A Class of Multivalued Quasi-Variational Inequalities with Applications

In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics & optimization Ročník 87; číslo 2; s. 32
Hlavní autoři: Migórski, Stanislaw, Bai, Yunru, Dudek, Sylwia
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Springer Nature B.V
Témata:
ISSN:0095-4616, 1432-0606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we deal with a class of nonlinear quasi-variational inequalities involving a set-valued map and a constraint set. First, we prove that the set of weak solutions of the inequality is nonempty, weakly compact and upper semicontinuous with respect to perturbations in the data. Then, the results are applied to a quasi variational-hemivariational inequality of elliptic kind. Finally, as an illustrative applications we examine a mathematical model of a nonsmooth static frictional unilateral contact problem for ideally locking materials in nonlinear elasticity.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-022-09941-5