A Class of Multivalued Quasi-Variational Inequalities with Applications
In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the r...
Saved in:
| Published in: | Applied mathematics & optimization Vol. 87; no. 2; p. 32 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0095-4616, 1432-0606 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the results are applied to a quasi variational-hemivariational inequality of elliptic kind. Finally, as an illustrative applications we examine a mathematical model of a nonsmooth static frictional unilateral contact problem for ideally locking materials in nonlinear elasticity. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0095-4616 1432-0606 |
| DOI: | 10.1007/s00245-022-09941-5 |