Enhancing crop recommendation systems with explainable artificial intelligence: a study on agricultural decision-making

Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical crop performance, and prevailing weather patterns, to provide persona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 36; H. 11; S. 5695 - 5714
Hauptverfasser: Shams, Mahmoud Y., Gamel, Samah A., Talaat, Fatma M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.04.2024
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical crop performance, and prevailing weather patterns, to provide personalized recommendations. In response to the growing demand for transparency and interpretability in agricultural decision-making, this study introduces XAI-CROP an innovative algorithm that harnesses eXplainable artificial intelligence (XAI) principles. The fundamental objective of XAI-CROP is to empower farmers with comprehensible insights into the recommendation process, surpassing the opaque nature of conventional machine learning models. The study rigorously compares XAI-CROP with prominent machine learning models, including Gradient Boosting (GB), Decision Tree (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), and Multimodal Naïve Bayes (MNB). Performance evaluation employs three essential metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2). The empirical results unequivocally establish the superior performance of XAI-CROP. It achieves an impressively low MSE of 0.9412, indicating highly accurate crop yield predictions. Moreover, with an MAE of 0.9874, XAI-CROP consistently maintains errors below the critical threshold of 1, reinforcing its reliability. The robust R 2 value of 0.94152 underscores XAI-CROP's ability to explain 94.15% of the data's variability, highlighting its interpretability and explanatory power.
AbstractList Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical crop performance, and prevailing weather patterns, to provide personalized recommendations. In response to the growing demand for transparency and interpretability in agricultural decision-making, this study introduces XAI-CROP an innovative algorithm that harnesses eXplainable artificial intelligence (XAI) principles. The fundamental objective of XAI-CROP is to empower farmers with comprehensible insights into the recommendation process, surpassing the opaque nature of conventional machine learning models. The study rigorously compares XAI-CROP with prominent machine learning models, including Gradient Boosting (GB), Decision Tree (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), and Multimodal Naïve Bayes (MNB). Performance evaluation employs three essential metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2). The empirical results unequivocally establish the superior performance of XAI-CROP. It achieves an impressively low MSE of 0.9412, indicating highly accurate crop yield predictions. Moreover, with an MAE of 0.9874, XAI-CROP consistently maintains errors below the critical threshold of 1, reinforcing its reliability. The robust R 2 value of 0.94152 underscores XAI-CROP's ability to explain 94.15% of the data's variability, highlighting its interpretability and explanatory power.
Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These systems leverage a wealth of data, including soil characteristics, historical crop performance, and prevailing weather patterns, to provide personalized recommendations. In response to the growing demand for transparency and interpretability in agricultural decision-making, this study introduces XAI-CROP an innovative algorithm that harnesses eXplainable artificial intelligence (XAI) principles. The fundamental objective of XAI-CROP is to empower farmers with comprehensible insights into the recommendation process, surpassing the opaque nature of conventional machine learning models. The study rigorously compares XAI-CROP with prominent machine learning models, including Gradient Boosting (GB), Decision Tree (DT), Random Forest (RF), Gaussian Naïve Bayes (GNB), and Multimodal Naïve Bayes (MNB). Performance evaluation employs three essential metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2). The empirical results unequivocally establish the superior performance of XAI-CROP. It achieves an impressively low MSE of 0.9412, indicating highly accurate crop yield predictions. Moreover, with an MAE of 0.9874, XAI-CROP consistently maintains errors below the critical threshold of 1, reinforcing its reliability. The robust R2 value of 0.94152 underscores XAI-CROP's ability to explain 94.15% of the data's variability, highlighting its interpretability and explanatory power.
Author Gamel, Samah A.
Shams, Mahmoud Y.
Talaat, Fatma M.
Author_xml – sequence: 1
  givenname: Mahmoud Y.
  surname: Shams
  fullname: Shams, Mahmoud Y.
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University
– sequence: 2
  givenname: Samah A.
  surname: Gamel
  fullname: Gamel, Samah A.
  organization: Faculty of Engineering, Horus University
– sequence: 3
  givenname: Fatma M.
  orcidid: 0000-0001-6116-2191
  surname: Talaat
  fullname: Talaat, Fatma M.
  email: fatma.nada@ai.kfs.edu.eg
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University, Faculty of Computer Science and Engineering, New Mansoura University, Nile Higher Institute for Engineering and Technology
BookMark eNp9kE1P3DAQhq2KSl2gf6AnSz0HxnY-nN4qxJeExIW7NXHGiyFxFtsR3X9fl62ExIHTHOZ95h09x-woLIEY-yHgTAB05wmgkaICqSroVS8q-YVtRK1UpaDRR2wDfV3Wba2-seOUngCgbnWzYa-X4RGD9WHLbVx2PJJd5pnCiNkvgad9yjQn_urzI6c_uwl9wGEijjF7563HifuQaZr8loKlXxx5yuu45wXGbfR2nfIaS2ok61M5Wc34XNpO2VeHU6Lv_-cJe7i6fLi4qe7ur28vft9VVrUqVxIcdaKz2umGHLRj3yGgAC3GGghRObJUy2GAoRudHtrRUt9Zi1o6RUqdsJ-Hs7u4vKyUsnla1hhKo5F902kQsq5LSh5SRUFKkZzZRT9j3BsB5p9fc_Bril_z5tfIAukPkPX5zVqO6KfPUXVAU-kJW4rvX31C_QVL0ZVa
CitedBy_id crossref_primary_10_1002_cpe_70031
crossref_primary_10_1051_e3sconf_202562704003
crossref_primary_10_3390_plants14182841
crossref_primary_10_1016_j_atech_2025_101348
crossref_primary_10_1007_s00521_025_11038_3
crossref_primary_10_1016_j_atech_2025_101247
crossref_primary_10_1007_s44274_025_00327_2
crossref_primary_10_1088_2515_7620_adb9c0
crossref_primary_10_1109_ACCESS_2025_3571340
crossref_primary_10_1007_s41207_025_00876_1
crossref_primary_10_3390_jtaer20030194
crossref_primary_10_1016_j_jii_2025_100850
crossref_primary_10_1016_j_procs_2025_04_454
crossref_primary_10_3390_agronomy14102267
crossref_primary_10_3390_electronics13224362
crossref_primary_10_1007_s42979_025_04092_0
crossref_primary_10_1038_s41598_025_88676_z
crossref_primary_10_1080_22797254_2024_2422330
crossref_primary_10_3390_s24196313
crossref_primary_10_1007_s00521_024_10208_z
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_1038_s41598_025_07003_8
crossref_primary_10_1007_s10068_025_01848_5
crossref_primary_10_3390_agriculture14081256
crossref_primary_10_1007_s00704_025_05505_z
crossref_primary_10_1109_ACCESS_2025_3546681
crossref_primary_10_1007_s10489_025_06790_x
crossref_primary_10_1016_j_atech_2025_101263
crossref_primary_10_3390_s25123583
crossref_primary_10_1007_s42452_024_06212_6
crossref_primary_10_1109_TCE_2025_3569736
crossref_primary_10_1007_s11760_025_04545_2
crossref_primary_10_1016_j_jjimei_2025_100328
crossref_primary_10_3390_math13172726
crossref_primary_10_1016_j_dajour_2025_100628
crossref_primary_10_3390_su17167382
crossref_primary_10_1038_s41598_025_14306_3
crossref_primary_10_3390_agriculture14060910
crossref_primary_10_54392_irjmt2525
crossref_primary_10_1109_ACCESS_2024_3451557
crossref_primary_10_1109_TAI_2024_3508654
crossref_primary_10_1007_s40745_024_00534_3
Cites_doi 10.3390/su15097114
10.3389/fnbot.2013.00021
10.21608/njccs.2022.280047
10.1016/j.rvsc.2010.08.006
10.1007/s00521-023-08619-5
10.1038/s41564-021-00880-5
10.32604/csse.2023.034324
10.1080/23302674.2023.2249808
10.1007/s11042-023-15803-1
10.1016/B978-0-12-822373-4.00018-5
10.1109/ICCUBEA.2018.8697349
10.1007/s12351-023-00752-2
10.3390/a16060308
10.1109/ICESC57686.2023.10192937
10.1088/1748-9326/aa518a
10.1016/j.asoc.2018.10.036
10.1109/RoboMech.2016.7813171
10.1177/0165551516677946
10.1016/j.eswa.2023.120135
10.1016/j.eja.2023.126949
10.1007/s12652-023-04659-w
10.1016/B978-0-12-816483-9.00001-3
10.1016/j.ins.2015.09.037
10.1214/aos/1013203451
10.3390/su15010757
10.1007/s11042-022-13000-0
10.1016/j.compag.2020.105709
10.3390/agronomy10071046
10.1007/s00521-023-08428-w
10.1073/pnas.0906865106
10.1145/3510858.3511382
10.1007/s11042-022-12223-5
10.1007/s11042-023-16737-4
10.1016/j.agrformet.2012.09.011
10.14569/IJACSA.2023.0140442
10.1109/ICSCDS56580.2023.10104734
10.1016/j.ecolind.2019.01.059
10.1007/s00500-022-07420-1
10.1609/aaai.v31i1.11172
10.1007/s00521-022-08007-59.FaivdullahL,AzaharF,HtikeZZ,Naing
10.1007/s00521-023-08678-8
10.1080/08839514.2021.1976091
10.1016/j.agsy.2020.103016
10.1007/s10878-023-01002-z
10.1007/978-3-031-22456-0_4
10.1115/1.4054800
10.1007/978-3-540-30549-1_43
10.1007/s00521-023-08372-9
10.1109/JSTARS.2020.3019046
10.32604/cmc.2022.026547
10.1016/j.aiia.2022.11.003
10.1007/s00521-023-08809-1
10.3389/fpls.2019.00621
10.32604/cmc.2023.039368
10.1088/1748-9326/aa7f33
10.1016/B978-0-444-52512-3.00005-X
10.12944/CARJ.11.1.12
10.3390/en14123396
10.1093/ajae/aas047
10.3390/bdcc7030144
10.21608/ejai.2023.205554.1008
10.1002/fld.5078
10.3390/bioengineering10010018
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-09391-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5714
ExternalDocumentID 10_1007_s00521_023_09391_2
GrantInformation_xml – fundername: Kafr El Shiekh University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-20fe717c8f85ef06d97a0a1081d40eaa3fece42bb0b7df8b6dce97cca82f3e33
IEDL.DBID RSV
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001140236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 03:14:48 EST 2025
Tue Nov 18 22:38:18 EST 2025
Sat Nov 29 04:30:41 EST 2025
Fri Feb 21 02:39:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Agriculture
Crop recommendation systems
eXplainable artificial intelligence
Decision support system
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-20fe717c8f85ef06d97a0a1081d40eaa3fece42bb0b7df8b6dce97cca82f3e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6116-2191
OpenAccessLink https://link.springer.com/10.1007/s00521-023-09391-2
PQID 2957801244
PQPubID 2043988
PageCount 20
ParticipantIDs proquest_journals_2957801244
crossref_primary_10_1007_s00521_023_09391_2
crossref_citationtrail_10_1007_s00521_023_09391_2
springer_journals_10_1007_s00521_023_09391_2
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References RobertsMJBraunNOSinclairTRLobellDBSchlenkerWComparing and combining process-based crop models and statistical models with some implications for climate changeEnviron Res Lett20171292017ERL....12i5010R10.1088/1748-9326/aa7f33
FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat200129511891232187332810.1214/aos/1013203451
Alhussan AA, Talaat FM, El-kenawy ES, Abdelhamid AA, Ibrahim A, Khafaga DS, Alnaggar M (2023) Facial expression recognition model depending on optimized support vector machine. Comput Mater Continua. 76(1).
Talaat FM (2022) Effective deep Q-networks (EDQN) strategy for resource allocation based on optimized reinforcement learning algorithm. Multimed Tools Appl 81(17). https://doi.org/10.1007/s11042-022-13000-0
FenzSNeubauerTHeurixJFriedelJKWohlmuthM-LAI- and data-driven pre-crop values and crop rotation matricesEur J Agron202315010.1016/j.eja.2023.126949
Doshi Z, Nadkarni S, Agrawal R, Shah N (2018) AgroConsultant: Intelligent crop recommendation system using machine learning algorithms. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697349.
ShamsMYElsheweyAMEl-kenawyE-SMIbrahimATalaatFMTarekZWater quality prediction using machine learning models based on grid search methodMultimed Tools Appl202310.1007/s11042-023-16737-436185324
Talaat Fatma M, Alshathri Samah, Nasr Aida A (2022) A new reliable system for managing virtualcloud network. Comput Mater Continua 73(3):5863–5885. https://doi.org/10.32604/cmc.2022.026547
GamelSAHassanEEl-RashidyNExploring the effects of pandemics on transportation through correlations and deep learning techniquesMultimed Tools Appl202310.1007/s11042-023-15803-13736273210244085
Pretorius A, Bierman S, Steel SJ (2016) A meta-analysis of research in random forests for classification. In: 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016, pp. 1–6.
Talaat FM (2023) Real-time facial emotion recognition system among children with autism based on deep learning and IoT. Neural Comput Appl 35(3), https://doi.org/10.1007/s00521-023-08372-9
You J, Li X, Low M, Lobell D, Ermon S (2017) Deep gaussian process for crop yield prediction based on remote sensing data. In: Thirty-First AAAI conference on artificial intelligence.
AbbasFAfzaalHFarooqueAATangSCrop yield prediction through proximal sensing and machine learning algorithmsAgronomy2020107710.3390/agronomy10071046
Talaat FM, Gamel SA (2023) A2M-LEUK: attention-augmented algorithm for blood cancer detection in children, June 2023, Neural Comput Appl. https://doi.org/10.1007/s00521-023-08678-8
RosenzweigCThe agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studiesAgric For Meteorol20131701661822013AgFM..170..166R10.1016/j.agrformet.2012.09.011
XuSBayesian Naïve Bayes classifiers to text classificationJ Inf Sci2018441485910.1177/0165551516677946
TalaatFMCrop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changesNeural Comput Applic202310.1007/s00521-023-08619-5
El-RashidyNEbrahimNel GhamryATalaatFMUtilizing fog computing and explainable deep learning techniques for gestational diabetes predictionNeural Comput Applic202210.1007/s00521-022-08007-59.FaivdullahL,AzaharF,HtikeZZ,Naing
ArifMSMukheimerAAsifDEnhancing the early detection of chronic kidney disease: a robust machine learning modelBig Data Cognit Comput202373310.3390/bdcc7030144
Elshewey A, Shams M, Tarek Z, Megahed M, El-kenawy E-S, El-dosuky M (2023) Weight prediction using the hybrid stacked-LSTM food selection model. CSSE, 46(1): 765–781, 2023, https://doi.org/10.32604/csse.2023.034324.
RyoMExplainable artificial intelligence and interpretable machine learning for agricultural data analysisArtif Intell Agricult2022625726510.1016/j.aiia.2022.11.003
Natekin A, Knoll A (2022) Gradient boosting machines, a tutorial. Front Neurorobotics 7, 2013, Accessed: Sep. 27, 2022. Available: https://doi.org/10.3389/fnbot.2013.00021
SchlenkerWRobertsMJNonlinear temperature effects indicate severe damages to US crop yields under climate changeProc Natl Acad Sci20091063715594155982009PNAS..10615594S1:CAS:528:DC%2BD1MXhtFyjsLvP10.1073/pnas.0906865106197174322747166
NawazYArifMSAbodayehKA third-order two-stage numerical scheme for fractional stokes problems: a comparative computational studyJ Comput Nonlinear Dyn20221710.1115/1.4054800
JiangLWangSLiCZhangLStructure extended multinomial naive BayesInf Sci201632934635610.1016/j.ins.2015.09.037
de OliveiraACMariniNFariasDRClimate change: New breeding pressures and goalsEncyclopedia Agricult Food Syst2014201428429310.1016/B978-0-444-52512-3.00005-X
TaleizadehAAAmjadianAHashemi-PetroodiSEMoonISupply chain coordination based on mean-variance risk optimisation: pricing, warranty, and full-refund decisionsInt J Syst Sci: Oper Logist2023101224980810.1080/23302674.2023.2249808
Mittal N, Bhanja A (2023) Implementation and identification of crop based on soil texture using AI. In: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE. 1467–1471.
XuXDesign of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, ChinaEcol Ind201910194395310.1016/j.ecolind.2019.01.059
SiamAIGamelSATalaatFMAutomatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniquesNeural Comput Applic202310.1007/s00521-023-08428-w
KhaterHAGamelSAEarly diagnosis of respiratory system diseases (RSD) using deep convolutional neural networksJ Ambient Intell Human Comput202314122731228310.1007/s12652-023-04659-w
Sun J, Lai Z, Di L, Sun Z, Tao J, Shen Y (2020) Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J Selected Top Appl Earth Obs
Shams MY, Tarek Z, Elshewey AM, Hany M, Darwish A, Hassanien AE (2023) A machine learning-based model for predicting temperature under the effects of climate change. In: The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations, A. E. Hassanien and A. Darwish, Eds., in Studies in Big Data. Cham: Springer Nature Switzerland, 2023: 61–81. https://doi.org/10.1007/978-3-031-22456-0_4.
RaoHFeature selection based on artificial bee colony and gradient boosting decision treeAppl Soft Comput20197463464210.1016/j.asoc.2018.10.036
Van KlompenburgTKassahunACatalCCrop yield prediction using machine learning: A systematic literature reviewComput Electron Agric202017710.1016/j.compag.2020.105709
Talaat FM (2022) Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system. Multimed Tools Appl
PaudelDMachine learning for large-scale crop yield forecastingAgric Syst202118710.1016/j.agsy.2020.103016
TaleizadehAAVarziAMAmjadianANoori-daryanMKonstantarasIHow cash-back strategy affect sale rate under refund and customers’ creditOper Res Int J20232311910.1007/s12351-023-00752-2
Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In: Icml, 1999, 99, pp. 124–133.
TarekZSoil erosion status prediction using a novel random forest model optimized by random search methodSustainability2023159910.3390/su15097114
Khaki S, Wang L (2022) Crop Yield Prediction Using Deep Neural Networks. Front Plant Sci 10, 2019, Accessed: Sep. 27, 2022. Available: https://doi.org/10.3389/fpls.2019.00621
https://www.kaggle.com/datasets/ananysharma/crop-yield.
Ke G, et al. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural Information Processing Systems, 2017, 30. Accessed: Sep. 27, 2022. Available: https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
Sun C, Li X, Guo R (2021) Research on electrical fire risk assessment technology of cultural building based on random forest algorithm. In: 2021 International Conference on Aviation Safety and Information Technology, New York, NY, USA, Dec. 2021, pp. 769–773. https://doi.org/10.1145/3510858.3511382.
TalaatFMZainEldinHAn improved fire detection approach based on YOLO-v8 for smart citiesNeural Comput Applic202310.1007/s00521-023-08809-1
Alnaggar M, Handosa M, Medhat T, Z Rashad M (2023) Thyroid Disease multi-class classification based on optimized gradient boosting model. Egypt J Artif Intell. 2(1):1–4.
El-RashidyNElSayedNEEl-GhamryATalaatFMPrediction of gestational diabetes based on explainable deep learning and fog computingSoft Comput20222621114351145010.1007/s00500-022-07420-1
HanaaSFatmaBTDetection and classification using deep learning and sine-cosine fitnessgrey wolf optimizationBioengineering20221011810.3390/bioengineering10010018
BaliNSinglaADeep learning based wheat crop yield prediction model in punjab region of north indiaAppl Artif Intell202135151304132810.1080/08839514.2021.1976091
Feng J, Yu Y, Zhou Z-H (2018) Multi-Layered Gradient Boosting Decision Trees. In: Advances in Neural Information Processing Systems, 2018, 31. Accessed: Sep. 27, 2022. Available: https://proceedings.neurips.cc/paper/2018/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
GeenenPLvan der GaagLCLoeffenWLAElbersARWConstructing naive Bayesian classifiers for veterinary medicine: A case study in the clinical diagnosis of classical swine feverRes Vet Sci201191164701:STN:280:DC%2BC3MnkvFajug%3D%3D10.1016/j.rvsc.2010.08.00620817220
Hassan E, El-Rashidy N, Talaat FM (2022) Review: Mask R-CNN Models. May 2022, https://doi.org/10.21608/njccs.2022.280047.
RobertsMJSchlenkerWEyerJAgronomic weather measures in econometric models of crop yield with implications for climate changeAm J Agr Econ201395223624310.1093/ajae/aas047
Williams TO, et al. (2015) Climate smart agriculture in the African context. Unlocking Africa’s Agricultural Potentials for Transformation to Scale , FAO and UNEP , Abdou Diouf International Conference, Dakar, Senegal,
D Asif (9391_CR20) 2023; 16
9391_CR61
9391_CR65
9391_CR63
9391_CR62
F Abbas (9391_CR33) 2020; 10
9391_CR69
9391_CR24
AA Taleizadeh (9391_CR54) 2023; 23
MJ Roberts (9391_CR14) 2017; 12
9391_CR17
9391_CR16
AC de Oliveira (9391_CR25) 2014; 2014
M Ryo (9391_CR50) 2022; 6
C Rosenzweig (9391_CR10) 2013; 170
S Xu (9391_CR44) 2018; 44
A Gharaei (9391_CR53) 2023; 45
9391_CR71
9391_CR70
9391_CR32
9391_CR30
MS Arif (9391_CR19) 2023; 7
9391_CR36
9391_CR28
9391_CR27
T Van Klompenburg (9391_CR4) 2020; 177
9391_CR26
H Rao (9391_CR38) 2019; 74
Y Nawaz (9391_CR22) 2022; 17
S Hanaa (9391_CR60) 2022; 10
AI Siam (9391_CR64) 2023
9391_CR1
9391_CR7
SA Gamel (9391_CR66) 2023
9391_CR5
N El-Rashidy (9391_CR58) 2022; 26
9391_CR9
DB Lobell (9391_CR12) 2017; 12
L Jiang (9391_CR46) 2016; 329
X Xu (9391_CR2) 2019; 101
9391_CR42
9391_CR41
MY Shams (9391_CR49) 2023
9391_CR40
9391_CR47
S Fenz (9391_CR18) 2023; 150
JH Friedman (9391_CR35) 2001; 29
9391_CR45
9391_CR39
9391_CR37
FM Talaat (9391_CR34) 2023
W Schlenker (9391_CR13) 2009; 106
PL Geenen (9391_CR43) 2011; 91
Y Nawaz (9391_CR23) 2022; 94
FM Talaat (9391_CR67) 2023
D Paudel (9391_CR29) 2021; 187
M Alnaggar (9391_CR68) 2023; 1
9391_CR51
9391_CR57
N Bali (9391_CR3) 2021; 35
Y Nawaz (9391_CR21) 2021; 14
9391_CR56
9391_CR55
HS Yoon (9391_CR31) 2021; 6
AM Elshewey (9391_CR8) 2023; 15
N El-Rashidy (9391_CR59) 2022
MJ Roberts (9391_CR15) 2013; 95
9391_CR48
HA Khater (9391_CR11) 2023; 14
AA Taleizadeh (9391_CR52) 2023; 10
Z Tarek (9391_CR6) 2023; 15
References_xml – reference: Talaat FM (2023) Real-time facial emotion recognition system among children with autism based on deep learning and IoT. Neural Comput Appl 35(3), https://doi.org/10.1007/s00521-023-08372-9
– reference: Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In: Icml, 1999, 99, pp. 124–133.
– reference: RyoMExplainable artificial intelligence and interpretable machine learning for agricultural data analysisArtif Intell Agricult2022625726510.1016/j.aiia.2022.11.003
– reference: AbbasFAfzaalHFarooqueAATangSCrop yield prediction through proximal sensing and machine learning algorithmsAgronomy2020107710.3390/agronomy10071046
– reference: SiamAIGamelSATalaatFMAutomatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniquesNeural Comput Applic202310.1007/s00521-023-08428-w
– reference: You J, Li X, Low M, Lobell D, Ermon S (2017) Deep gaussian process for crop yield prediction based on remote sensing data. In: Thirty-First AAAI conference on artificial intelligence.
– reference: Van KlompenburgTKassahunACatalCCrop yield prediction using machine learning: A systematic literature reviewComput Electron Agric202017710.1016/j.compag.2020.105709
– reference: NawazYArifMSShatanawiWNazeerAAn explicit fourth-order compact numerical scheme for heat transfer of boundary layer flowEnergies20211412121:CAS:528:DC%2BB3MXhsl2hs7bP10.3390/en14123396
– reference: ShamsMYElsheweyAMEl-kenawyE-SMIbrahimATalaatFMTarekZWater quality prediction using machine learning models based on grid search methodMultimed Tools Appl202310.1007/s11042-023-16737-436185324
– reference: Sun J, Lai Z, Di L, Sun Z, Tao J, Shen Y (2020) Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J Selected Top Appl Earth Obs
– reference: Ke G, et al. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural Information Processing Systems, 2017, 30. Accessed: Sep. 27, 2022. Available: https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
– reference: NawazYArifMSAbodayehKAn explicit-implicit numerical scheme for time fractional boundary layer flowsInt J Numer Meth Fluids2022947920940444813210.1002/fld.5078
– reference: JiangLWangSLiCZhangLStructure extended multinomial naive BayesInf Sci201632934635610.1016/j.ins.2015.09.037
– reference: GamelSAHassanEEl-RashidyNExploring the effects of pandemics on transportation through correlations and deep learning techniquesMultimed Tools Appl202310.1007/s11042-023-15803-13736273210244085
– reference: ElsheweyAMA novel WD-SARIMAX model for temperature forecasting using daily Delhi climate datasetSustainability2023151110.3390/su15010757
– reference: RobertsMJBraunNOSinclairTRLobellDBSchlenkerWComparing and combining process-based crop models and statistical models with some implications for climate changeEnviron Res Lett20171292017ERL....12i5010R10.1088/1748-9326/aa7f33
– reference: Kibriya AM, Frank E, Pfahringer B, Holmes G (2005) Multinomial naive bayes for text categorization revisited. In: AI 2004: Advances in Artificial Intelligence, Berlin, Heidelberg, 2005, pp. 488–499. https://doi.org/10.1007/978-3-540-30549-1_43.
– reference: TarekZSoil erosion status prediction using a novel random forest model optimized by random search methodSustainability2023159910.3390/su15097114
– reference: Talaat FM (2022) Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system. Multimed Tools Appl
– reference: ArifMSMukheimerAAsifDEnhancing the early detection of chronic kidney disease: a robust machine learning modelBig Data Cognit Comput202373310.3390/bdcc7030144
– reference: Talaat Fatma M, Alshathri Samah, Nasr Aida A (2022) A new reliable system for managing virtualcloud network. Comput Mater Continua 73(3):5863–5885. https://doi.org/10.32604/cmc.2022.026547
– reference: KhaterHAGamelSAEarly diagnosis of respiratory system diseases (RSD) using deep convolutional neural networksJ Ambient Intell Human Comput202314122731228310.1007/s12652-023-04659-w
– reference: LobellDBAssengSComparing estimates of climate change impacts from process-based and statistical crop modelsEnviron Res Lett20171212017ERL....12a5001L10.1088/1748-9326/aa518a
– reference: RobertsMJSchlenkerWEyerJAgronomic weather measures in econometric models of crop yield with implications for climate changeAm J Agr Econ201395223624310.1093/ajae/aas047
– reference: BaliNSinglaADeep learning based wheat crop yield prediction model in punjab region of north indiaAppl Artif Intell202135151304132810.1080/08839514.2021.1976091
– reference: PaudelDMachine learning for large-scale crop yield forecastingAgric Syst202118710.1016/j.agsy.2020.103016
– reference: TaleizadehAAAmjadianAHashemi-PetroodiSEMoonISupply chain coordination based on mean-variance risk optimisation: pricing, warranty, and full-refund decisionsInt J Syst Sci: Oper Logist2023101224980810.1080/23302674.2023.2249808
– reference: Porter JR, Xie L, Challinor AJ, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1(1): 485–533 (2014).
– reference: HanaaSFatmaBTDetection and classification using deep learning and sine-cosine fitnessgrey wolf optimizationBioengineering20221011810.3390/bioengineering10010018
– reference: TalaatFMCrop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changesNeural Comput Applic202310.1007/s00521-023-08619-5
– reference: Doshi Z, Nadkarni S, Agrawal R, Shah N (2018) AgroConsultant: Intelligent crop recommendation system using machine learning algorithms. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697349.
– reference: TalaatFMZainEldinHAn improved fire detection approach based on YOLO-v8 for smart citiesNeural Comput Applic202310.1007/s00521-023-08809-1
– reference: Williams TO, et al. (2015) Climate smart agriculture in the African context. Unlocking Africa’s Agricultural Potentials for Transformation to Scale , FAO and UNEP , Abdou Diouf International Conference, Dakar, Senegal, pp. 1–26, 2015.
– reference: AlnaggarMSiamAIHandosaMMedhatTRashadMZVideo-based real-time monitoring for heart rate and respiration rateExpert Syst Appl2023122510.1016/j.eswa.2023.120135
– reference: XuXDesign of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province, ChinaEcol Ind201910194395310.1016/j.ecolind.2019.01.059
– reference: AsifDBibiMArifMSMukheimerAEnhancing heart disease prediction through ensemble learning techniques with hyperparameter optimizationAlgorithms2023166610.3390/a16060308
– reference: GharaeiAAmjadianAShavandiAAmjadianAAn augmented Lagrangian approach with general constraints to solve nonlinear models of the large-scale reliable inventory systemsJ Comb Optim202345278456507410.1007/s10878-023-01002-z
– reference: McEldowney JF (2021) Climate change and the law. In: the impacts of climate change, Elsevier. 503–519.
– reference: TaleizadehAAVarziAMAmjadianANoori-daryanMKonstantarasIHow cash-back strategy affect sale rate under refund and customers’ creditOper Res Int J20232311910.1007/s12351-023-00752-2
– reference: de OliveiraACMariniNFariasDRClimate change: New breeding pressures and goalsEncyclopedia Agricult Food Syst2014201428429310.1016/B978-0-444-52512-3.00005-X
– reference: FenzSNeubauerTHeurixJFriedelJKWohlmuthM-LAI- and data-driven pre-crop values and crop rotation matricesEur J Agron202315010.1016/j.eja.2023.126949
– reference: Shams MY, Tarek Z, Elshewey AM, Hany M, Darwish A, Hassanien AE (2023) A machine learning-based model for predicting temperature under the effects of climate change. In: The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations, A. E. Hassanien and A. Darwish, Eds., in Studies in Big Data. Cham: Springer Nature Switzerland, 2023: 61–81. https://doi.org/10.1007/978-3-031-22456-0_4.
– reference: El-RashidyNElSayedNEEl-GhamryATalaatFMPrediction of gestational diabetes based on explainable deep learning and fog computingSoft Comput20222621114351145010.1007/s00500-022-07420-1
– reference: Pretorius A, Bierman S, Steel SJ (2016) A meta-analysis of research in random forests for classification. In: 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016, pp. 1–6.
– reference: Mittal N, Bhanja A (2023) Implementation and identification of crop based on soil texture using AI. In: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), IEEE. 1467–1471.
– reference: https://www.kaggle.com/datasets/ananysharma/crop-yield.
– reference: Alnaggar M, Handosa M, Medhat T, Z Rashad M (2023) Thyroid Disease multi-class classification based on optimized gradient boosting model. Egypt J Artif Intell. 2(1):1–4.
– reference: Elshewey A, Shams M, Tarek Z, Megahed M, El-kenawy E-S, El-dosuky M (2023) Weight prediction using the hybrid stacked-LSTM food selection model. CSSE, 46(1): 765–781, 2023, https://doi.org/10.32604/csse.2023.034324.
– reference: GeenenPLvan der GaagLCLoeffenWLAElbersARWConstructing naive Bayesian classifiers for veterinary medicine: A case study in the clinical diagnosis of classical swine feverRes Vet Sci201191164701:STN:280:DC%2BC3MnkvFajug%3D%3D10.1016/j.rvsc.2010.08.00620817220
– reference: Sun C, Li X, Guo R (2021) Research on electrical fire risk assessment technology of cultural building based on random forest algorithm. In: 2021 International Conference on Aviation Safety and Information Technology, New York, NY, USA, Dec. 2021, pp. 769–773. https://doi.org/10.1145/3510858.3511382.
– reference: Talaat FM (2022) Effective deep Q-networks (EDQN) strategy for resource allocation based on optimized reinforcement learning algorithm. Multimed Tools Appl 81(17). https://doi.org/10.1007/s11042-022-13000-0
– reference: SchlenkerWRobertsMJNonlinear temperature effects indicate severe damages to US crop yields under climate changeProc Natl Acad Sci20091063715594155982009PNAS..10615594S1:CAS:528:DC%2BD1MXhtFyjsLvP10.1073/pnas.0906865106197174322747166
– reference: RaoHFeature selection based on artificial bee colony and gradient boosting decision treeAppl Soft Comput20197463464210.1016/j.asoc.2018.10.036
– reference: Alhussan AA, Talaat FM, El-kenawy ES, Abdelhamid AA, Ibrahim A, Khafaga DS, Alnaggar M (2023) Facial expression recognition model depending on optimized support vector machine. Comput Mater Continua. 76(1).
– reference: Alnaggar M, Handosa M, Medhat T, Rashad MZ (2023) An IoT-based framework for detecting heart conditions using machine learning. Int J Adv Comput Sci Appl. 14(4).
– reference: Reddy PS, Amarnath B, Sankari M (2023) Study on machine learning and back propagation for crop recommendation system. In: 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), IEEE. 1533–1537.
– reference: Natekin A, Knoll A (2022) Gradient boosting machines, a tutorial. Front Neurorobotics 7, 2013, Accessed: Sep. 27, 2022. Available: https://doi.org/10.3389/fnbot.2013.00021
– reference: Alpaydin E (2020) Introduction to machine learning. MIT press.
– reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat200129511891232187332810.1214/aos/1013203451
– reference: Feng J, Yu Y, Zhou Z-H (2018) Multi-Layered Gradient Boosting Decision Trees. In: Advances in Neural Information Processing Systems, 2018, 31. Accessed: Sep. 27, 2022. Available: https://proceedings.neurips.cc/paper/2018/hash/39027dfad5138c9ca0c474d71db915c3-Abstract.html
– reference: Patel K, Patel HB (2023) Multi-criteria agriculture recommendation system using machine learning for crop and fertilizesrs prediction. Curr Agricult Res J 11(1), 2023.
– reference: NawazYArifMSAbodayehKA third-order two-stage numerical scheme for fractional stokes problems: a comparative computational studyJ Comput Nonlinear Dyn20221710.1115/1.4054800
– reference: XuSBayesian Naïve Bayes classifiers to text classificationJ Inf Sci2018441485910.1177/0165551516677946
– reference: Khaki S, Wang L (2022) Crop Yield Prediction Using Deep Neural Networks. Front Plant Sci 10, 2019, Accessed: Sep. 27, 2022. Available: https://doi.org/10.3389/fpls.2019.00621
– reference: Hassan E, El-Rashidy N, Talaat FM (2022) Review: Mask R-CNN Models. May 2022, https://doi.org/10.21608/njccs.2022.280047.
– reference: RosenzweigCThe agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studiesAgric For Meteorol20131701661822013AgFM..170..166R10.1016/j.agrformet.2012.09.011
– reference: El-RashidyNEbrahimNel GhamryATalaatFMUtilizing fog computing and explainable deep learning techniques for gestational diabetes predictionNeural Comput Applic202210.1007/s00521-022-08007-59.FaivdullahL,AzaharF,HtikeZZ,Naing
– reference: YoonHSAkkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in miceNat Microbiol20216551:CAS:528:DC%2BB3MXotVamsLc%3D10.1038/s41564-021-00880-5
– reference: Talaat FM, Gamel SA (2023) A2M-LEUK: attention-augmented algorithm for blood cancer detection in children, June 2023, Neural Comput Appl. https://doi.org/10.1007/s00521-023-08678-8
– reference: Bhadouria R, et al. (2019) Agriculture in the era of climate change: Consequences and effects. In Climate Change and Agricultural Ecosystems, Elsevier, 1–23.
– reference: Talaat FM (2023) Crop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changes, April 2023, Neural Comput Appl 35(2), https://doi.org/10.1007/s00521-023-08619-5
– volume: 15
  start-page: 9
  issue: 9
  year: 2023
  ident: 9391_CR6
  publication-title: Sustainability
  doi: 10.3390/su15097114
– ident: 9391_CR36
  doi: 10.3389/fnbot.2013.00021
– ident: 9391_CR63
  doi: 10.21608/njccs.2022.280047
– volume: 91
  start-page: 64
  issue: 1
  year: 2011
  ident: 9391_CR43
  publication-title: Res Vet Sci
  doi: 10.1016/j.rvsc.2010.08.006
– year: 2023
  ident: 9391_CR34
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-023-08619-5
– volume: 6
  start-page: 5
  issue: 5
  year: 2021
  ident: 9391_CR31
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-021-00880-5
– ident: 9391_CR48
  doi: 10.32604/csse.2023.034324
– volume: 10
  start-page: 2249808
  issue: 1
  year: 2023
  ident: 9391_CR52
  publication-title: Int J Syst Sci: Oper Logist
  doi: 10.1080/23302674.2023.2249808
– ident: 9391_CR62
  doi: 10.1007/s00521-023-08619-5
– year: 2023
  ident: 9391_CR66
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15803-1
– ident: 9391_CR24
  doi: 10.1016/B978-0-12-822373-4.00018-5
– ident: 9391_CR39
– ident: 9391_CR51
  doi: 10.1109/ICCUBEA.2018.8697349
– volume: 23
  start-page: 19
  issue: 1
  year: 2023
  ident: 9391_CR54
  publication-title: Oper Res Int J
  doi: 10.1007/s12351-023-00752-2
– volume: 16
  start-page: 6
  issue: 6
  year: 2023
  ident: 9391_CR20
  publication-title: Algorithms
  doi: 10.3390/a16060308
– ident: 9391_CR17
  doi: 10.1109/ICESC57686.2023.10192937
– volume: 12
  issue: 1
  year: 2017
  ident: 9391_CR12
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa518a
– ident: 9391_CR40
– volume: 74
  start-page: 634
  year: 2019
  ident: 9391_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.036
– ident: 9391_CR41
  doi: 10.1109/RoboMech.2016.7813171
– volume: 44
  start-page: 48
  issue: 1
  year: 2018
  ident: 9391_CR44
  publication-title: J Inf Sci
  doi: 10.1177/0165551516677946
– volume: 1
  issue: 225
  year: 2023
  ident: 9391_CR68
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120135
– volume: 150
  year: 2023
  ident: 9391_CR18
  publication-title: Eur J Agron
  doi: 10.1016/j.eja.2023.126949
– volume: 14
  start-page: 12273
  year: 2023
  ident: 9391_CR11
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-023-04659-w
– ident: 9391_CR1
  doi: 10.1016/B978-0-12-816483-9.00001-3
– volume: 329
  start-page: 346
  year: 2016
  ident: 9391_CR46
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.09.037
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 9391_CR35
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 15
  start-page: 1
  issue: 1
  year: 2023
  ident: 9391_CR8
  publication-title: Sustainability
  doi: 10.3390/su15010757
– ident: 9391_CR55
  doi: 10.1007/s11042-022-13000-0
– ident: 9391_CR26
– ident: 9391_CR47
– volume: 177
  year: 2020
  ident: 9391_CR4
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2020.105709
– volume: 10
  start-page: 7
  issue: 7
  year: 2020
  ident: 9391_CR33
  publication-title: Agronomy
  doi: 10.3390/agronomy10071046
– year: 2023
  ident: 9391_CR64
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-023-08428-w
– volume: 106
  start-page: 15594
  issue: 37
  year: 2009
  ident: 9391_CR13
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0906865106
– ident: 9391_CR42
  doi: 10.1145/3510858.3511382
– ident: 9391_CR56
  doi: 10.1007/s11042-022-12223-5
– year: 2023
  ident: 9391_CR49
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-16737-4
– volume: 170
  start-page: 166
  year: 2013
  ident: 9391_CR10
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2012.09.011
– ident: 9391_CR70
  doi: 10.14569/IJACSA.2023.0140442
– ident: 9391_CR37
– ident: 9391_CR27
  doi: 10.1109/ICSCDS56580.2023.10104734
– volume: 101
  start-page: 943
  year: 2019
  ident: 9391_CR2
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2019.01.059
– volume: 26
  start-page: 11435
  issue: 21
  year: 2022
  ident: 9391_CR58
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07420-1
– ident: 9391_CR28
  doi: 10.1609/aaai.v31i1.11172
– year: 2022
  ident: 9391_CR59
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-022-08007-59.FaivdullahL,AzaharF,HtikeZZ,Naing
– ident: 9391_CR65
  doi: 10.1007/s00521-023-08678-8
– volume: 35
  start-page: 1304
  issue: 15
  year: 2021
  ident: 9391_CR3
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2021.1976091
– volume: 187
  year: 2021
  ident: 9391_CR29
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2020.103016
– volume: 45
  start-page: 78
  issue: 2
  year: 2023
  ident: 9391_CR53
  publication-title: J Comb Optim
  doi: 10.1007/s10878-023-01002-z
– ident: 9391_CR7
  doi: 10.1007/978-3-031-22456-0_4
– volume: 17
  year: 2022
  ident: 9391_CR22
  publication-title: J Comput Nonlinear Dyn
  doi: 10.1115/1.4054800
– ident: 9391_CR45
  doi: 10.1007/978-3-540-30549-1_43
– ident: 9391_CR61
  doi: 10.1007/s00521-023-08372-9
– ident: 9391_CR30
  doi: 10.1109/JSTARS.2020.3019046
– ident: 9391_CR57
  doi: 10.32604/cmc.2022.026547
– volume: 6
  start-page: 257
  year: 2022
  ident: 9391_CR50
  publication-title: Artif Intell Agricult
  doi: 10.1016/j.aiia.2022.11.003
– year: 2023
  ident: 9391_CR67
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-023-08809-1
– ident: 9391_CR9
– ident: 9391_CR32
  doi: 10.3389/fpls.2019.00621
– ident: 9391_CR71
  doi: 10.32604/cmc.2023.039368
– volume: 12
  issue: 9
  year: 2017
  ident: 9391_CR14
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa7f33
– volume: 2014
  start-page: 284
  year: 2014
  ident: 9391_CR25
  publication-title: Encyclopedia Agricult Food Syst
  doi: 10.1016/B978-0-444-52512-3.00005-X
– ident: 9391_CR16
  doi: 10.12944/CARJ.11.1.12
– volume: 14
  start-page: 12
  issue: 12
  year: 2021
  ident: 9391_CR21
  publication-title: Energies
  doi: 10.3390/en14123396
– volume: 95
  start-page: 236
  issue: 2
  year: 2013
  ident: 9391_CR15
  publication-title: Am J Agr Econ
  doi: 10.1093/ajae/aas047
– volume: 7
  start-page: 3
  issue: 3
  year: 2023
  ident: 9391_CR19
  publication-title: Big Data Cognit Comput
  doi: 10.3390/bdcc7030144
– ident: 9391_CR5
– ident: 9391_CR69
  doi: 10.21608/ejai.2023.205554.1008
– volume: 94
  start-page: 920
  issue: 7
  year: 2022
  ident: 9391_CR23
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.5078
– volume: 10
  start-page: 18
  issue: 1
  year: 2022
  ident: 9391_CR60
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10010018
SSID ssj0004685
Score 2.5932436
Snippet Crop Recommendation Systems are invaluable tools for farmers, assisting them in making informed decisions about crop selection to optimize yields. These...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5695
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Crop yield
Data Mining and Knowledge Discovery
Decision making
Decision trees
Explainable artificial intelligence
Harnesses
Image Processing and Computer Vision
Machine learning
Original Article
Performance evaluation
Probability and Statistics in Computer Science
Recommender systems
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYWDhjSgveWADi8Q2TcyCABUxVRViYIv8LEg0lLY8fj6247QFiS6sSWxF-s723fnu-wCOHbCaJ5JhQbXGLCUGCyIkplyaVBOriNVBbCLrdPLHR96NCbdRLKus98SwUetX5XPkZ4Q720r8aXQ5eMNeNcrfrkYJjUVY8kxlrAFL1-1O936mMzKIcroYxtf3MBrbZkLznM-IuqeEYhfV8xSTn0fT1N_8dUUaTp7btf_-8zqsRp8TXVVGsgELptyEtVrPAcXlvQWf7fLJ02-UPeSFvZAPlvt9E2WXUEX6PEI-dYvM1-AlNl4hb30VEQV6nmH4vEACBfZa5AaL3nDC8oF0FPbB_aCFtQ0Pt-2HmzschRmwoi06divLGhcGqtzm58YmLc0zkYjUeReaJUYIao0yjEiZyEzbXLa0MjxztpITSw2lO9AoX0uzC4jRLDPc5rqlBDsnSnCuhJQsdV6SkVI1Ia0hKVQkLffaGS_FhG45wFg4GIsAY0GacDIZM6goO-Z-fVBjV8TlOyqmwDXhtEZ_-vrv2fbmz7YPK8Q5RVXlzwE0xsN3cwjL6mP8PBoeReP9BoJt-Vc
  priority: 102
  providerName: ProQuest
Title Enhancing crop recommendation systems with explainable artificial intelligence: a study on agricultural decision-making
URI https://link.springer.com/article/10.1007/s00521-023-09391-2
https://www.proquest.com/docview/2957801244
Volume 36
WOSCitedRecordID wos001140236500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241208
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7UevBifWK1lhy8aWA32XY33lQqnkqpRcTLkqcKdpW2Pn6-STbbqqig503CMo_MTJL5PoADq1jFIpFgTpXCSUw05oQLTJnQsSJGEqM82UTa62XX16wfmsIm1Wv36krS79SzZjd3gmlLX0KxrcJZjO3GW7PhLnPuOLi8-tAN6Yk4bd3i3vQkNLTKfL_G53A0zzG_XIv6aHNe_99_rsFqyC7RSWkO67Cgiw2oV8wNKDjyJrx2izsHtFHcIkfhhVxZPBrpQLCESnjnCXKHtEi_PT2EFivk7KyEnED3H7A8jxFHHqcW2cn8djzD80AqUPjgkWe92oLheXd4doEDBQOWtEOn1oeMtgWfzEzW1ibqKJbyiMc2j1BJpDmnRkudECEikSqTiY6SmqXWKjJiqKZ0G5aKx0LvAEpommpmMtWRPGkTyRmTXIgktvmQFkI2IK4UkcsAT-5YMh7yGbCyF2xuBZt7weakAYezOU8lOMevo5uVfvPgqJOcMLtlRS7JacBRpc_5559X2_3b8D1YITYdKt_8NGFpOn7W-7AsX6b3k3ELaqfdXn_QgsV--6blzfkdyKPwiA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB1VBQkuLZ8ipYAPcAKLXdvJrpEQQtCqVUvUQw4VF8sf41Kp2aZJSumP6n_E9nqTgkRvPXDdXVvy-s2MPfa8B_A6TKyThRFUc-eoKBlSzbShXBosHfOWeZfEJqrhsD48lAcrcNXVwsRrlZ1PTI7andqYI3_PZMBWEaPRp8kZjapR8XS1k9BoYbGHlxdhyzb7uPs1zO8bxra3Rl92aFYVoJYP-DzAwmPYw9ja1330xcDJShe6DKHRiQK15h4tCmZMYSrnazNwFmUVBlozzzHmP4PHvyNE2CsF8znof79WhpkUQMOGKV4mEjzX6KRKvZh-DU8Zp4XksqTszzi4XNz-dR6bwtz2-n_2gx7AWl5Pk8-tATyEFWwewXqnVUGy63oMF1vNj0gt0hyRKFpGYiJgPMYsKUVaQusZiWlpgr8mJ7mojETLakk2yPE19tIPRJPEzEtCY300XTCYEJdFi-g46Xw9gdFtjP4prDanDT4DInhVofS1G1gt-sxqKa02RpRhBYjG2B6UHQKUzYTsURfkRC2opBNqVECNSqhRrAdvF20mLR3JjV9vdlBR2TXN1BInPXjXgW35-t-9bdzc2yu4tzP6tq_2d4d7z-E-C4u_9obTJqzOp-f4Au7an_Pj2fRlshoC6pZB-BsPwVgE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Dd1N0u7Gm6hFUUpBkd6WPKtg19LWx883yWZrFRXE8yZhmUcyk8x8HwAHVrGKRYIiTpRCNMYaccwFIkzoWGEjsVGebCLpdNJej3Vnuvh9tXv5JFn0NDiUpnzSGCrTmDa-udtMmwZjgmxGzmJkN-F56kiDXL5-czfTGelJOW0O4-p7KAltM9-v8flo-og3vzyR-pOnXf3_P6-A5RB1wpPCTFbBnM7XQLVkdIDBwdfB63l-7wA48j501F7QpcuDgQ7ES7CAfR5Dd3kL9dvwMbReQWd_BRQFfJjB-DyGHHr8Wmgn8_5oivMBVaD2QQPPhrUBbtvnt6cXKFAzIElaZGJ9y2ibCMrUpE1topZiCY-4VUCsaKQ5J0ZLTbEQkUiUSUVLSc0Say0pNkQTsgkq-VOutwCkJEk0M6lqSU6bWHLGJBeCxjZO0kLIGohLpWQywJY79ozHbAq47AWbWcFmXrAZroHD6ZxhAdrx6-h6qessOPA4w8xuZZELfmrgqNTtx-efV9v-2_B9sNg9a2fXl52rHbCEbcRUlAXVQWUyeta7YEG-TB7Goz1v1--qQPm2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+crop+recommendation+systems+with+explainable+artificial+intelligence%3A+a+study+on+agricultural+decision-making&rft.jtitle=Neural+computing+%26+applications&rft.au=Shams%2C+Mahmoud+Y.&rft.au=Gamel%2C+Samah+A.&rft.au=Talaat%2C+Fatma+M.&rft.date=2024-04-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=11&rft.spage=5695&rft.epage=5714&rft_id=info:doi/10.1007%2Fs00521-023-09391-2&rft.externalDocID=10_1007_s00521_023_09391_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon