Set-Valued Evenly Convex Functions: Characterizations and C-Conjugacy
In this work we deal with set-valued functions with values in the power set of a separated locally convex space where a nontrivial pointed convex cone induces a partial order relation. A set-valued function is evenly convex if its epigraph is an evenly convex set, i.e., it is the intersection of an...
Uloženo v:
| Vydáno v: | Set-valued and variational analysis Ročník 30; číslo 3; s. 827 - 846 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.09.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1877-0533, 1877-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work we deal with set-valued functions with values in the power set of a separated locally convex space where a nontrivial pointed convex cone induces a partial order relation. A set-valued function is evenly convex if its epigraph is an evenly convex set, i.e., it is the intersection of an arbitrary family of open half-spaces. In this paper we characterize evenly convex set-valued functions as the pointwise supremum of its set-valued e-affine minorants. Moreover, a suitable conjugation pattern will be developed for these functions, as well as the counterpart of the biconjugation Fenchel-Moreau theorem. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1877-0533 1877-0541 |
| DOI: | 10.1007/s11228-021-00621-0 |