Enhancing throughput of the Hadoop Distributed File System for interaction-intensive tasks

The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applicat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of parallel and distributed computing Ročník 74; číslo 8; s. 2770 - 2779
Hlavní autoři: Hua, Xiayu, Wu, Hao, Li, Zheng, Ren, Shangping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.08.2014
Elsevier
Témata:
ISSN:0743-7315, 1096-0848
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks. •Analyzed the performance degradation of HDFS caused by interaction-intensive tasks.•Designed a two-layer structure to improve the performance of handling I/O request.•Integrated caches to reduce the overhead of accessing interaction-intensive files.•Developed a PSO-based storage allocation algorithm to improve the I/O throughput.•Designed a set of experiments to evaluate the performance of the proposed methods.
AbstractList The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks. •Analyzed the performance degradation of HDFS caused by interaction-intensive tasks.•Designed a two-layer structure to improve the performance of handling I/O request.•Integrated caches to reduce the overhead of accessing interaction-intensive files.•Developed a PSO-based storage allocation algorithm to improve the I/O throughput.•Designed a set of experiments to evaluate the performance of the proposed methods.
The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system (Hdfs user guide, 2008). It provides the ability to access bulk data with high I/O throughput. As a result, this system is suitable for applications that have large I/O data sets. However, the performance of HDFS decreases dramatically when handling the operations of interaction-intensive files, i.e., files that have relatively small size but are frequently accessed. The paper analyzes the cause of throughput degradation issue when accessing interaction-intensive files and presents an enhanced HDFS architecture along with an associated storage allocation algorithm that overcomes the performance degradation problem. Experiments have shown that with the proposed architecture together with the associated storage allocation algorithm, the HDFS throughput for interaction-intensive files increases 300% on average with only a negligible performance decrease for large data set tasks.
Author Li, Zheng
Ren, Shangping
Hua, Xiayu
Wu, Hao
Author_xml – sequence: 1
  givenname: Xiayu
  orcidid: 0000-0001-8373-869X
  surname: Hua
  fullname: Hua, Xiayu
  email: xhua@hawk.iit.edu
– sequence: 2
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  email: hwu28@hawk.iit.edu
– sequence: 3
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  email: zli80@hawk.iit.edu
– sequence: 4
  givenname: Shangping
  surname: Ren
  fullname: Ren, Shangping
  email: ren@iit.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609673$$DView record in Pascal Francis
BookMark eNp9kE1r3DAQQEVJoZu0f6AnXQq92Bl9-GOhl5ImTSCQQ5tLLkIej7PaeiVXkgP597XZ0EMOOWkE7w3MO2UnPnhi7LOAUoCoz_flfuqxlCB0CaoEAe_YRsC2LqDV7QnbQKNV0ShRfWCnKe0BhKiadsMeLv3OenT-keddDPPjbpozD8PyI35t-xAm_sOlHF03Z-r5lRuJ_3pOmQ58CJE7nylazC74Yp19ck_Es01_0kf2frBjok8v7xm7v7r8fXFd3N79vLn4flugqlUuBG07SdA1sMVuaGVVtaipwmEApazsAbRQNDTYdVihtaCt6GyNNcl-URt1xr4e904x_J0pZXNwCWkcracwJyNqLaUWjZYL-uUFtQntOMT19GSm6A42PhvZ1kuyRi2cPHIYQ0qRhv-IALMGN3uzBjdrcAPKLMEXqX0loct2LZOjdePb6rejSkunJ0fRJHTkkXoXCbPpg3tL_wfzdJ-u
CitedBy_id crossref_primary_10_1007_s11042_016_4026_6
crossref_primary_10_1007_s10586_017_1147_2
crossref_primary_10_1007_s10723_015_9360_9
crossref_primary_10_1109_COMST_2021_3094993
crossref_primary_10_1007_s11227_017_2019_5
crossref_primary_10_1016_j_ipm_2023_103271
crossref_primary_10_1007_s11227_016_1949_7
crossref_primary_10_1016_j_procs_2018_05_128
crossref_primary_10_3390_s18093084
crossref_primary_10_1016_j_ins_2023_01_049
Cites_doi 10.1109/TSMCB.2009.2015956
10.1109/TPDS.2012.196
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jpdc.2014.03.010
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Architecture
EISSN 1096-0848
EndPage 2779
ExternalDocumentID 28609673
10_1016_j_jpdc_2014_03_010
S0743731514000665
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADHUB
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E.L
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
TWZ
WUQ
XJT
XOL
XPP
ZMT
ZU3
ZY4
~G-
~G0
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c363t-1e9b2e0b709cbf82558c4e5cff033a2d00413ef7cbbc5caa04a1ba6c6e2de9b73
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337782000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0743-7315
IngestDate Sun Nov 09 12:35:48 EST 2025
Wed Apr 02 07:21:51 EDT 2025
Sat Nov 29 07:14:06 EST 2025
Tue Nov 18 19:39:32 EST 2025
Fri Feb 23 02:31:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Storage allocation algorithm
HDFS
Interaction intensive task
PSO
Cache
Hierarchical structure
Content access
Cache memory
File management
Storage system
Very large databases
Storage allocation
Particle swarm optimization
Massive parallelism
Transmission rate
Input output equipment
Hierarchical system
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-1e9b2e0b709cbf82558c4e5cff033a2d00413ef7cbbc5caa04a1ba6c6e2de9b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8373-869X
PQID 1642241742
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1642241742
pascalfrancis_primary_28609673
crossref_primary_10_1016_j_jpdc_2014_03_010
crossref_citationtrail_10_1016_j_jpdc_2014_03_010
elsevier_sciencedirect_doi_10_1016_j_jpdc_2014_03_010
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of parallel and distributed computing
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kennedy, Eberhart (br000050) 1995
Kennedy, Spears (br000055) 1998
Jiang, Li, Song (br000045) 2010
D. Borthakur, Hdfs architecture guide, HADOOP APACHE PROJECT, 2008.
Zhang, Wu, Hu, Wu (br000085) 2012
Liao, Han, Fang (br000060) 2010
.
Chandrasekar, Dakshinamurthy, Seshakumar, Prabavathy, Babu (br000015) 2013
Vazhkudai, Schopf, Foster (br000080) 2002
Liu, Han, Zhong, Han, He (br000065) 2009
Shvachko, Kuang, Radia, Chansler (br000075) 2010
H. Hsiao, H. Chung, H. Shen, Y. Chao, Load rebalancing for distributed file systems in clouds, 2013.
Indrayanto, Chan (br000040) 2008
Deelman, Singh, Livny, Berriman, Good (br000020) 2008
Shi, Eberhart (br000070) 1998
Fesehaye, Malik, Nahrstedt (br000025) 2009
Zhan, Zhang, Li, Chung (br000090) 2009; 39
D. Borthakur, The hadoop distributed file system: architecture and design, Hadoop Project Website, 2007.
Hdfs user guide. [Online], 2008. Available
Chandrasekar (10.1016/j.jpdc.2014.03.010_br000015) 2013
10.1016/j.jpdc.2014.03.010_br000035
10.1016/j.jpdc.2014.03.010_br000005
Zhang (10.1016/j.jpdc.2014.03.010_br000085) 2012
10.1016/j.jpdc.2014.03.010_br000010
Fesehaye (10.1016/j.jpdc.2014.03.010_br000025) 2009
10.1016/j.jpdc.2014.03.010_br000030
Shi (10.1016/j.jpdc.2014.03.010_br000070) 1998
Deelman (10.1016/j.jpdc.2014.03.010_br000020) 2008
Jiang (10.1016/j.jpdc.2014.03.010_br000045) 2010
Zhan (10.1016/j.jpdc.2014.03.010_br000090) 2009; 39
Kennedy (10.1016/j.jpdc.2014.03.010_br000050) 1995
Shvachko (10.1016/j.jpdc.2014.03.010_br000075) 2010
Liu (10.1016/j.jpdc.2014.03.010_br000065) 2009
Liao (10.1016/j.jpdc.2014.03.010_br000060) 2010
Indrayanto (10.1016/j.jpdc.2014.03.010_br000040) 2008
Kennedy (10.1016/j.jpdc.2014.03.010_br000055) 1998
Vazhkudai (10.1016/j.jpdc.2014.03.010_br000080) 2002
References_xml – start-page: 1942
  year: 1995
  end-page: 1948
  ident: br000050
  article-title: Particle swarm optimization
  publication-title: Neural Networks, 1995. Proceedings., IEEE International Conference on, vol.~4
– start-page: 1
  year: 2013
  end-page: 8
  ident: br000015
  article-title: A novel indexing scheme for efficient handling of small files in hadoop distributed file system
  publication-title: Computer Communication and Informatics (ICCCI), 2013 International Conference on
– start-page: 50
  year: 2008
  ident: br000020
  article-title: The cost of doing science on the cloud: the montage example
  publication-title: Proceedings of the 2008 ACM/IEEE conference on Supercomputing
– start-page: 28
  year: 2009
  ident: br000025
  article-title: Edfs: a semi-centralized efficient distributed file system
  publication-title: Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware
– start-page: 1
  year: 2009
  end-page: 8
  ident: br000065
  article-title: Implementing webgis on hadoop: a case study of improving small file i/o performance on hdfs
  publication-title: Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE International Conference on
– reference: Hdfs user guide. [Online], 2008. Available:
– reference: D. Borthakur, Hdfs architecture guide, HADOOP APACHE PROJECT, 2008.
– start-page: 79
  year: 2008
  end-page: 83
  ident: br000040
  article-title: Application of game theory and fictitious play in data placement
  publication-title: Distributed Framework and Applications, 2008. DFmA 2008. First International Conference on
– start-page: 1
  year: 2010
  end-page: 10
  ident: br000075
  article-title: The hadoop distributed file system
  publication-title: Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on
– reference: .
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: br000090
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 240
  year: 2010
  end-page: 249
  ident: br000060
  article-title: Multi-dimensional index on hadoop distributed file system
  publication-title: Networking, Architecture and Storage (NAS), 2010 IEEE Fifth International Conference on
– reference: D. Borthakur, The hadoop distributed file system: architecture and design, Hadoop Project Website, 2007.
– start-page: 12
  year: 2012
  end-page: 21
  ident: br000085
  article-title: A distributed cache for hadoop distributed file system in real-time cloud services
  publication-title: Grid Computing (GRID), 2012 ACM/IEEE 13th International Conference on
– start-page: 912
  year: 2010
  end-page: 915
  ident: br000045
  article-title: The optimization of hdfs based on small files
  publication-title: Broadband Network and Multimedia Technology, IC-BNMT, 2010 3rd IEEE International Conference on
– start-page: 34
  year: 2002
  end-page: 43
  ident: br000080
  article-title: Predicting the performance of wide area data transfers
  publication-title: Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM
– start-page: 591
  year: 1998
  end-page: 600
  ident: br000070
  article-title: Parameter selection in particle swarm optimization
  publication-title: Evolutionary Programming VII
– start-page: 78
  year: 1998
  end-page: 83
  ident: br000055
  article-title: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator
  publication-title: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
– reference: H. Hsiao, H. Chung, H. Shen, Y. Chao, Load rebalancing for distributed file systems in clouds, 2013.
– start-page: 1
  year: 2009
  ident: 10.1016/j.jpdc.2014.03.010_br000065
  article-title: Implementing webgis on hadoop: a case study of improving small file i/o performance on hdfs
– ident: 10.1016/j.jpdc.2014.03.010_br000005
– ident: 10.1016/j.jpdc.2014.03.010_br000030
– start-page: 1
  year: 2013
  ident: 10.1016/j.jpdc.2014.03.010_br000015
  article-title: A novel indexing scheme for efficient handling of small files in hadoop distributed file system
– start-page: 34
  year: 2002
  ident: 10.1016/j.jpdc.2014.03.010_br000080
  article-title: Predicting the performance of wide area data transfers
– volume: 39
  start-page: 1362
  issue: 6
  year: 2009
  ident: 10.1016/j.jpdc.2014.03.010_br000090
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– start-page: 50
  year: 2008
  ident: 10.1016/j.jpdc.2014.03.010_br000020
  article-title: The cost of doing science on the cloud: the montage example
– start-page: 240
  year: 2010
  ident: 10.1016/j.jpdc.2014.03.010_br000060
  article-title: Multi-dimensional index on hadoop distributed file system
– ident: 10.1016/j.jpdc.2014.03.010_br000035
  doi: 10.1109/TPDS.2012.196
– start-page: 78
  year: 1998
  ident: 10.1016/j.jpdc.2014.03.010_br000055
  article-title: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator
– start-page: 12
  year: 2012
  ident: 10.1016/j.jpdc.2014.03.010_br000085
  article-title: A distributed cache for hadoop distributed file system in real-time cloud services
– start-page: 28
  year: 2009
  ident: 10.1016/j.jpdc.2014.03.010_br000025
  article-title: Edfs: a semi-centralized efficient distributed file system
– start-page: 1
  year: 2010
  ident: 10.1016/j.jpdc.2014.03.010_br000075
  article-title: The hadoop distributed file system
– start-page: 591
  year: 1998
  ident: 10.1016/j.jpdc.2014.03.010_br000070
  article-title: Parameter selection in particle swarm optimization
– ident: 10.1016/j.jpdc.2014.03.010_br000010
– start-page: 912
  year: 2010
  ident: 10.1016/j.jpdc.2014.03.010_br000045
  article-title: The optimization of hdfs based on small files
– start-page: 79
  year: 2008
  ident: 10.1016/j.jpdc.2014.03.010_br000040
  article-title: Application of game theory and fictitious play in data placement
– start-page: 1942
  year: 1995
  ident: 10.1016/j.jpdc.2014.03.010_br000050
  article-title: Particle swarm optimization
SSID ssj0011578
Score 2.1758525
Snippet The Hadoop Distributed File System (HDFS) is designed to run on commodity hardware and can be used as a stand-alone general purpose distributed file system...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2770
SubjectTerms Algorithms
Allocations
Applied sciences
Architecture
Cache
Commodities
Computer science; control theory; systems
Exact sciences and technology
Hardware
HDFS
Hierarchical structure
Interaction intensive task
Memory and file management (including protection and security)
Memory organisation. Data processing
Performance degradation
PSO
Software
Storage allocation algorithm
Tasks
Title Enhancing throughput of the Hadoop Distributed File System for interaction-intensive tasks
URI https://dx.doi.org/10.1016/j.jpdc.2014.03.010
https://www.proquest.com/docview/1642241742
Volume 74
WOSCitedRecordID wos000337782000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0848
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011578
  issn: 0743-7315
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwPSxB1RLpOReKuC4tycPEaoW8dDmdAqCi-R4ziipUqipp32G_arOY4vy8Y24IGXqLFqp-r3-Zxj5_g7CL0vmXAFuF2Hgnd2AgFzjpES1jwxmEtOGI-E2xWboLNZvFgkJ4PBhTkLc7amVRWfnyfNf4Ua2gBseXT2H-C2g0IDfAbQ4Qqww_WvgJ9UP6SGRncKqqvB0-y2JhMA7ExdN1JyUxW6gmjzcCmzCTs95y7lUOpHbNRpB2dp89u3rP3Z3hLISvXw9VoozYGiNzTvKkYY3wioLo7Tb_PxdG5ZM00_j7_O7eb1dDI7AnNqd32m6ezoRG6nfZnM-tsTJLDJcXrPTDv4nlmToqjUV4c4jQ1WlXo01-K-QaWqroh2znCb3Gj41R7E6sOqKaQwJQk66VqdMXtFZfua97M5iV4cwXKO-vfQnkfDJB6ivfR4svhk30mRUPl18_v1ESyVLXj9ubeFOfsNa2Hylapqym8BQBfVnD5GDzWKOFU0eoIGonqKHumlCdaGv4UmU_3DtD1D3y3R8CXRcF3CncCKaLhHNCyJhhXRMBAN30g03BHtOZofTk4_Th1dqcPhfuRvHSKS3BNuTt2E52UMy9SYByLkZen6PvMKqermi5LyPOchZ8wNGMlZBIbAK6Ar9V-gYVVX4iXChEa0FCFjsceDoKAsIIVfhgVErrImHhkhYv7YjGsZe1lNZZ2ZfMVVJsHIJBiZ62cAxgiNbZ9Gibjc-e3Q4JXpMFSFlxmQ7c5-B1fAtY8yzBqhdwbtDIy4fDPHKlHv2oxEgQylaeC9-tMgr9GDy2n2Bg23m514i-7zs-2y3Rxozv4CR_i_pA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+throughput+of+the+Hadoop+Distributed+File+System+for+interaction-intensive+tasks&rft.jtitle=Journal+of+parallel+and+distributed+computing&rft.au=XIAYU+HUA&rft.au=HAO+WU&rft.au=ZHENG+LI&rft.au=SHANGPING+REN&rft.date=2014-08-01&rft.pub=Elsevier&rft.issn=0743-7315&rft.volume=74&rft.issue=8&rft.spage=2770&rft.epage=2779&rft_id=info:doi/10.1016%2Fj.jpdc.2014.03.010&rft.externalDBID=n%2Fa&rft.externalDocID=28609673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7315&client=summon