Derivative-free methods for mixed-integer nonsmooth constrained optimization

In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework...

Full description

Saved in:
Bibliographic Details
Published in:Computational optimization and applications Vol. 82; no. 2; pp. 293 - 327
Main Authors: Giovannelli, Tommaso, Liuzzi, Giampaolo, Lucidi, Stefano, Rinaldi, Francesco
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2022
Springer Nature B.V
Subjects:
ISSN:0926-6003, 1573-2894
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, mixed-integer nonsmooth constrained optimization problems are considered, where objective/constraint functions are available only as the output of a black-box zeroth-order oracle that does not provide derivative information. A new derivative-free linesearch-based algorithmic framework is proposed to suitably handle those problems. First, a scheme for bound constrained problems that combines a dense sequence of directions to handle the nonsmoothness of the objective function with primitive directions to handle discrete variables is described. Then, an exact penalty approach is embedded in the scheme to suitably manage nonlinear (possibly nonsmooth) constraints. Global convergence properties of the proposed algorithms toward stationary points are analyzed and results of an extensive numerical experience on a set of mixed-integer test problems are reported.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-022-00363-1