Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio

Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Machine learning Ročník 111; číslo 12; s. 4565 - 4584
Hlavní autori: König, Matthias, Hoos, Holger H., Rijn, Jan N. van
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2022
Springer Nature B.V
Predmet:
ISSN:0885-6125, 1573-0565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given network against such attacks. However, these methods typically give rise to high computational demands, which severely limit their scalability. Recent state-of-the-art approaches state the verification task as a minimisation problem, which is formulated and solved as a mixed-integer linear programming (MIP) problem. We extend this approach by leveraging automated algorithm configuration techniques and, more specifically, construct a portfolio of MIP solver configurations optimised for the neural network verification task. We test this approach on two recent, state-of-the-art MIP-based verification engines, MIPVerify and Venus , and achieve substantial improvements in CPU time by average factors of up to 4.7 and 10.3, respectively.
AbstractList Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given network against such attacks. However, these methods typically give rise to high computational demands, which severely limit their scalability. Recent state-of-the-art approaches state the verification task as a minimisation problem, which is formulated and solved as a mixed-integer linear programming (MIP) problem. We extend this approach by leveraging automated algorithm configuration techniques and, more specifically, construct a portfolio of MIP solver configurations optimised for the neural network verification task. We test this approach on two recent, state-of-the-art MIP-based verification engines, $$\mathrm {MIPVerify}$$ MIPVerify and $$\mathrm {Venus}$$ Venus , and achieve substantial improvements in CPU time by average factors of up to 4.7 and 10.3, respectively.
Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given network against such attacks. However, these methods typically give rise to high computational demands, which severely limit their scalability. Recent state-of-the-art approaches state the verification task as a minimisation problem, which is formulated and solved as a mixed-integer linear programming (MIP) problem. We extend this approach by leveraging automated algorithm configuration techniques and, more specifically, construct a portfolio of MIP solver configurations optimised for the neural network verification task. We test this approach on two recent, state-of-the-art MIP-based verification engines, MIPVerify and Venus , and achieve substantial improvements in CPU time by average factors of up to 4.7 and 10.3, respectively.
Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight perturbations of given inputs that cause them to be misclassified. Several methods have been proposed to formally prove robustness of a given network against such attacks. However, these methods typically give rise to high computational demands, which severely limit their scalability. Recent state-of-the-art approaches state the verification task as a minimisation problem, which is formulated and solved as a mixed-integer linear programming (MIP) problem. We extend this approach by leveraging automated algorithm configuration techniques and, more specifically, construct a portfolio of MIP solver configurations optimised for the neural network verification task. We test this approach on two recent, state-of-the-art MIP-based verification engines, MIPVerify and Venus, and achieve substantial improvements in CPU time by average factors of up to 4.7 and 10.3, respectively.
Author König, Matthias
Rijn, Jan N. van
Hoos, Holger H.
Author_xml – sequence: 1
  givenname: Matthias
  surname: König
  fullname: König, Matthias
  email: h.m.t.konig@liacs.leidenuniv.nl
  organization: Leiden Institute of Advanced Computer Science, Leiden University
– sequence: 2
  givenname: Holger H.
  surname: Hoos
  fullname: Hoos, Holger H.
  organization: Leiden Institute of Advanced Computer Science, Leiden University, University of British Columbia
– sequence: 3
  givenname: Jan N. van
  surname: Rijn
  fullname: Rijn, Jan N. van
  organization: Leiden Institute of Advanced Computer Science, Leiden University
BookMark eNp9kMtqHDEQRUWwwePHD3glyLoTPVpqeRlMHAcGsrCzFhqpuq1Jt9SR1J7kM_zH1swEDFl4IRVU3VO3uOfoJMQACF1T8okS0n3OlNzctA1hrCGSUdbsPqAVFR1viJDiBK2IUqKRlIkzdJ7zlhDCpJIr9PIwAzgfBrzMOMCSzFhL2cX0C6e4WXIJkDN-huR7b03xMeBnb7AZh5h8eZqwjaH3QwUPMxNcfTjOxU8-g8OT_1N_HwoMkPDoA5iE5xSHZKZp75vjWLfjOabSx9HHS3TamzHD1b96gX7efX28vW_WP759v_2ybiyXvDTUWdUpRl3XM6sU7zcbwdvalOCkAKpq0yhlO8aAOsU4VD1xjkgueqEsv0Afj3vrMb8XyEVv45JCtdSsaynlrWxlVbGjyqaYc4Jez8lPJv3VlOh99PoYva7R60P0elch9R9kfTnkU5Lx4_soP6K5-oQa2dtV71Cv6IugBw
CitedBy_id crossref_primary_10_1007_s10462_024_10726_1
crossref_primary_10_1145_3673226
Cites_doi 10.1016/j.artint.2016.09.006
10.1109/DASC.2016.7778091
10.1007/978-3-642-23786-7_35
10.1007/978-3-319-77935-5_9
10.1609/aaai.v24i1.7565
10.1109/TEVC.2015.2474158
10.1007/978-3-319-50137-6_7
10.1109/FAMCAD.2007.9
10.1007/978-3-642-33558-7_38
10.1016/j.ejor.2013.10.043
10.1109/SP.2018.00058
10.1609/aaai.v29i1.9354
10.1609/socs.v4i1.18293
10.1109/TNNLS.2018.2808470
10.1609/aaai.v34i04.5729
10.1007/978-3-642-20895-9_40
10.1007/978-3-319-63387-9_5
10.1109/SP.2016.41
10.1109/SP.2017.49
10.1609/aaai.v32i1.11302
10.1007/978-3-319-68167-2_19
10.1007/s10601-018-9285-6
10.1145/2487575.2487629
10.1613/jair.2861
10.1007/978-3-642-13520-0_23
10.1109/SP.2019.00044
10.1023/A:1010933404324
10.1613/jair.4726
10.1007/978-3-642-25566-3_40
10.1007/978-3-319-68167-2_18
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-022-06212-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 4584
ExternalDocumentID 10_1007_s10994_022_06212_w
GrantInformation_xml – fundername: TAILOR
  grantid: 952215
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-1dc87821d7f2c883fbb534dc86ed65e18c88a88c722e1d823ec870dd0635f58c3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000851348600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 04:18:09 EST 2025
Sat Nov 29 01:43:29 EST 2025
Tue Nov 18 22:52:09 EST 2025
Fri Feb 21 02:44:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Algorithm selection
Mixed integer programming
Neural network verification
Automated algorithm configuration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1dc87821d7f2c883fbb534dc86ed65e18c88a88c722e1d823ec870dd0635f58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10994-022-06212-w
PQID 2741134646
PQPubID 54194
PageCount 20
ParticipantIDs proquest_journals_2741134646
crossref_primary_10_1007_s10994_022_06212_w
crossref_citationtrail_10_1007_s10994_022_06212_w
springer_journals_10_1007_s10994_022_06212_w
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kashgarani, H., & Kotthoff, L. (2021). Is algorithm selection worth it? Comparing selecting single algorithms and parallel execution. In AAAI Workshop on Meta-Learning and MetaDL Challenge, pp. 58–64.
HutterFLindauerMBalintABaylessSHoosHLeyton-BrownKThe configurable SAT solver challenge (CSSC)Artificial Intelligence2017243125358214210.1016/j.artint.2016.09.0061402.68161
Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5), pp. 507–523
Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Certified defenses against adversarial examples. arXiv preprint arXiv:1801.09344
Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2012). Parallel SAT Solver Selection and Scheduling. In Proceedings of the Eighteenth International Conference on Principles and Practice of Constraint Programming (CP2012), pp. 512–526
Tjeng, V., Xiao, .K, & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed integer programming. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019)
Wong, E., & Kolter, Z. (2018.) Provable defenses against adversarial examples via the convex outer adversarial polytope. In Proceedings of The Thirty-Fifth International Conference on Machine Learning (ICML2018), pp 5286–5295.
BezerraLCLópez-IbánezMStützleTAutomatic component-wise design of multiobjective evolutionary algorithmsIEEE Transactions on Evolutionary Computation201520340341710.1109/TEVC.2015.2474158
HutterFHoosHHLeyton-BrownKStützleTParamILS: An automatic algorithm configuration frameworkJournal of Artificial Intelligence Research20093626730610.1613/jair.28611192.68831
Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In Proceedings of the 38th IEEE Symposium on Security and Privacy (IEEE S &P 2017), pp. 39–57
Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings of the 29th International Conference on Computer Aided Verification(CAV 2017), pp. 97–117
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., \& Fergus, R. (2014). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., & Kohli, P. (2018). A Dual Approach to Scalable Verification of Deep Networks. In Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2018), pp. 550–559.
Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling. In Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008).
Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533
Hutter, F., Babic, D., Hoos, H. H., & Hu, A. J. (2007). Boosting verification by automatic tuning of decision procedures. In Formal Methods in Computer Aided Design (FMCAD’07), pp. 27–34
Mohapatra, J., Ko, C. Y., Weng, L., Chen, P. Y., Liu, S., & Daniel, L. (2021). Hidden cost of randomized smoothing. In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021), pp 4033–4041.
XiangWTranHDJohnsonTTOutput Reachable Set Estimation and Verification for Multilayer Neural NetworksIEEE Transactions on Neural Networks and Learning Systems2018291157775783386788510.1109/TNNLS.2018.2808470
Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Proceedings of the 15th International Symposium on Automated Technology for Verification and Analysis (ATVA 2017), pp. 269–286.
Lopez-IbanezMStützleTAutomatically improving the anytime behaviour of optimisation algorithmsEuropean Journal of Operational Research20142353569582316615310.1016/j.ejor.2013.10.0431401.90274
FischettiMJoJDeep neural networks and mixed integer linear optimizationConstraints2018233296309381467210.1007/s10601-018-9285-61402.90096
Thornton, C., Hutter, F., Hoos, H. H., \& Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2013), pp. 847–855
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring neural net robustness with constraints. In Proceedings of the 30th Conference on Neural Information Processing Systems (NeurIPS 2016), pp 2613–2621
Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In Proceedings of the 37th IEEE Symposium on Security and Privacy (IEEE S &P 2016), pp. 582–597.
Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In RCRA Workshop on Experimental evaluation of Algorithms for Solving Problems with Combinatorial Explosion, pp. 16–30
Akintunde, M., Lomuscio, A., Maganti, L., & Pirovano, E. (2018) Reachability analysis for neural agent-environment systems. In Proceedings of The Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR2018)
Cheng, C. H., Nührenberg, G., & Ruess , H. (2017). Maximum resilience of artificial neural networks. In Proceedings of The 15th International Symposium on Automated Technology for Verification and Analysis (ATVA2017), pp. 251–268.
Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana S (2019) Certified robustness to adversarial examples with differential privacy. In Proceedings of The Fortieth IEEE Symposium on Security and Privacy (SP2019), IEEE, pp 656–672.
Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020). Efficient verification of ReLU-based neural networks via dependency analysis. In Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI20) (pp. 3291–3299)
Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2010). Automated Configuration of Mixed Integer Programming Solvers. In Proceedings of the 7th International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming (CPAIOR 2010), pp. 186–202
Carlini, N., Katz, G., Barrett, C., & Dill, D. L. (2017) Provably Minimally-Distorted Adversarial Examples. arXiv preprint arXiv:1709.10207
Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., & Ziller, S. (2011). A portfolio solver for answer set programming: Preliminary report. In Proceedings of The Tenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR2019), pp. 352–357.
Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018) Output range analysis for deep neural networks. In Proceedings of The Tenth NASA Formal Methods Symposium (NFM 2018), pp. 121–138.
Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. In Data Mining and Constraint Programming. Springer, pp. 149–190.
Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P., & Kochenderfer, M. J. (2016). Policy compression for aircraft collision avoidance systems. In Proceedings of the Thirty-Fifth Digital Avionics Systems Conference (DASC2016), pp. 1–10
König, M., Hoos, H. H., van Rijn, J. N. (2021). Speeding up neural network verification via automated algorithm configuration. In ICLR Workshop on Security and Safety in Machine Learning Systems.
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., & Vechev, M. (2018). AI2: Safety and robustness certification of neural networks with abstract interpretation. In Proceedings of the 39th IEEE Symposium on Security and Privacy (IEEE S &P 2018), pp. 3–18.
Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm selection and scheduling. In Proceedings of the Seventeenth International Conference on Principles and Practice of Constraint Programming (CP2011), pp. 454–469
Feurer, M., Springenberg, J. T., & Hutter, F. (2015). Initializing Bayesian hyperparameter optimization via meta-learning. In Proceedings of The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI15)
Bunel, R .R ., Turkaslan, I., Torr, P., Kohli, P., & Mudigonda, P. K. (2018). A unified view of piecewise linear neural network verification. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), pp. 4790–4799
Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing. In Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML2019), pp 1310–1320.
LindauerMHoosHHHutterFSchaubTAutoFolio: An automatically configured algorithm selectorJournal of Artificial Intelligence Research201553745778340338710.1613/jair.4726
Vallati, M., Fawcett, C., Gerevini, A. E., Hoos, H., \& Saetti, A. (2013). Automatic generation of efficient domain-specific planners from generic parametrized planners. In Proceedings of the 6th Annual Symposium on Combinatorial Search (SOCS), pp. 184–192.
BreimanLRandom forestsMachine Learning200145153210.1023/A:10109334043241007.68152
Chen, P. Y., Sharma, Y., Zhang, H., Yi, J., & Hsieh, C. J. (2018). Ead: Elastic-net attacks to deep neural networks via adversarial examples. In Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI18)
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
Xu L, Hoos H, Leyton-Brown K (2010) Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: P
6212_CR30
6212_CR31
F Hutter (6212_CR22) 2009; 36
M Lopez-Ibanez (6212_CR36) 2014; 235
LC Bezerra (6212_CR3) 2015; 20
6212_CR32
6212_CR33
M Lindauer (6212_CR34) 2015; 53
6212_CR35
6212_CR37
6212_CR38
6212_CR39
6212_CR20
6212_CR29
6212_CR21
6212_CR23
6212_CR24
6212_CR26
6212_CR27
6212_CR28
6212_CR2
6212_CR1
6212_CR4
6212_CR6
6212_CR8
6212_CR7
6212_CR9
F Hutter (6212_CR25) 2017; 243
L Breiman (6212_CR5) 2001; 45
6212_CR18
6212_CR19
6212_CR10
6212_CR11
6212_CR12
6212_CR13
6212_CR14
6212_CR15
W Xiang (6212_CR47) 2018; 29
6212_CR16
6212_CR40
6212_CR41
6212_CR42
M Fischetti (6212_CR17) 2018; 23
6212_CR43
6212_CR44
6212_CR45
6212_CR46
6212_CR48
6212_CR49
References_xml – reference: Cohen, J., Rosenfeld, E., & Kolter, Z. (2019). Certified adversarial robustness via randomized smoothing. In Proceedings of the Thirty-Sixth International Conference on Machine Learning (ICML2019), pp 1310–1320.
– reference: Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Hydra-MIP: Automated algorithm configuration and selection for mixed integer programming. In RCRA Workshop on Experimental evaluation of Algorithms for Solving Problems with Combinatorial Explosion, pp. 16–30
– reference: Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018) Output range analysis for deep neural networks. In Proceedings of The Tenth NASA Formal Methods Symposium (NFM 2018), pp. 121–138.
– reference: Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2010). Automated Configuration of Mixed Integer Programming Solvers. In Proceedings of the 7th International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming (CPAIOR 2010), pp. 186–202
– reference: XiangWTranHDJohnsonTTOutput Reachable Set Estimation and Verification for Multilayer Neural NetworksIEEE Transactions on Neural Networks and Learning Systems2018291157775783386788510.1109/TNNLS.2018.2808470
– reference: Bunel, R .R ., Turkaslan, I., Torr, P., Kohli, P., & Mudigonda, P. K. (2018). A unified view of piecewise linear neural network verification. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), pp. 4790–4799
– reference: Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In Proceedings of the 38th IEEE Symposium on Security and Privacy (IEEE S &P 2017), pp. 39–57
– reference: Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., & Vechev, M. (2018). AI2: Safety and robustness certification of neural networks with abstract interpretation. In Proceedings of the 39th IEEE Symposium on Security and Privacy (IEEE S &P 2018), pp. 3–18.
– reference: Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2012). Parallel SAT Solver Selection and Scheduling. In Proceedings of the Eighteenth International Conference on Principles and Practice of Constraint Programming (CP2012), pp. 512–526
– reference: Wong, E., & Kolter, Z. (2018.) Provable defenses against adversarial examples via the convex outer adversarial polytope. In Proceedings of The Thirty-Fifth International Conference on Machine Learning (ICML2018), pp 5286–5295.
– reference: Cheng, C. H., Nührenberg, G., & Ruess , H. (2017). Maximum resilience of artificial neural networks. In Proceedings of The 15th International Symposium on Automated Technology for Verification and Analysis (ATVA2017), pp. 251–268.
– reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:10109334043241007.68152
– reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., \& Fergus, R. (2014). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
– reference: Scheibler, K., Winterer, L., Wimmer, R., & Becker, B. (2015). Towards verification of artificial neural networks. In Proceedings of the 18th Workshop on Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015), pp. 30–40.
– reference: Chen, P. Y., Sharma, Y., Zhang, H., Yi, J., & Hsieh, C. J. (2018). Ead: Elastic-net attacks to deep neural networks via adversarial examples. In Proceedings of The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI18)
– reference: Chiarandini, M., Fawcett, C., & Hoos, H. H. (2008). A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling. In Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008).
– reference: Carlini, N., Katz, G., Barrett, C., & Dill, D. L. (2017) Provably Minimally-Distorted Adversarial Examples. arXiv preprint arXiv:1709.10207
– reference: Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana S (2019) Certified robustness to adversarial examples with differential privacy. In Proceedings of The Fortieth IEEE Symposium on Security and Privacy (SP2019), IEEE, pp 656–672.
– reference: Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward ReLU neural networks. arXiv preprint arXiv:1706.07351
– reference: Dvijotham, K., Stanforth, R., Gowal, S., Mann, T. A., & Kohli, P. (2018). A Dual Approach to Scalable Verification of Deep Networks. In Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2018), pp. 550–559.
– reference: Thornton, C., Hutter, F., Hoos, H. H., \& Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2013), pp. 847–855
– reference: Kotthoff, L. (2016). Algorithm selection for combinatorial search problems: A survey. In Data Mining and Constraint Programming. Springer, pp. 149–190.
– reference: Vallati, M., Fawcett, C., Gerevini, A. E., Hoos, H., \& Saetti, A. (2013). Automatic generation of efficient domain-specific planners from generic parametrized planners. In Proceedings of the 6th Annual Symposium on Combinatorial Search (SOCS), pp. 184–192.
– reference: Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In Proceedings of the 15th International Symposium on Automated Technology for Verification and Analysis (ATVA 2017), pp. 269–286.
– reference: Lopez-IbanezMStützleTAutomatically improving the anytime behaviour of optimisation algorithmsEuropean Journal of Operational Research20142353569582316615310.1016/j.ejor.2013.10.0431401.90274
– reference: LindauerMHoosHHHutterFSchaubTAutoFolio: An automatically configured algorithm selectorJournal of Artificial Intelligence Research201553745778340338710.1613/jair.4726
– reference: Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533
– reference: Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016). Distillation as a defense to adversarial perturbations against deep neural networks. In Proceedings of the 37th IEEE Symposium on Security and Privacy (IEEE S &P 2016), pp. 582–597.
– reference: Feurer, M., Springenberg, J. T., & Hutter, F. (2015). Initializing Bayesian hyperparameter optimization via meta-learning. In Proceedings of The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI15)
– reference: Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., & Ziller, S. (2011). A portfolio solver for answer set programming: Preliminary report. In Proceedings of The Tenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR2019), pp. 352–357.
– reference: HutterFHoosHHLeyton-BrownKStützleTParamILS: An automatic algorithm configuration frameworkJournal of Artificial Intelligence Research20093626730610.1613/jair.28611192.68831
– reference: Hutter, F., Hoos, H. H., Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In Proceedings of the 5th International Conference on Learning and Intelligent Optimization (LION 5), pp. 507–523
– reference: BezerraLCLópez-IbánezMStützleTAutomatic component-wise design of multiobjective evolutionary algorithmsIEEE Transactions on Evolutionary Computation201520340341710.1109/TEVC.2015.2474158
– reference: FischettiMJoJDeep neural networks and mixed integer linear optimizationConstraints2018233296309381467210.1007/s10601-018-9285-61402.90096
– reference: König, M., Hoos, H. H., van Rijn, J. N. (2021). Speeding up neural network verification via automated algorithm configuration. In ICLR Workshop on Security and Safety in Machine Learning Systems.
– reference: Akintunde, M., Lomuscio, A., Maganti, L., & Pirovano, E. (2018) Reachability analysis for neural agent-environment systems. In Proceedings of The Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR2018)
– reference: Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., & Misener, R. (2020). Efficient verification of ReLU-based neural networks via dependency analysis. In Proceedings of The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI20) (pp. 3291–3299)
– reference: Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P., & Kochenderfer, M. J. (2016). Policy compression for aircraft collision avoidance systems. In Proceedings of the Thirty-Fifth Digital Avionics Systems Conference (DASC2016), pp. 1–10
– reference: Mohapatra, J., Ko, C. Y., Weng, L., Chen, P. Y., Liu, S., & Daniel, L. (2021). Hidden cost of randomized smoothing. In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS2021), pp 4033–4041.
– reference: Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm selection and scheduling. In Proceedings of the Seventeenth International Conference on Principles and Practice of Constraint Programming (CP2011), pp. 454–469
– reference: Katz, G., Barrett, C., Dill, D. L., Julian, K., & Kochenderfer, M. J. (2017). Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings of the 29th International Conference on Computer Aided Verification(CAV 2017), pp. 97–117
– reference: Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Certified defenses against adversarial examples. arXiv preprint arXiv:1801.09344
– reference: HutterFLindauerMBalintABaylessSHoosHLeyton-BrownKThe configurable SAT solver challenge (CSSC)Artificial Intelligence2017243125358214210.1016/j.artint.2016.09.0061402.68161
– reference: Xu L, Hoos H, Leyton-Brown K (2010) Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI10)
– reference: Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
– reference: Kashgarani, H., & Kotthoff, L. (2021). Is algorithm selection worth it? Comparing selecting single algorithms and parallel execution. In AAAI Workshop on Meta-Learning and MetaDL Challenge, pp. 58–64.
– reference: Tjeng, V., Xiao, .K, & Tedrake, R. (2019). Evaluating robustness of neural networks with mixed integer programming. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019)
– reference: Hutter, F., Babic, D., Hoos, H. H., & Hu, A. J. (2007). Boosting verification by automatic tuning of decision procedures. In Formal Methods in Computer Aided Design (FMCAD’07), pp. 27–34
– reference: Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring neural net robustness with constraints. In Proceedings of the 30th Conference on Neural Information Processing Systems (NeurIPS 2016), pp 2613–2621
– volume: 243
  start-page: 1
  year: 2017
  ident: 6212_CR25
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2016.09.006
– ident: 6212_CR42
– ident: 6212_CR26
  doi: 10.1109/DASC.2016.7778091
– ident: 6212_CR27
  doi: 10.1007/978-3-642-23786-7_35
– ident: 6212_CR46
– ident: 6212_CR13
  doi: 10.1007/978-3-319-77935-5_9
– ident: 6212_CR48
  doi: 10.1609/aaai.v24i1.7565
– volume: 20
  start-page: 403
  issue: 3
  year: 2015
  ident: 6212_CR3
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2474158
– ident: 6212_CR49
– ident: 6212_CR31
  doi: 10.1007/978-3-319-50137-6_7
– ident: 6212_CR6
– ident: 6212_CR2
– ident: 6212_CR14
– ident: 6212_CR41
– ident: 6212_CR21
  doi: 10.1109/FAMCAD.2007.9
– ident: 6212_CR20
– ident: 6212_CR37
  doi: 10.1007/978-3-642-33558-7_38
– volume: 235
  start-page: 569
  issue: 3
  year: 2014
  ident: 6212_CR36
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.10.043
– ident: 6212_CR19
  doi: 10.1109/SP.2018.00058
– ident: 6212_CR16
  doi: 10.1609/aaai.v29i1.9354
– ident: 6212_CR45
  doi: 10.1609/socs.v4i1.18293
– ident: 6212_CR1
– ident: 6212_CR30
– volume: 29
  start-page: 5777
  issue: 11
  year: 2018
  ident: 6212_CR47
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2808470
– ident: 6212_CR4
  doi: 10.1609/aaai.v34i04.5729
– ident: 6212_CR38
– ident: 6212_CR18
  doi: 10.1007/978-3-642-20895-9_40
– ident: 6212_CR29
  doi: 10.1007/978-3-319-63387-9_5
– ident: 6212_CR39
  doi: 10.1109/SP.2016.41
– ident: 6212_CR7
  doi: 10.1109/SP.2017.49
– ident: 6212_CR9
  doi: 10.1609/aaai.v32i1.11302
– ident: 6212_CR15
  doi: 10.1007/978-3-319-68167-2_19
– ident: 6212_CR44
– ident: 6212_CR40
– ident: 6212_CR8
– ident: 6212_CR28
– volume: 23
  start-page: 296
  issue: 3
  year: 2018
  ident: 6212_CR17
  publication-title: Constraints
  doi: 10.1007/s10601-018-9285-6
– ident: 6212_CR35
– ident: 6212_CR43
  doi: 10.1145/2487575.2487629
– volume: 36
  start-page: 267
  year: 2009
  ident: 6212_CR22
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.2861
– ident: 6212_CR23
  doi: 10.1007/978-3-642-13520-0_23
– ident: 6212_CR12
– ident: 6212_CR33
  doi: 10.1109/SP.2019.00044
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 6212_CR5
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 53
  start-page: 745
  year: 2015
  ident: 6212_CR34
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.4726
– ident: 6212_CR24
  doi: 10.1007/978-3-642-25566-3_40
– ident: 6212_CR10
  doi: 10.1007/978-3-319-68167-2_18
– ident: 6212_CR11
– ident: 6212_CR32
SSID ssj0002686
Score 2.4372861
Snippet Despite their great success in recent years, neural networks have been found to be vulnerable to adversarial attacks. These attacks are often based on slight...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4565
SubjectTerms Algorithms
Artificial Intelligence
Automation
Computer Science
Configurations
Control
Engines
Integer programming
Linear programming
Machine Learning
Mechatronics
Mixed integer
Natural Language Processing (NLP)
Neural networks
Perturbation
Robotics
Robustness
Simulation and Modeling
Solvers
Special Issue of the ECML PKDD 2022 Journal Track
Verification
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66evDiW1xdJQdvWtykr_QkIoqgiKCCt9LmoYXddt3tqn_Df-xMmroo6MVDe0jzKMw3r2QyQ8iB0HEiEpUAiytwUEDneHkmhZeHsTLCD6Qw9qLwdXxzIx4fk1u34TZxYZWtTLSCWlUS98iPMc0K84MoiE5GLx5WjcLTVVdCY54sMM4Z4vwq9r4kMY9spUdgpNBDTe4uzbirczYpLrhi_YhjdY_vimlmbf44ILV652Llv3-8SpadxUlPG4iskTldrpOVtpoDdcy9QT7uRo0mo9MRxTSXMKhsgsTpuMqnkxqlIgXoY3SRJSh9LTKaDZ5g1fp5SMG1NsXTtMEUzUoFD61AJgGWtKLD4h3eNj8FrIvmbTamLj5siOsCG8DsFD0CUw2KapM8XJzfn116rmCDJ_3Irz2mpACLg6nYcCmEb_I89ANojLSKQs0ENGZCyJhzzZTgvob-faXATApNKKS_RTplVeptQo0UKsfuSd8EfQH4YSAOlQy1TsCtzrqEtdRKpctmjkU1BuksDzNSOAUKp5bC6VuXHH6NGTW5PP7s3WvJmjq-nqQzmnbJUQuM2effZ9v5e7ZdssQRizZOpkc69Xiq98iifK2LyXjfovoTLnUB3A
  priority: 102
  providerName: ProQuest
Title Speeding up neural network robustness verification via algorithm configuration and an optimised mixed integer linear programming solver portfolio
URI https://link.springer.com/article/10.1007/s10994-022-06212-w
https://www.proquest.com/docview/2741134646
Volume 111
WOSCitedRecordID wos000851348600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSuRA9OF28OIu9ow2dfCmgc7-cnREEUabxg3xEpJaNNCdNOm042_MH8-rSmKrjIIeUofkVVWot1NvAdhHGUYYiYhYXJCDQjrHShOOVuqHQqHrcVQmUfg87Pfx7i4aNElhkzbavb2SNJL6VbKbKWNLzlMvcHQ_jnlYJHWHmh0vr25f5K8TmP6OxD6-pfV3kyrz_zXeqqOZjfnuWtRom9PV7_3nGqw01iU7qslhHeZkvgGrbecG1jDyJvy9Gtdai03HTJe0pEl5HRDOyiKdTiotARmRuY4kMshjT1nCkuFDUWbV44iRG62yh2lNPyzJBT2sIPlDdCMFG2XPNJpaFLSvNmWTkjWxYCO9L5E8rc609a-KYVZswc3pyfXxmdU0Z7C4G7iVZQuOZF3YIlQOR3RVmvquRy8DKQJf2kgvE0QeOo60BTquJPieEGQS-cpH7m7DQl7kcgeY4ihSDR71lNdDohWbRJ_gvpQRudBJB-wWRzFvKpfrBhrDeFZzWZ95TGcemzOP_3Tg4GXOuK7b8Sn0bov6uOHhSawL-9iuF3hBBw5bVM8-f7zaj6-B_4RlR1OLiZHZhYWqnMo9WOJPVTYpu7D466Q_uOzC_O_QovHCGdA48O-7hur_ARn4_T4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqlcSl-ILZT60J7aqBs7D-dQIURBILYrpFIJ9ZImfkCk3WTZzQL9Gf0j_Y3MOAmrVio3Dj0kB8cPxfm-GU88ngF4K02cyEQnSHGNBgrqHC_PlPTyMNZWikBJ6w4KD-LhUJ6eJsdL8Ls7C0NulZ1MdIJaV4r-kX-kMCu-CKIg2p5ceJQ1inZXuxQaDSyOzM8rNNlmnw4_4_d9x_n-3snugddmFfCUiETt-VpJVIu-ji1XUgqb56EIsDAyOgqNL7Ewk1LFnBtfSy4M1u9rjbo8tKFUAvt9AA-DAI0l5M9x-P1W8vPIZZZE4oYerRzaQzrtUT0XhBdNv37EKZvIn4pwsbr9a0PW6bn91f9thp7Ck3ZFzXYaCjyDJVM-h9UuWwVrhdcL-PV10mhqNp8wCuOJjcrGCZ5Nq3w-q0nqM6Q2eU85wLLLImPZ6Azfsj4fM1WVtjibN5xhWanxYhXKXOSK0WxcXOPdxd_AcWn5nk1Z6_82pnGR5tg7I4vHVqOiegnf7mVi1mC5rEqzDswqqXOqnvRt0JfIDx_FvVahMYkvRNYDv0NHqtpo7ZQ0ZJQu4kwTolJEVOoQlV714P1tm0kTq-TO2psdjNJWbs3SBYZ68KED4uLxv3t7dXdvb-DxwcmXQTo4HB5twAonHjifoE1Yrqdz8xoeqcu6mE23HKMY_LhvgN4A_sRfNA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvlKe60IIPcIKoGzsP54AQallRtVqtBEgVl5D4USLtJstutoWfwd_h1zHjOF2BRG89cEgOiWMryffN50nGMwDPpUkzmekMKa7RQUHNCcpCyaCMU22liJS0bqHwSToey9PTbLIBv_q1MBRW2dtEZ6h1o-gb-T6lWQlFlETJvvVhEZPD0Zv5t4AqSNGf1r6cRgeRY_PjAt235eujQ3zXLzgfvft48D7wFQYCJRLRBqFWEiUy1KnlSkphyzIWER5MjE5iE0o8WEipUs5NqCUXBtsPtUZdj20slcB-b8DNFH1Mcvwm8edLFeCJqzKJJI4DmkX4BTt-2Z5LyItu4DDhVFnkT1Fcz3T_-jnrNG-0_T8_rbtwx8-02duOGvdgw9T3YbuvYsG8UXsAPz_MOwVnqzmj9J54Ud0Fx7NFU66WLakBQ8pTVJUDMjuvClZMz_Au268zppraVmerjkusqDVurEFbjBwyms2q77h3eTlwXJrWFwvm4-JmNC7SH3tn5AnZZlo1D-HTtTyYR7BZN7XZAWaV1CU1z4Y2GkrkTYgyoFVsTBYKUQwg7JGSK5_FnYqJTPN1_mlCV47oyh268osBvLy8Zt7lMLmy9W4Pqdzbs2W-xtMAXvWgXJ_-d2-Pr-7tGdxGXOYnR-PjJ7DFiRIuVGgXNtvFyuzBLXXeVsvFU0cuBl-uG5-_AVvgaAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speeding+up+neural+network+robustness+verification+via+algorithm+configuration+and+an+optimised+mixed+integer+linear+programming+solver+portfolio&rft.jtitle=Machine+learning&rft.au=K%C3%B6nig%2C+Matthias&rft.au=Hoos%2C+Holger+H.&rft.au=Rijn%2C+Jan+N.+van&rft.date=2022-12-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=12&rft.spage=4565&rft.epage=4584&rft_id=info:doi/10.1007%2Fs10994-022-06212-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_022_06212_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon