Autoencoder-based image processing framework for object appearance modifications

The presented paper introduces a novel method for enabling appearance modifications for complex image objects. Qualitative visual object properties, quantified using appropriately derived visual attribute descriptors, are subject to alterations. We adopt a basic convolutional autoencoder as a framew...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 33; no. 4; pp. 1079 - 1090
Main Authors: Ślot, Krzysztof, Kapusta, Paweł, Kucharski, Jacek
Format: Journal Article
Language:English
Published: London Springer London 01.02.2021
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The presented paper introduces a novel method for enabling appearance modifications for complex image objects. Qualitative visual object properties, quantified using appropriately derived visual attribute descriptors, are subject to alterations. We adopt a basic convolutional autoencoder as a framework for the proposed attribute modification algorithm, which is composed of the following three steps. The algorithm begins with the extraction of attribute-related information from autoencoder’s latent representation of an input image, by means of supervised principal component analysis. Next, appearance alteration is performed in the derived feature space (referred to as ‘attribute-space’), based on appropriately identified mappings between quantitative descriptors of image attributes and attribute-space features. Finally, modified attribute vectors are transformed back to latent representation, and output image is reconstructed in the decoding part of an autoencoder. The method has been evaluated using two datasets: images of simple objects—digits from MNIST handwritten-digit dataset and images of complex objects—faces from CelebA dataset. In the former case, two qualitative visual attributes of digit images have been selected for modifications: slant and aspect ratio, whereas in the latter case, aspect ratio of face oval was subject to alterations. Evaluation results prove, both in qualitative and quantitative terms, that the proposed framework offers a promising tool for visual object editing.
AbstractList The presented paper introduces a novel method for enabling appearance modifications for complex image objects. Qualitative visual object properties, quantified using appropriately derived visual attribute descriptors, are subject to alterations. We adopt a basic convolutional autoencoder as a framework for the proposed attribute modification algorithm, which is composed of the following three steps. The algorithm begins with the extraction of attribute-related information from autoencoder’s latent representation of an input image, by means of supervised principal component analysis. Next, appearance alteration is performed in the derived feature space (referred to as ‘attribute-space’), based on appropriately identified mappings between quantitative descriptors of image attributes and attribute-space features. Finally, modified attribute vectors are transformed back to latent representation, and output image is reconstructed in the decoding part of an autoencoder. The method has been evaluated using two datasets: images of simple objects—digits from MNIST handwritten-digit dataset and images of complex objects—faces from CelebA dataset. In the former case, two qualitative visual attributes of digit images have been selected for modifications: slant and aspect ratio, whereas in the latter case, aspect ratio of face oval was subject to alterations. Evaluation results prove, both in qualitative and quantitative terms, that the proposed framework offers a promising tool for visual object editing.
Author Kapusta, Paweł
Kucharski, Jacek
Ślot, Krzysztof
Author_xml – sequence: 1
  givenname: Krzysztof
  surname: Ślot
  fullname: Ślot, Krzysztof
  organization: Institute of Applied Computer Science, Lodz University of Technology
– sequence: 2
  givenname: Paweł
  orcidid: 0000-0002-3527-7208
  surname: Kapusta
  fullname: Kapusta, Paweł
  email: pawel.kapusta@p.lodz.pl
  organization: Institute of Applied Computer Science, Lodz University of Technology
– sequence: 3
  givenname: Jacek
  surname: Kucharski
  fullname: Kucharski, Jacek
  organization: Institute of Applied Computer Science, Lodz University of Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOTj93sHkvxCwp60HPIZidla7tZky3ivzftCoKHQmAOeZ-Zl2dGJp3vkJBrBrcMQN1FgJwzChwoyEoVVJ2RKZNCUAF5OSFTqGT6LqS4ILMYNwAgizKfktfFfvDYWd9goLWJ2GTtzqwx64O3GGPbrTMXzA6_fPjInA-Zrzdoh8z0PZpgOovZzjeta60ZWt_FS3LuzDbi1e-ck_eH-7flE129PD4vFytqRSEGypmx0kqG1tS5ZVwKWTMojGNYCKMa5_JGlYZj6eqqULaqnbKHVynuBEMxJzfj3lT0c49x0Bu_D106qbksK8YkKJ5S5ZiywccY0GnbDseiQzDtVjPQB3969KeTP330p1VC-T-0D0lN-D4NiRGKKdytMfy1OkH9ALcwhnM
CitedBy_id crossref_primary_10_3390_en16207098
crossref_primary_10_1016_j_jmmm_2022_169521
crossref_primary_10_1155_2022_5095966
crossref_primary_10_1007_s00521_021_06223_z
Cites_doi 10.1109/CVPR.2018.00143
10.1109/CVPR.2015.7298932
10.1109/ICCV.2015.419
10.1109/TIP.2019.2916751
10.1007/978-3-319-46493-0_47
10.1007/978-3-642-21735-7_7
10.1109/ICIP.2017.8296650
10.1109/ICCV.2017.629
10.1016/j.patcog.2010.12.015
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-020-04976-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
CrossRef
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 1090
ExternalDocumentID 10_1007_s00521_020_04976_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-21ac4c41ecab5c12434b106af1e63a7dff5d78a2e8fb967c9bf7cf7cf972f31e3
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536068000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 23:04:44 EST 2025
Tue Nov 18 22:41:04 EST 2025
Sat Nov 29 02:59:16 EST 2025
Fri Feb 21 02:49:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Convolutional autoencoders
Supervised principal component analysis
Visual object editing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-21ac4c41ecab5c12434b106af1e63a7dff5d78a2e8fb967c9bf7cf7cf972f31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3527-7208
OpenAccessLink https://link.springer.com/10.1007/s00521-020-04976-7
PQID 2489114072
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2489114072
crossref_citationtrail_10_1007_s00521_020_04976_7
crossref_primary_10_1007_s00521_020_04976_7
springer_journals_10_1007_s00521_020_04976_7
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Mehri S, Kumar K, Gulrajani I, Kumar R, Jain S, Sotelo J, Courville AC, Bengio Y (2016) SampleRNN: an unconditional end-to-end neural audio generation model. arXiv:1612.07837
Paulus R, Xiong C, Socher R (2017) A deep reinforced model for abstractive summarization. arXiv:1705.04304
Brock A, Lim T, Ritchie JM, Weston N (2016) Neural photo editing with introspective adversarial networks. arXiv:1609.07093
BarshanEGhodsiAAzimifarZZolghadri JahromiMSupervised principal component analysis: visualization, classification and regression on subspaces and submanifoldsPattern Recognit20114471357137110.1016/j.patcog.2010.12.015
Bengio Y, Thibodeau-Laufer E, Yosinski J (2013) Deep generative stochastic networks trainable by backprop. arXiv:1306.1091
Sutskever I, Vinyals D, Le QV (2014) Sequence to sequence learning with neural networks. In: Proceedings of the 27th international conference on neural information processing systems, vol 2, NIPS’14, pp 3104–3112
He Z, Zuo W, Kan M, Shan S, Chen X (2020) Attgan: facial attribute editing by only changing what you want—Tensorflow implementation. https://github.com/LynnHo/AttGAN-Tensorflow
Brock A, Donahue J, Simonyan K (2018) Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096
Gorijala M, Dukkipati A (2017) Image generation and editing with variational info generative adversarial networks. arXiv:1701.04568
Pieters M, Wiering M (2018) Comparing generative adversarial network techniques for image creation and modification. arXiv:1803.09093
Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial neural networks and machine learning—ICANN 2011, Lecture Notes in Computer Science, vol 6791, pp 52–59
Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 3128–3137
Lample G, Zeghidour N, Usunier N, Bordes A, Denoyer L, Ranzato M (2017) Fader networks: manipulating images by sliding attributes. arXiv:1706.00409
Antipov G, Baccouche M, Dugelay J (2017) Face aging with conditional generative adversarial networks. arXiv:1702.01983
Baek K, Bang D, Shim H (2018) Editable generative adversarial networks: generating and editing faces simultaneously. arXiv:1807.07700
Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv:1605.05396
Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. arXiv:1609.03499
KingDEDlib-ml: a machine learning toolkitJ Mach Learn Res20091017551758
Sotelo J, Mehri S, Kumar K, Santos JF, Kastner K, Courville AC (2017) Char2wav: end-to-end speech synthesis
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784
LeCun Y, Cortes C (2010) MNIST handwritten digit database
Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas D (2017) Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. arXiv:1612.03242
Yang S, Luo P, Loy CC, Tang X (2015) From facial parts responses to face detection: a deep learning approach. In: IEEE international conference on computer vision (ICCV)
Goodfellow IJ (2017) NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160
He H, Yu PS, Wang C (2018) An introduction to image synthesis with generative adversarial nets. arXiv:1803.04469
Gregor K, Danihelka I, Graves A, Rezende D, Wierstra D (2015) Draw: a recurrent neural network for image generation. In: Proceedings of the 32nd international conference on machine learning, volume 37 of proceedings of machine learning research, pp 1462–1471
Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2017) AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. arXiv:1711.10485
Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434
Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd international conference on machine learning, volume 37 of proceedings of machine learning research, pp 2048–2057
van den Oord Aä, Kalchbrenner N, Kavukcuoglu K (2015) Pixel recurrent neural networks. arXiv:1601.06759
Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:1312.6114
Perarnau G, van de Weijer J, Raducanu B, Álvarez JM (2016) Invertible conditional gans for image editing. arXiv:1611.06355
Yan X, Yang J, Sohn K, Lee H (2016) Attribute2Image: conditional image generation from visual attributes. In: European conference on computer vision
Bodnar C (2018) Text to image synthesis using generative adversarial networks. arXiv:1805.00676
HeZZuoWKanMShanSChenXAttgan: facial attribute editing by only changing what you wantIEEE Trans Image Process2019281154645478399929110.1109/TIP.2019.2916751
4976_CR1
4976_CR30
4976_CR2
4976_CR31
4976_CR10
4976_CR32
4976_CR4
4976_CR11
4976_CR33
4976_CR5
4976_CR34
4976_CR6
4976_CR13
4976_CR35
4976_CR7
4976_CR14
4976_CR8
DE King (4976_CR15) 2009; 10
4976_CR9
4976_CR16
4976_CR17
4976_CR18
4976_CR19
Z He (4976_CR12) 2019; 28
4976_CR20
4976_CR21
4976_CR22
4976_CR23
4976_CR24
E Barshan (4976_CR3) 2011; 44
4976_CR25
4976_CR26
4976_CR27
4976_CR28
4976_CR29
References_xml – reference: Sotelo J, Mehri S, Kumar K, Santos JF, Kastner K, Courville AC (2017) Char2wav: end-to-end speech synthesis
– reference: Masci J, Meier U, Cireşan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: Artificial neural networks and machine learning—ICANN 2011, Lecture Notes in Computer Science, vol 6791, pp 52–59
– reference: Brock A, Lim T, Ritchie JM, Weston N (2016) Neural photo editing with introspective adversarial networks. arXiv:1609.07093
– reference: HeZZuoWKanMShanSChenXAttgan: facial attribute editing by only changing what you wantIEEE Trans Image Process2019281154645478399929110.1109/TIP.2019.2916751
– reference: Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas D (2017) Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. arXiv:1612.03242
– reference: BarshanEGhodsiAAzimifarZZolghadri JahromiMSupervised principal component analysis: visualization, classification and regression on subspaces and submanifoldsPattern Recognit20114471357137110.1016/j.patcog.2010.12.015
– reference: Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016) Generative adversarial text to image synthesis. arXiv:1605.05396
– reference: Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of the 32nd international conference on machine learning, volume 37 of proceedings of machine learning research, pp 2048–2057
– reference: Lample G, Zeghidour N, Usunier N, Bordes A, Denoyer L, Ranzato M (2017) Fader networks: manipulating images by sliding attributes. arXiv:1706.00409
– reference: Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 3128–3137
– reference: van den Oord Aä, Kalchbrenner N, Kavukcuoglu K (2015) Pixel recurrent neural networks. arXiv:1601.06759
– reference: He Z, Zuo W, Kan M, Shan S, Chen X (2020) Attgan: facial attribute editing by only changing what you want—Tensorflow implementation. https://github.com/LynnHo/AttGAN-Tensorflow
– reference: Goodfellow IJ (2017) NIPS 2016 tutorial: Generative adversarial networks. arXiv:1701.00160
– reference: Pieters M, Wiering M (2018) Comparing generative adversarial network techniques for image creation and modification. arXiv:1803.09093
– reference: Sutskever I, Vinyals D, Le QV (2014) Sequence to sequence learning with neural networks. In: Proceedings of the 27th international conference on neural information processing systems, vol 2, NIPS’14, pp 3104–3112
– reference: Xu T, Zhang P, Huang Q, Zhang H, Gan Z, Huang X, He X (2017) AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. arXiv:1711.10485
– reference: Baek K, Bang D, Shim H (2018) Editable generative adversarial networks: generating and editing faces simultaneously. arXiv:1807.07700
– reference: Bodnar C (2018) Text to image synthesis using generative adversarial networks. arXiv:1805.00676
– reference: Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: a generative model for raw audio. arXiv:1609.03499
– reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434
– reference: Yan X, Yang J, Sohn K, Lee H (2016) Attribute2Image: conditional image generation from visual attributes. In: European conference on computer vision
– reference: Bengio Y, Thibodeau-Laufer E, Yosinski J (2013) Deep generative stochastic networks trainable by backprop. arXiv:1306.1091
– reference: Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:1312.6114
– reference: Yang S, Luo P, Loy CC, Tang X (2015) From facial parts responses to face detection: a deep learning approach. In: IEEE international conference on computer vision (ICCV)
– reference: Gregor K, Danihelka I, Graves A, Rezende D, Wierstra D (2015) Draw: a recurrent neural network for image generation. In: Proceedings of the 32nd international conference on machine learning, volume 37 of proceedings of machine learning research, pp 1462–1471
– reference: Perarnau G, van de Weijer J, Raducanu B, Álvarez JM (2016) Invertible conditional gans for image editing. arXiv:1611.06355
– reference: Mehri S, Kumar K, Gulrajani I, Kumar R, Jain S, Sotelo J, Courville AC, Bengio Y (2016) SampleRNN: an unconditional end-to-end neural audio generation model. arXiv:1612.07837
– reference: Brock A, Donahue J, Simonyan K (2018) Large scale GAN training for high fidelity natural image synthesis. arXiv:1809.11096
– reference: Gorijala M, Dukkipati A (2017) Image generation and editing with variational info generative adversarial networks. arXiv:1701.04568
– reference: KingDEDlib-ml: a machine learning toolkitJ Mach Learn Res20091017551758
– reference: LeCun Y, Cortes C (2010) MNIST handwritten digit database
– reference: Antipov G, Baccouche M, Dugelay J (2017) Face aging with conditional generative adversarial networks. arXiv:1702.01983
– reference: He H, Yu PS, Wang C (2018) An introduction to image synthesis with generative adversarial nets. arXiv:1803.04469
– reference: Paulus R, Xiong C, Socher R (2017) A deep reinforced model for abstractive summarization. arXiv:1705.04304
– reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784
– ident: 4976_CR16
– ident: 4976_CR32
  doi: 10.1109/CVPR.2018.00143
– ident: 4976_CR14
  doi: 10.1109/CVPR.2015.7298932
– ident: 4976_CR10
– ident: 4976_CR34
  doi: 10.1109/ICCV.2015.419
– ident: 4976_CR13
  doi: 10.1109/TIP.2019.2916751
– ident: 4976_CR6
– ident: 4976_CR18
– ident: 4976_CR31
– ident: 4976_CR33
  doi: 10.1007/978-3-319-46493-0_47
– ident: 4976_CR2
– ident: 4976_CR4
– ident: 4976_CR9
– ident: 4976_CR19
  doi: 10.1007/978-3-642-21735-7_7
– ident: 4976_CR26
– ident: 4976_CR28
– ident: 4976_CR22
– ident: 4976_CR24
– volume: 28
  start-page: 5464
  issue: 11
  year: 2019
  ident: 4976_CR12
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2916751
– ident: 4976_CR20
– volume: 10
  start-page: 1755
  year: 2009
  ident: 4976_CR15
  publication-title: J Mach Learn Res
– ident: 4976_CR17
– ident: 4976_CR1
  doi: 10.1109/ICIP.2017.8296650
– ident: 4976_CR7
– ident: 4976_CR11
– ident: 4976_CR30
– ident: 4976_CR5
– ident: 4976_CR8
– ident: 4976_CR29
– ident: 4976_CR27
– ident: 4976_CR35
  doi: 10.1109/ICCV.2017.629
– ident: 4976_CR25
– volume: 44
  start-page: 1357
  issue: 7
  year: 2011
  ident: 4976_CR3
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.12.015
– ident: 4976_CR23
– ident: 4976_CR21
SSID ssj0004685
Score 2.2538068
Snippet The presented paper introduces a novel method for enabling appearance modifications for complex image objects. Qualitative visual object properties, quantified...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1079
SubjectTerms Algorithms
Artificial Intelligence
Aspect ratio
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Handwriting
Image processing
Image Processing and Computer Vision
Image reconstruction
Original Article
Principal components analysis
Probability and Statistics in Computer Science
Representations
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aPXixrlitkoM3DTRLJ8mxiMWDlOJSehsyWaBg26Gd-vtNMjN1QQU9TyYzvP0l730PgEvpMimY1YhYaRGzWRcJ6hnCuTUEBwjziM4_uueDgRiP5bBqClvW1e71lWS01Otmt3CC6VNfEsoRvRNFfBNseXcnwsCGh8fRh27IOIjT5y2hpofRqlXm-z0-u6P3GPPLtWj0Nv3m__5zD-xW0SXsleKwDzbs7AA068kNsFLkQzDsrYp5gLA0doGCIzNwMvWWBeZl34D_HnR12Rb0cS2cZ-HABqo896oRJAVO5yaUGZUnfkfguX_7dHOHqtkKSNOEFohgpZlm2GqVdbV38pRlPjtUDtuEKm6c6xouFLHCMzPhWmYuABhpJzlxFFt6DBqz-cyeAEgTI5MwTZZjw5RTkmqhHXNUetOpnWkBXJM41RXweJh_8ZKuIZMjyVJPsjSSLOUtcLV-Jy9hN35d3a45l1YquEwJE96QB_y3FriuOfX--OfdTv-2_AzskE5kOOrgNmgUi5U9B9v6tZgsFxdRNN8A-wzeNw
  priority: 102
  providerName: Springer Nature
Title Autoencoder-based image processing framework for object appearance modifications
URI https://link.springer.com/article/10.1007/s00521-020-04976-7
https://www.proquest.com/docview/2489114072
Volume 33
WOSCitedRecordID wos000536068000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0B5cCFHVGWygduYEFiN45PCBCIA6qqsghxiRIvEhJtQhe-H4_rtIAEFy45ZLGsvFns8cwbgCNpC5lyo2hspKHcFG2aMgeIEEbHEVKYe3b-pzvR6aTPz7IbAm6jkFZZ20RvqHWpMEZ-GvPU6SXSeZ1X7xS7RuHpamihsQgNZEnA1g3d9suXukjfktPtYDC7h7NQNONL5zAe6u7GmNzoXDIV3x3TfLX544DU-52btf_OeB1Ww4qTXExFZAMWzGAT1upuDiQo9xZ0LybjEmkttRlSdG6avPadtSHVtJbAzY7YOpWLuLUuKQsM4pC8qpy6oPSQfqkx9WgaBdyGx5vrh6tbGvotUMUSNqZxlCuueGRUXrSVc_yMF27HmNvIJCwX2tq2Fmkem9QBnAglC4ukRspKEVsWGbYDS4NyYHaBsETLBDvMikjz3OaSqVRZbpl05lRZ3YSo_tmZCmTk2BPjLZvRKHuAMgdQ5gHKRBOOZ99UUyqOP98-qFHJglqOsjkkTTipcZ0__n20vb9H24eV-MyLEz2LDmBpPJyYQ1hWH-PX0bAFjcvrTrfX8sLprr37p08w3-r9
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gmOhF8EFcQeyDnrTjTnfv9PTBGCIQCOtmD2iIl3GmHwmJ7Iy7i4Y_xW-kqmeGVRK4ceA6j066-6tHV1d9BfDWhNJkylsuvPFc-XLAM4kborV3IiEK88jO_32oR6Ps-NiMl-Ciq4WhtMpOJ0ZF7SpLMfKPQmUol0Tn9bn-zalrFN2udi00Glgc-vO_eGSbfTrYwf19J8Te7tGXfd52FeBWpnLORVJYZVXibVEOLJo3qUo8FxUh8akstAth4HRWCJ_hNFJtTRmIuscGo0WQiZc47gNYUUr0SYrGgx__1GHGFqB4YqJsIiXbIp1YqkfxV3wqKJkSXQCu_zeEC-_22oVstHN7q_dthdbgSetRs-1GBJ7Ckp88g9WuWwVrlddzGG-fzSui7XR-ysl4O3ZyitqU1U2tBK4GC12qGkNfnlUlBalYUdc4K5IOdlo5Sq1qopwv4NudzGsdlifVxL8EJlNnUuqgqxOnilAYaTMbVJAGzYUNrgdJt7m5bcnWqefHr_yKJjoCIkdA5BEQue7B-6t_6oZq5NavNzsU5K3ameULCPTgQ4ejxeubR3t1-2hv4NH-0ddhPjwYHW7AY9GPUOb9ZBOW59Mz_xoe2j_zk9l0KwoEg593ja9LEeFIXA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1Dz4pmG2yZrmcahDcYyBOvZW2lxg4Nqydf5-k162KSqIz03Tcu4nOec7AJdcR9ynSmBXcYWpitrYJ4YhjCnpOhbCPEfnH_ZYv--PRnyw0sWfV7tXV5JFT4NFaYqzVip1a9H4Zk8zTRrs2tJE41AxW4cNagvpbb7-PFzpjMyHcpocxtb3UFK2zXy_x2fXtIw3v1yR5p6nW___P-_CThl1ok4hJnuwpuJ9qFcTHVCp4Acw6MyzxEJbSjXF1sFJNJ4Yi4PSop_AfBvpqpwLmXgXJZE9yEFhmhqVsRKEJom05UfFSeAhvHbvX24fcDlzAQvikQy7TiiooI4SYdQWxvkTGpmsMdSO8kjIpNZtyfzQVb5hsscEj7QFNhKaM1cTR5EjqMVJrI4BEU9yz06ZZY6koQ45Eb7QVBNuTKrQsgFORe5AlIDkdi7GW7CAUs5JFhiSBTnJAtaAq8U7aQHH8evqZsXFoFTNWeBS3xh4iwvXgOuKa8vHP-928rflF7A1uOsGvcf-0ylsuzc57_GN04RaNp2rM9gU79l4Nj3PJfYD0gDp_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+image+processing+framework+for+object+appearance+modifications&rft.jtitle=Neural+computing+%26+applications&rft.au=%C5%9Alot%2C+Krzysztof&rft.au=Kapusta%2C+Pawe%C5%82&rft.au=Kucharski%2C+Jacek&rft.date=2021-02-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=4&rft.spage=1079&rft.epage=1090&rft_id=info:doi/10.1007%2Fs00521-020-04976-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_04976_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon