Derivative-free methods for mixed-integer nonsmooth constrained optimization

In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 82; číslo 2; s. 293 - 327
Hlavní autori: Giovannelli, Tommaso, Liuzzi, Giampaolo, Lucidi, Stefano, Rinaldi, Francesco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2022
Springer Nature B.V
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework is proposed to suitably handle those problems. First, a scheme for bound constrained problems that combines a dense sequence of directions to handle the nonsmoothness of the objective function with primitive directions to handle discrete variables is described. Then, an exact penalty approach is embedded in the scheme to suitably manage nonlinear (possibly nonsmooth) constraints. Global convergence properties of the proposed algorithms toward stationary points are analyzed and results of an extensive numerical experience on a set of mixed-integer test problems are reported.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-022-00363-1