Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio

Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 111; H. 12; S. 4565 - 4584
Hauptverfasser: König, Matthias, Hoos, Holger H., Rijn, Jan N. van
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2022
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!