Enhancing throughput of the Hadoop Distributed File System for interaction-intensive tasks
The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applicat...
Uloženo v:
| Vydáno v: | Journal of parallel and distributed computing Ročník 74; číslo 8; s. 2770 - 2779 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
01.08.2014
Elsevier |
| Témata: | |
| ISSN: | 0743-7315, 1096-0848 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks.
•Analyzed the performance degradation of HDFS caused by interaction-intensive tasks.•Designed a two-layer structure to improve the performance of handling I/O request.•Integrated caches to reduce the overhead of accessing interaction-intensive files.•Developed a PSO-based storage allocation algorithm to improve the I/O throughput.•Designed a set of experiments to evaluate the performance of the proposed methods. |
|---|---|
| AbstractList | The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks.
•Analyzed the performance degradation of HDFS caused by interaction-intensive tasks.•Designed a two-layer structure to improve the performance of handling I/O request.•Integrated caches to reduce the overhead of accessing interaction-intensive files.•Developed a PSO-based storage allocation algorithm to improve the I/O throughput.•Designed a set of experiments to evaluate the performance of the proposed methods. The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks. |
| Author | Li, Zheng Ren, Shangping Hua, Xiayu Wu, Hao |
| Author_xml | – sequence: 1 givenname: Xiayu orcidid: 0000-0001-8373-869X surname: Hua fullname: Hua, Xiayu email: xhua@hawk.iit.edu – sequence: 2 givenname: Hao surname: Wu fullname: Wu, Hao email: hwu28@hawk.iit.edu – sequence: 3 givenname: Zheng surname: Li fullname: Li, Zheng email: zli80@hawk.iit.edu – sequence: 4 givenname: Shangping surname: Ren fullname: Ren, Shangping email: ren@iit.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609673$$DView record in Pascal Francis |
| BookMark | eNp9kE1r3DAQQEVJoZu0f6AnXQq92Bl9-GOhl5ImTSCQQ5tLLkIej7PaeiVXkgP597XZ0EMOOWkE7w3MO2UnPnhi7LOAUoCoz_flfuqxlCB0CaoEAe_YRsC2LqDV7QnbQKNV0ShRfWCnKe0BhKiadsMeLv3OenT-keddDPPjbpozD8PyI35t-xAm_sOlHF03Z-r5lRuJ_3pOmQ58CJE7nylazC74Yp19ck_Es01_0kf2frBjok8v7xm7v7r8fXFd3N79vLn4flugqlUuBG07SdA1sMVuaGVVtaipwmEApazsAbRQNDTYdVihtaCt6GyNNcl-URt1xr4e904x_J0pZXNwCWkcracwJyNqLaUWjZYL-uUFtQntOMT19GSm6A42PhvZ1kuyRi2cPHIYQ0qRhv-IALMGN3uzBjdrcAPKLMEXqX0loct2LZOjdePb6rejSkunJ0fRJHTkkXoXCbPpg3tL_wfzdJ-u |
| CitedBy_id | crossref_primary_10_1007_s11042_016_4026_6 crossref_primary_10_1007_s10586_017_1147_2 crossref_primary_10_1007_s10723_015_9360_9 crossref_primary_10_1109_COMST_2021_3094993 crossref_primary_10_1007_s11227_017_2019_5 crossref_primary_10_1016_j_ipm_2023_103271 crossref_primary_10_1007_s11227_016_1949_7 crossref_primary_10_1016_j_procs_2018_05_128 crossref_primary_10_3390_s18093084 crossref_primary_10_1016_j_ins_2023_01_049 |
| Cites_doi | 10.1109/TSMCB.2009.2015956 10.1109/TPDS.2012.196 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jpdc.2014.03.010 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Architecture |
| EISSN | 1096-0848 |
| EndPage | 2779 |
| ExternalDocumentID | 28609673 10_1016_j_jpdc_2014_03_010 S0743731514000665 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADHUB ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 E.L EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 TWZ WUQ XJT XOL XPP ZMT ZU3 ZY4 ~G- ~G0 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c363t-1e9b2e0b709cbf82558c4e5cff033a2d00413ef7cbbc5caa04a1ba6c6e2de9b73 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337782000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0743-7315 |
| IngestDate | Sun Nov 09 12:35:48 EST 2025 Wed Apr 02 07:21:51 EDT 2025 Sat Nov 29 07:14:06 EST 2025 Tue Nov 18 19:39:32 EST 2025 Fri Feb 23 02:31:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Storage allocation algorithm HDFS Interaction intensive task PSO Cache Hierarchical structure Content access Cache memory File management Storage system Very large databases Storage allocation Particle swarm optimization Massive parallelism Transmission rate Input output equipment Hierarchical system |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-1e9b2e0b709cbf82558c4e5cff033a2d00413ef7cbbc5caa04a1ba6c6e2de9b73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8373-869X |
| PQID | 1642241742 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1642241742 pascalfrancis_primary_28609673 crossref_primary_10_1016_j_jpdc_2014_03_010 crossref_citationtrail_10_1016_j_jpdc_2014_03_010 elsevier_sciencedirect_doi_10_1016_j_jpdc_2014_03_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-08-01 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of parallel and distributed computing |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Kennedy, Eberhart (br000050) 1995 Kennedy, Spears (br000055) 1998 Jiang, Li, Song (br000045) 2010 D. Borthakur, Hdfs architecture guide, HADOOP APACHE PROJECT, 2008. Zhang, Wu, Hu, Wu (br000085) 2012 Liao, Han, Fang (br000060) 2010 . Chandrasekar, Dakshinamurthy, Seshakumar, Prabavathy, Babu (br000015) 2013 Vazhkudai, Schopf, Foster (br000080) 2002 Liu, Han, Zhong, Han, He (br000065) 2009 Shvachko, Kuang, Radia, Chansler (br000075) 2010 H. Hsiao, H. Chung, H. Shen, Y. Chao, Load rebalancing for distributed file systems in clouds, 2013. Indrayanto, Chan (br000040) 2008 Deelman, Singh, Livny, Berriman, Good (br000020) 2008 Shi, Eberhart (br000070) 1998 Fesehaye, Malik, Nahrstedt (br000025) 2009 Zhan, Zhang, Li, Chung (br000090) 2009; 39 D. Borthakur, The hadoop distributed file system: architecture and design, Hadoop Project Website, 2007. Hdfs user guide. [Online], 2008. Available Chandrasekar (10.1016/j.jpdc.2014.03.010_br000015) 2013 10.1016/j.jpdc.2014.03.010_br000035 10.1016/j.jpdc.2014.03.010_br000005 Zhang (10.1016/j.jpdc.2014.03.010_br000085) 2012 10.1016/j.jpdc.2014.03.010_br000010 Fesehaye (10.1016/j.jpdc.2014.03.010_br000025) 2009 10.1016/j.jpdc.2014.03.010_br000030 Shi (10.1016/j.jpdc.2014.03.010_br000070) 1998 Deelman (10.1016/j.jpdc.2014.03.010_br000020) 2008 Jiang (10.1016/j.jpdc.2014.03.010_br000045) 2010 Zhan (10.1016/j.jpdc.2014.03.010_br000090) 2009; 39 Kennedy (10.1016/j.jpdc.2014.03.010_br000050) 1995 Shvachko (10.1016/j.jpdc.2014.03.010_br000075) 2010 Liu (10.1016/j.jpdc.2014.03.010_br000065) 2009 Liao (10.1016/j.jpdc.2014.03.010_br000060) 2010 Indrayanto (10.1016/j.jpdc.2014.03.010_br000040) 2008 Kennedy (10.1016/j.jpdc.2014.03.010_br000055) 1998 Vazhkudai (10.1016/j.jpdc.2014.03.010_br000080) 2002 |
| References_xml | – start-page: 1942 year: 1995 end-page: 1948 ident: br000050 article-title: Particle swarm optimization publication-title: Neural Networks, 1995. Proceedings., IEEE International Conference on, vol.~4 – start-page: 1 year: 2013 end-page: 8 ident: br000015 article-title: A novel indexing scheme for efficient handling of small files in hadoop distributed file system publication-title: Computer Communication and Informatics (ICCCI), 2013 International Conference on – start-page: 50 year: 2008 ident: br000020 article-title: The cost of doing science on the cloud: the montage example publication-title: Proceedings of the 2008 ACM/IEEE conference on Supercomputing – start-page: 28 year: 2009 ident: br000025 article-title: Edfs: a semi-centralized efficient distributed file system publication-title: Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware – start-page: 1 year: 2009 end-page: 8 ident: br000065 article-title: Implementing webgis on hadoop: a case study of improving small file i/o performance on hdfs publication-title: Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE International Conference on – reference: Hdfs user guide. [Online], 2008. Available: – reference: D. Borthakur, Hdfs architecture guide, HADOOP APACHE PROJECT, 2008. – start-page: 79 year: 2008 end-page: 83 ident: br000040 article-title: Application of game theory and fictitious play in data placement publication-title: Distributed Framework and Applications, 2008. DFmA 2008. First International Conference on – start-page: 1 year: 2010 end-page: 10 ident: br000075 article-title: The hadoop distributed file system publication-title: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on – reference: . – volume: 39 start-page: 1362 year: 2009 end-page: 1381 ident: br000090 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 240 year: 2010 end-page: 249 ident: br000060 article-title: Multi-dimensional index on hadoop distributed file system publication-title: Networking, Architecture and Storage (NAS), 2010 IEEE Fifth International Conference on – reference: D. Borthakur, The hadoop distributed file system: architecture and design, Hadoop Project Website, 2007. – start-page: 12 year: 2012 end-page: 21 ident: br000085 article-title: A distributed cache for hadoop distributed file system in real-time cloud services publication-title: Grid Computing (GRID), 2012 ACM/IEEE 13th International Conference on – start-page: 912 year: 2010 end-page: 915 ident: br000045 article-title: The optimization of hdfs based on small files publication-title: Broadband Network and Multimedia Technology, IC-BNMT, 2010 3rd IEEE International Conference on – start-page: 34 year: 2002 end-page: 43 ident: br000080 article-title: Predicting the performance of wide area data transfers publication-title: Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM – start-page: 591 year: 1998 end-page: 600 ident: br000070 article-title: Parameter selection in particle swarm optimization publication-title: Evolutionary Programming VII – start-page: 78 year: 1998 end-page: 83 ident: br000055 article-title: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator publication-title: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on – reference: H. Hsiao, H. Chung, H. Shen, Y. Chao, Load rebalancing for distributed file systems in clouds, 2013. – start-page: 1 year: 2009 ident: 10.1016/j.jpdc.2014.03.010_br000065 article-title: Implementing webgis on hadoop: a case study of improving small file i/o performance on hdfs – ident: 10.1016/j.jpdc.2014.03.010_br000005 – ident: 10.1016/j.jpdc.2014.03.010_br000030 – start-page: 1 year: 2013 ident: 10.1016/j.jpdc.2014.03.010_br000015 article-title: A novel indexing scheme for efficient handling of small files in hadoop distributed file system – start-page: 34 year: 2002 ident: 10.1016/j.jpdc.2014.03.010_br000080 article-title: Predicting the performance of wide area data transfers – volume: 39 start-page: 1362 issue: 6 year: 2009 ident: 10.1016/j.jpdc.2014.03.010_br000090 article-title: Adaptive particle swarm optimization publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMCB.2009.2015956 – start-page: 50 year: 2008 ident: 10.1016/j.jpdc.2014.03.010_br000020 article-title: The cost of doing science on the cloud: the montage example – start-page: 240 year: 2010 ident: 10.1016/j.jpdc.2014.03.010_br000060 article-title: Multi-dimensional index on hadoop distributed file system – ident: 10.1016/j.jpdc.2014.03.010_br000035 doi: 10.1109/TPDS.2012.196 – start-page: 78 year: 1998 ident: 10.1016/j.jpdc.2014.03.010_br000055 article-title: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator – start-page: 12 year: 2012 ident: 10.1016/j.jpdc.2014.03.010_br000085 article-title: A distributed cache for hadoop distributed file system in real-time cloud services – start-page: 28 year: 2009 ident: 10.1016/j.jpdc.2014.03.010_br000025 article-title: Edfs: a semi-centralized efficient distributed file system – start-page: 1 year: 2010 ident: 10.1016/j.jpdc.2014.03.010_br000075 article-title: The hadoop distributed file system – start-page: 591 year: 1998 ident: 10.1016/j.jpdc.2014.03.010_br000070 article-title: Parameter selection in particle swarm optimization – ident: 10.1016/j.jpdc.2014.03.010_br000010 – start-page: 912 year: 2010 ident: 10.1016/j.jpdc.2014.03.010_br000045 article-title: The optimization of hdfs based on small files – start-page: 79 year: 2008 ident: 10.1016/j.jpdc.2014.03.010_br000040 article-title: Application of game theory and fictitious play in data placement – start-page: 1942 year: 1995 ident: 10.1016/j.jpdc.2014.03.010_br000050 article-title: Particle swarm optimization |
| SSID | ssj0011578 |
| Score | 2.1758525 |
| Snippet | The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2770 |
| SubjectTerms | Algorithms Allocations Applied sciences Architecture Cache Commodities Computer science; control theory; systems Exact sciences and technology Hardware HDFS Hierarchical structure Interaction intensive task Memory and file management (including protection and security) Memory organisation. Data processing Performance degradation PSO Software Storage allocation algorithm Tasks |
| Title | Enhancing throughput of the Hadoop Distributed File System for interaction-intensive tasks |
| URI | https://dx.doi.org/10.1016/j.jpdc.2014.03.010 https://www.proquest.com/docview/1642241742 |
| Volume | 74 |
| WOSCitedRecordID | wos000337782000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0848 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011578 issn: 0743-7315 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwPSxB1RLpOReKuC4tycPEaoW8dDmdAqCi-R4ziipUqipp32G_arOY4vy8Y24IGXqLFqp-r3-Zxj5_g7CL0vmXAFuF2Hgnd2AgFzjpES1jwxmEtOGI-E2xWboLNZvFgkJ4PBhTkLc7amVRWfnyfNf4Ua2gBseXT2H-C2g0IDfAbQ4Qqww_WvgJ9UP6SGRncKqqvB0-y2JhMA7ExdN1JyUxW6gmjzcCmzCTs95y7lUOpHbNRpB2dp89u3rP3Z3hLISvXw9VoozYGiNzTvKkYY3wioLo7Tb_PxdG5ZM00_j7_O7eb1dDI7AnNqd32m6ezoRG6nfZnM-tsTJLDJcXrPTDv4nlmToqjUV4c4jQ1WlXo01-K-QaWqroh2znCb3Gj41R7E6sOqKaQwJQk66VqdMXtFZfua97M5iV4cwXKO-vfQnkfDJB6ivfR4svhk30mRUPl18_v1ESyVLXj9ubeFOfsNa2Hylapqym8BQBfVnD5GDzWKOFU0eoIGonqKHumlCdaGv4UmU_3DtD1D3y3R8CXRcF3CncCKaLhHNCyJhhXRMBAN30g03BHtOZofTk4_Th1dqcPhfuRvHSKS3BNuTt2E52UMy9SYByLkZen6PvMKqermi5LyPOchZ8wNGMlZBIbAK6Ar9V-gYVVX4iXChEa0FCFjsceDoKAsIIVfhgVErrImHhkhYv7YjGsZe1lNZZ2ZfMVVJsHIJBiZ62cAxgiNbZ9Gibjc-e3Q4JXpMFSFlxmQ7c5-B1fAtY8yzBqhdwbtDIy4fDPHKlHv2oxEgQylaeC9-tMgr9GDy2n2Bg23m514i-7zs-2y3Rxozv4CR_i_pA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+throughput+of+the+Hadoop+Distributed+File+System+for+interaction-intensive+tasks&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=XIAYU+HUA&rft.au=HAO+WU&rft.au=ZHENG+LI&rft.au=SHANGPING+REN&rft.date=2014-08-01&rft.pub=Elsevier&rft.issn=0743-7315&rft.volume=74&rft.issue=8&rft.spage=2770&rft.epage=2779&rft_id=info:doi/10.1016%2Fj.jpdc.2014.03.010&rft.externalDBID=n%2Fa&rft.externalDocID=28609673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon |