A computational algorithm for minimizing total variation in image restoration

A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l/sub 1/ function (a meas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 5; číslo 6; s. 987 - 995
Hlavní autoři: Yuying Li, Santosa, F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.1996
Témata:
ISSN:1057-7149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l/sub 1/ function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l/sub 1/ objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l/sub 1/ minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
AbstractList A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l(1) objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l(1) minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l(1) objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l(1) minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l sub(1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l sub(1) objective function for the total variation measurement leads to a simplier computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l sub(1) minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l/sub 1/ function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l/sub 1/ objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l/sub 1/ minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l(1) objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l(1) minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l (1) function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l(1) objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l(1) minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process.
Author Yuying Li
Santosa, F.
Author_xml – sequence: 1
  surname: Yuying Li
  fullname: Yuying Li
  organization: Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA
– sequence: 2
  givenname: F.
  surname: Santosa
  fullname: Santosa, F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18285186$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PwzAMhnMYYh9w4MoB9QTiUBY3aZoep4kvaYgLnKO0dUdQ24y0Q4JfT7aOHRACyZJl-_Fr6fWYDBrbICEnQK8AaDqV7CqmLAU-ICOgcRImwNMhGbftK6XAYxCHZAgykjFIMSIPsyC39Wrd6c7YRleBrpbWme6lDkrrgto0pjafplkGne38-F07s0UD46PWSwwctp112-YROSh11eLxLk_I88310_wuXDze3s9nizBngnUh5EmaFnmEKZU8B5lpZCUKFqHUEeOCFxkVWVpmJcS-TIUP5LSQSQkF0oJNyEWvu3L2be3vq9q0OVaVbtCuW5UwHiUR58yT53-SkYyAMx7_DwrY2LpRPNuB66zGQq2ct8F9qG9PPTDtgdzZtnVYqtz09nZOm0oBVZtPKclU_ym_cfljYy_6C3vaswYR99xu-AWkH5xV
CODEN IIPRE4
CitedBy_id crossref_primary_10_1023_B_JMIV_0000011325_36760_1e
crossref_primary_10_1002_sca_21127
crossref_primary_10_1137_090774823
crossref_primary_10_1155_IJBI_2006_83847
crossref_primary_10_1007_s11760_024_03083_7
crossref_primary_10_1007_s11075_006_9020_z
crossref_primary_10_1155_2017_3012910
crossref_primary_10_1007_s10851_009_0137_2
crossref_primary_10_1023_A_1011243521400
crossref_primary_10_1007_s10851_005_6467_9
crossref_primary_10_1155_2013_217021
crossref_primary_10_1007_s11075_012_9623_5
crossref_primary_10_1109_TGRS_2020_3007945
crossref_primary_10_1186_s12938_017_0318_y
crossref_primary_10_1007_s00285_011_0402_z
crossref_primary_10_1155_2014_356906
crossref_primary_10_1049_ip_vis_20020421
crossref_primary_10_1109_TIP_2007_908079
crossref_primary_10_1109_TIM_2002_808026
crossref_primary_10_1109_TIP_2008_2008420
crossref_primary_10_1016_j_cviu_2017_08_007
crossref_primary_10_1155_2007_74585
crossref_primary_10_1109_TMI_2014_2324900
crossref_primary_10_1080_17415977_2018_1500569
crossref_primary_10_1088_0266_5611_27_4_045009
crossref_primary_10_1002_jcc_20796
crossref_primary_10_1137_080741410
crossref_primary_10_1137_S1064827596304010
crossref_primary_10_1016_j_jcp_2010_06_036
crossref_primary_10_3724_SP_J_1004_2012_00444
crossref_primary_10_1007_s00371_013_0857_6
crossref_primary_10_1016_j_patrec_2008_12_009
crossref_primary_10_1190_1_3506039
crossref_primary_10_1016_j_dsp_2024_104837
crossref_primary_10_1109_TMI_2003_819294
crossref_primary_10_1109_TMI_2007_911492
crossref_primary_10_1002_acm2_12411
crossref_primary_10_1016_S0531_5131_03_00485_0
crossref_primary_10_1109_78_950776
crossref_primary_10_1137_S0036139996313356
crossref_primary_10_1007_s10915_007_9145_9
crossref_primary_10_1109_JSTARS_2017_2707532
crossref_primary_10_1080_09500340_2015_1011246
crossref_primary_10_1137_S003614450037906X
crossref_primary_10_1109_JSTARS_2022_3185657
crossref_primary_10_1016_j_amc_2021_126224
crossref_primary_10_1088_1361_6420_abb299
crossref_primary_10_1016_j_ijleo_2015_08_119
crossref_primary_10_1109_TIP_2002_804527
crossref_primary_10_1109_LSP_2007_906221
crossref_primary_10_1371_journal_pone_0202464
crossref_primary_10_1080_01431161_2016_1274444
crossref_primary_10_1023_A_1008344608808
crossref_primary_10_1137_070706318
crossref_primary_10_1007_s10915_013_9750_8
crossref_primary_10_1007_s40305_015_0078_y
crossref_primary_10_1016_j_amc_2009_07_026
crossref_primary_10_1016_j_camwa_2024_08_014
crossref_primary_10_1088_1361_6501_aaaea4
crossref_primary_10_1109_TGRS_2019_2891354
crossref_primary_10_1016_j_eswa_2025_126948
crossref_primary_10_1371_journal_pone_0253214
crossref_primary_10_1016_j_nima_2014_09_041
crossref_primary_10_1007_s00285_008_0226_7
crossref_primary_10_1007_s11538_010_9511_x
crossref_primary_10_1016_j_cam_2008_07_054
crossref_primary_10_1016_j_jcp_2015_10_036
crossref_primary_10_1109_83_679423
crossref_primary_10_1016_j_aeue_2017_06_023
crossref_primary_10_1016_j_amc_2013_05_070
crossref_primary_10_1137_070696143
crossref_primary_10_1177_16878132221136942
crossref_primary_10_1109_TIP_2004_834669
crossref_primary_10_1088_1361_6501_aac8b6
crossref_primary_10_1007_s12190_011_0528_6
crossref_primary_10_1007_s10851_007_0016_7
crossref_primary_10_1088_0266_5611_20_1_007
crossref_primary_10_1364_AO_405663
crossref_primary_10_1137_070703533
crossref_primary_10_1016_j_neunet_2025_107670
crossref_primary_10_1109_TCI_2017_2706062
crossref_primary_10_1109_TGRS_2019_2947253
crossref_primary_10_1371_journal_pone_0109345
crossref_primary_10_1155_ASP_2006_61859
crossref_primary_10_4028_www_scientific_net_AMM_321_324_1107
crossref_primary_10_1007_s00791_007_0060_2
crossref_primary_10_1137_050644999
crossref_primary_10_1088_0031_9155_55_13_022
crossref_primary_10_1007_s00791_004_0150_3
crossref_primary_10_1364_PRJ_447862
crossref_primary_10_1137_15100401X
crossref_primary_10_1186_s13660_017_1433_9
crossref_primary_10_1007_s00371_014_1007_5
crossref_primary_10_1093_mnras_stv233
crossref_primary_10_1007_s00371_013_0873_6
crossref_primary_10_1137_15M1034076
Cites_doi 10.1007/BF01580899
10.1109/78.80914
10.1007/BF02579150
10.1137/0727053
10.1137/0109044
10.1016/0167-2789(92)90242-F
10.1007/BF02592024
10.1109/TC.1973.5009169
10.1109/78.277854
10.1137/0710069
10.1088/0266-5611/10/2/008
10.1109/83.236536
10.1051/m2an:1999102
10.1109/29.9032
10.1007/978-1-4615-3980-3
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/83.503914
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
PubMed
Computer and Information Systems Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
Computer Science
EndPage 995
ExternalDocumentID 18285186
10_1109_83_503914
503914
Genre Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c363t-1c799dc2e9084c18bae3fe632e8a23464db06b9fbf1534696696e40d87f1de0d3
IEDL.DBID RIE
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1109_83_503914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sun Nov 09 09:02:59 EST 2025
Sun Sep 28 09:44:26 EDT 2025
Sun Nov 09 11:59:00 EST 2025
Thu Apr 03 07:06:50 EDT 2025
Sat Nov 29 06:27:22 EST 2025
Tue Nov 18 22:35:44 EST 2025
Tue Aug 26 20:56:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1c799dc2e9084c18bae3fe632e8a23464db06b9fbf1534696696e40d87f1de0d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18285186
PQID 26103913
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_734272443
ieee_primary_503914
pubmed_primary_18285186
crossref_citationtrail_10_1109_83_503914
proquest_miscellaneous_28214345
crossref_primary_10_1109_83_503914
proquest_miscellaneous_26103913
PublicationCentury 1900
PublicationDate 1996-06-01
PublicationDateYYYYMMDD 1996-06-01
PublicationDate_xml – month: 06
  year: 1996
  text: 1996-06-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 1996
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref10
ref1
(ref15) 1992
ref17
ref19
bartels (ref18) 1981
katsaggelos (ref7) 1985
rudin (ref2) 0
ref23
ref25
ref20
dobson (ref11) 1994
vogel (ref14) 0
ref8
ref9
ref4
meketon (ref21) 1988
ref3
ref6
ref5
zhang (ref22) 1991
golub (ref16) 1989
sun (ref24) 1995
References_xml – year: 1994
  ident: ref11
  publication-title: Recovery of blocky images from noisy and blurred data
– year: 1981
  ident: ref18
  publication-title: An approach to nonlinear $l_1$ data fitting
– ident: ref23
  doi: 10.1007/BF01580899
– ident: ref8
  doi: 10.1109/78.80914
– ident: ref19
  doi: 10.1007/BF02579150
– year: 1988
  ident: ref21
  publication-title: Least absolute value regression
– ident: ref1
  doi: 10.1137/0727053
– ident: ref12
  doi: 10.1137/0109044
– ident: ref3
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref20
  doi: 10.1007/BF02592024
– ident: ref5
  doi: 10.1109/TC.1973.5009169
– ident: ref10
  doi: 10.1109/78.277854
– start-page: 700
  year: 1985
  ident: ref7
  article-title: a general formulation of constrained iterative image restoration
  publication-title: Proc ICASSP-85
– year: 1989
  ident: ref16
  publication-title: Matrix Computations
– ident: ref17
  doi: 10.1137/0710069
– year: 1992
  ident: ref15
  publication-title: MATLAB Reference Guide
– ident: ref25
  doi: 10.1088/0266-5611/10/2/008
– ident: ref9
  doi: 10.1109/83.236536
– ident: ref13
  doi: 10.1051/m2an:1999102
– year: 1991
  ident: ref22
  publication-title: A primal-dual interior point approach for computing the $l_1$ and $l_\infty$ solutions of overdetermined linear systems
– year: 1995
  ident: ref24
  publication-title: Dealing with dense rows in the solution of sparse linear least squares problems
– year: 0
  ident: ref14
  publication-title: Iterative methods for total variation denoising
– ident: ref6
  doi: 10.1109/29.9032
– year: 0
  ident: ref2
  article-title: total variation based restoration of noisy blurred images
  publication-title: SIAM J Num Anal
– ident: ref4
  doi: 10.1007/978-1-4615-3980-3
SSID ssj0014516
Score 1.9199294
Snippet A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 987
SubjectTerms Computer science
Gradient methods
Image restoration
Iterative algorithms
Least squares methods
Mathematics
Military computing
Minimization methods
Newton method
Piecewise linear techniques
Title A computational algorithm for minimizing total variation in image restoration
URI https://ieeexplore.ieee.org/document/503914
https://www.ncbi.nlm.nih.gov/pubmed/18285186
https://www.proquest.com/docview/26103913
https://www.proquest.com/docview/28214345
https://www.proquest.com/docview/734272443
Volume 5
WOSCitedRecordID wos10_1109_83_503914&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014516
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBx_paH2sQD16qbZPmcRRRvKx4UNhbSZtUF9yt7HY9-OudpO2qoIKQQztMSujk8U0m-Qbg1FG0Oya7QFMjA_S_cB5MCh1oJlgidZZkqvDJJsTdnRwM1H3Ds-3vwlhr_eEze-4efSzflPnMbZVdJI7OnC3CohCivqo1Dxi4fLM-sJmIQCDqb0iEolBdSHpeV_y29PhcKr_DSr-83Kz_q2EbsNagSHJZm30TFuy4A-sNoiTNeJ2iqE3a0Mo6sPqFgRDf-nPa1ukW9C9J7is0O4REvzyVk2H1PCKIbYmjIRkN37EiqUoE7eQNHW2vSoZYRjg1kYnPVOOF2_B4c_1wdRs0-RaCnHJaBVEulDJ5bBVaMI9kpi0tLKexlTqmjDOThRxtlxU4TaJZORbLQiNFERkbGroDS-NybPeAcGqZEhlaG5d_LZU0BddCFqHhcSaTsAtnrSnSvCEjdzkxXlLvlIQqlTSt_2oXTuaqrzUDx09KHWeVuUIrPW7Nm-KocaEQPbblbJqi3-g06B8aMkYoyZIukF80BGWxQHSEH9mtu85n-xwvYCT5_o_NOoCV-uy328s5hKVqMrNHsJy_VcPppIe9eyB7vnd_AE3k9xo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH_aOqSNAx8dg7IBFuLAJZDEjj-OaFrFBK04FIlb5MQOVKINalMO--v37CQFpDJpkg_J03Nk5fnj9_zs3wM4cRTtjsku0NTIAP0vnAeTQgeaCZZInSWZKnyyCTEcyrs7ddPwbPu7MNZaf_jMnrlHH8s3Zb5wW2XniaMzZx_hU8JYHNWXtZYhA5dx1oc2ExEIxP0NjVAUqnNJz-qqbxYfn03lfWDpF5j-5n81bQs2GhxJLmrDb8MHO-3CZoMpSTNi5yhq0za0si6sv-IgxLfBkrh1_hUGFyT3FZo9QqIf78vZuHqYEES3xBGRTMZ_sCKpSoTt5Bldba9KxlgmODmRmc9V44U7cNv_Nfp5GTQZF4KccloFUS6UMnlsFdowj2SmLS0sp7GVOqaMM5OFHK2XFThRomE5FstCI0URGRsa-g0603Jq94BwapkSGdobAYCWSpqCayGL0PA4k0nYg9PWFGne0JG7rBiPqXdLQpVKmtZ_tQfHS9WnmoNjlVLXWWWp0EqPWvOmOG5cMERPbbmYp-g5Og36Dw0ZI5hkSQ_IOxqCslggPsKP7NZd56V9jhkwknx_ZbOO4PPlaHCdXv8eXn2HL_VJcLez8wM61WxhD2Atf67G89mh7-N_AXIk-Xk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+algorithm+for+minimizing+total+variation+in+image+restoration&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Y&rft.au=Santosa%2C+F&rft.date=1996-06-01&rft.issn=1057-7149&rft.volume=5&rft.issue=6&rft.spage=987&rft_id=info:doi/10.1109%2F83.503914&rft_id=info%3Apmid%2F18285186&rft.externalDocID=18285186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon