Inertial Douglas–Rachford splitting for monotone inclusion problems
We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties. To this end we formulate first the inertial version of the Krasnosel’skiı̆–Mann algorithm for approxim...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 256; s. 472 - 487 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2015
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties. To this end we formulate first the inertial version of the Krasnosel’skiı̆–Mann algorithm for approximating the set of fixed points of a nonexpansive operator, for which we also provide an exhaustive convergence analysis. By using a product space approach we employ these results to the solving of monotone inclusion problems involving linearly composed and parallel-sum type operators and provide in this way iterative schemes where each of the maximally monotone mappings is accessed separately via its resolvent. We consider also the special instance of solving a primal–dual pair of nonsmooth convex optimization problems and illustrate the theoretical results via some numerical experiments in clustering and location theory. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2015.01.017 |