqtoQlGzctZhBg7sJH65lbY9gMK_mbgtYJJIk9tJYkRYSOapB5h0rT7vcSRwlfAg7_ffWF62QiMYAjHCh_8TFEN4QGFZzSP67GajqU91ZE83DNLMWuTbnBTJglbnQllFCWkjKl1IO4SVBSZORWtbGmu6sBT4qyX3pXZWpLFRc4MztHkq6s14L_RtHj_99-TncQoDpw-ns4Anc5sj32iq6bRgs6y_uKdy0X5dni_pZ928w-HjdUPsFF4RSew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Summations+of+Generalized+Hypergeometric+Functions+with+Integral+Parameter+Differences&rft.jtitle=Mathematics+%28Basel%29&rft.au=Bakhtin%2C+Kirill&rft.au=Prilepkina%2C+Elena&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=11&rft.spage=1656&rft_id=info:doi/10.3390%2Fmath12111656&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon