Autoencoder Application for Artwork Authentication Fingerprinting Using the Craquelure Network

This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure networks in paintings. Craquelure, the fine pattern of the craquelure network formed on a painting’s surface over time, is a unique “fingerprin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 15; číslo 16; s. 9014
Hlavní autoři: Chirosca, Gianina, Radvan, Roxana, Pop, Matei, Chirosca, Alecsandru
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2025
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure networks in paintings. Craquelure, the fine pattern of the craquelure network formed on a painting’s surface over time, is a unique “fingerprint” for artwork item authentication. The system utilizes a modified VGG19 backbone, which effectively balances computational efficiency with the ability to extract rich, multi-scale features from high-resolution grayscale images. By leveraging this architecture, the model captures global structural patterns and local texture information, which are essential for reliable analysis.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app15169014