Banach manifold structure and infinite-dimensional analysis for causal fermion systems

A mathematical framework is developed for the analysis of causal fermion systems in the infinite-dimensional setting. It is shown that the regular spacetime point operators form a Banach manifold endowed with a canonical Fréchet-smooth Riemannian metric. The so-called expedient differential calculus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Annals of global analysis and geometry Ročník 60; číslo 2; s. 313 - 354
Hlavní autoři: Finster, Felix, Lottner, Magdalena
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.09.2021
Springer Nature B.V
Témata:
ISSN:0232-704X, 1572-9060
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A mathematical framework is developed for the analysis of causal fermion systems in the infinite-dimensional setting. It is shown that the regular spacetime point operators form a Banach manifold endowed with a canonical Fréchet-smooth Riemannian metric. The so-called expedient differential calculus is introduced with the purpose of treating derivatives of functions on Banach spaces which are differentiable only in certain directions. A chain rule is proven for Hölder continuous functions which are differentiable on expedient subspaces. These results are made applicable to causal fermion systems by proving that the causal Lagrangian is Hölder continuous. Moreover, Hölder continuity is analyzed for the integrated causal Lagrangian.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-021-09775-4