Autoencoder Application for Artwork Authentication Fingerprinting Using the Craquelure Network
This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure networks in paintings. Craquelure, the fine pattern of the craquelure network formed on a painting’s surface over time, is a unique “fingerprin...
Uložené v:
| Vydané v: | Applied sciences Ročník 15; číslo 16; s. 9014 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.08.2025
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure networks in paintings. Craquelure, the fine pattern of the craquelure network formed on a painting’s surface over time, is a unique “fingerprint” for artwork item authentication. The system utilizes a modified VGG19 backbone, which effectively balances computational efficiency with the ability to extract rich, multi-scale features from high-resolution grayscale images. By leveraging this architecture, the model captures global structural patterns and local texture information, which are essential for reliable analysis. |
|---|---|
| AbstractList | This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure networks in paintings. Craquelure, the fine pattern of the craquelure network formed on a painting’s surface over time, is a unique “fingerprint” for artwork item authentication. The system utilizes a modified VGG19 backbone, which effectively balances computational efficiency with the ability to extract rich, multi-scale features from high-resolution grayscale images. By leveraging this architecture, the model captures global structural patterns and local texture information, which are essential for reliable analysis. |
| Audience | Academic |
| Author | Pop, Matei Radvan, Roxana Chirosca, Alecsandru Chirosca, Gianina |
| Author_xml | – sequence: 1 givenname: Gianina orcidid: 0000-0002-7973-8192 surname: Chirosca fullname: Chirosca, Gianina – sequence: 2 givenname: Roxana orcidid: 0000-0002-5033-2076 surname: Radvan fullname: Radvan, Roxana – sequence: 3 givenname: Matei orcidid: 0009-0000-0178-4730 surname: Pop fullname: Pop, Matei – sequence: 4 givenname: Alecsandru orcidid: 0000-0001-7760-0790 surname: Chirosca fullname: Chirosca, Alecsandru |
| BookMark | eNpNUdtKAzEQDaJgrT75Aws-SnUm2exuHkvxBkVf9NWQ5lK3tsma3SL-vaNVMYFczpxzOMMcsf2YomfsFOFCCAWXputQYqUAyz024lBXE1Fivf_vfchO-n4FtBSKBmHEnqfbIflok_O5mHbdurVmaFMsQqJ_Ht5Tfi2I8-Lj8Fu6buPS5y63BMVl8dR_ncQoZtm8bf16m31x77-lx-wgmHXvT37uMXu6vnqc3U7mDzd3s-l8YkUlhgkqI93CAdYh1NCAFcoTVgUenOcWUDU81KWVC8lVVSpsXBNQBQeVXCgRxJjd7XxdMitN0TYmf-hkWv0NpLzUJlMDa6_BloihErwxtpSWK8-5dQALgbW3NZDX2c6ry4na6Qe9StscKb4WvBSqwRIksS52rKUh0zaGNGRjaTu_aS1NJrSETxspZI1KVSQ43wlsTn2fffiLiaC_Bqj_DVB8AiCZj0g |
| Cites_doi | 10.3390/ijgi8120527 10.3390/ma16237412 10.1109/ICCV.1999.790410 10.3389/fmats.2020.601339 10.3390/app12136710 10.1371/journal.pone.0272078 10.1109/LGRS.2024.3409758 10.3390/jimaging10110276 10.3390/app11115229 10.1038/s41586-020-2649-2 10.1109/LGRS.2018.2802944 10.1109/TPAMI.1986.4767851 10.1111/j.1467-8667.2006.00466.x 10.3390/app15010212 10.3390/rs16162910 10.1145/1873951.1874254 10.1016/j.isprsjprs.2021.03.008 10.1016/j.culher.2020.08.007 10.1016/B978-0-32-395399-3.00015-9 10.1016/j.cviu.2007.09.014 10.1016/B978-0-12-381479-1.00002-2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app15169014 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_0c411f6328ac45c29e22cd00b317ec70 A853571996 10_3390_app15169014 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c363t-19a5dbd017ff7080c39e19a6f2fde2c01982f74c5b52964918d8f19fd065b93f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557242200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:03:15 EDT 2025 Sat Nov 01 15:05:51 EDT 2025 Tue Nov 04 18:11:37 EST 2025 Sat Nov 29 07:19:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c363t-19a5dbd017ff7080c39e19a6f2fde2c01982f74c5b52964918d8f19fd065b93f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7760-0790 0000-0002-5033-2076 0009-0000-0178-4730 0000-0002-7973-8192 |
| OpenAccessLink | https://doaj.org/article/0c411f6328ac45c29e22cd00b317ec70 |
| PQID | 3243981405 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0c411f6328ac45c29e22cd00b317ec70 proquest_journals_3243981405 gale_infotracacademiconefile_A853571996 crossref_primary_10_3390_app15169014 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zabari (ref_2) 2021; 11784 Wang (ref_14) 2025; 139 ref_36 ref_35 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 ref_30 Xiong (ref_17) 2024; 21 ref_18 Harris (ref_26) 2020; 585 Herascu (ref_8) 2008; 60 Pauchard (ref_13) 2020; 46 Richard (ref_3) 2021; 2 Pauchard (ref_12) 2016; 120 Cortea (ref_4) 2020; 7 ref_25 ref_23 ref_22 Lu (ref_16) 2021; 175 ref_21 ref_20 ref_1 Zhang (ref_15) 2018; 15 ref_29 Canny (ref_27) 1986; PAMI-8 ref_28 Park (ref_5) 2006; 22 Kim (ref_24) 2022; 17 ref_9 Liu (ref_19) 2021; 54 ref_7 ref_6 Bay (ref_37) 2008; 110 |
| References_xml | – ident: ref_28 – ident: ref_30 – ident: ref_6 doi: 10.3390/ijgi8120527 – ident: ref_9 doi: 10.3390/ma16237412 – ident: ref_32 – ident: ref_35 doi: 10.1109/ICCV.1999.790410 – volume: 7 start-page: 601339 year: 2020 ident: ref_4 article-title: Application of Spectroscopic and Hyperspectral Imaging Techniques for Rapid and Nondestructive Investigation of Jewish Ritual Parchment publication-title: Front. Mater. doi: 10.3389/fmats.2020.601339 – ident: ref_11 doi: 10.3390/app12136710 – volume: 17 start-page: e0272078 year: 2022 ident: ref_24 article-title: Investigation of craquelure patterns in oil paintings using precise 3D morphological analysis for art authentication publication-title: PloS ONE doi: 10.1371/journal.pone.0272078 – volume: 21 start-page: 6011705 year: 2024 ident: ref_17 article-title: CFRNet: Road Extraction in Remote Sensing Images Based on Cascade Fusion Network publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2024.3409758 – volume: 2 start-page: 775 year: 2021 ident: ref_3 article-title: Feature-Based Point Cloud-Based Assessment of Heritage Structures for Nondestructive and Noncontact Surface Damage Detection publication-title: AI Soc. – ident: ref_10 doi: 10.3390/jimaging10110276 – volume: 54 start-page: 79 year: 2021 ident: ref_19 article-title: Review and prospect of digital-image-based crack detection of structure surface publication-title: Editor. Off. China Civ. Eng. J. – ident: ref_1 – ident: ref_20 doi: 10.3390/app11115229 – volume: 585 start-page: 357 year: 2020 ident: ref_26 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 15 start-page: 749 year: 2018 ident: ref_15 article-title: Road Extraction by Deep Residual U-Net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2802944 – ident: ref_21 – volume: PAMI-8 start-page: 679 year: 1986 ident: ref_27 article-title: A computational approach to edge detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767851 – volume: 22 start-page: 19 year: 2006 ident: ref_5 article-title: A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2006.00466.x – volume: 11784 start-page: 12 year: 2021 ident: ref_2 article-title: Analysis of craquelure patterns in historical painting using image processing along with neural network algorithms publication-title: SPIE – ident: ref_7 doi: 10.3390/app15010212 – ident: ref_18 doi: 10.3390/rs16162910 – ident: ref_25 – ident: ref_34 doi: 10.1145/1873951.1874254 – volume: 175 start-page: 340 year: 2021 ident: ref_16 article-title: GAMSNet: Globally aware road detection network with multi-scale residual learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.03.008 – ident: ref_29 – ident: ref_33 – volume: 139 start-page: 104518 year: 2025 ident: ref_14 article-title: Whu-Rur+: A Benchmark Dataset for Global High-Resolution Rural Road Extraction publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 60 start-page: 95 year: 2008 ident: ref_8 article-title: Color changes in the artwork materials aged by UV radiation publication-title: Rom. Rep. Phys. – volume: 46 start-page: 361 year: 2020 ident: ref_13 article-title: Craquelures and pictorial matter publication-title: J. Cult. Herit. doi: 10.1016/j.culher.2020.08.007 – ident: ref_36 – volume: 120 start-page: 8 year: 2016 ident: ref_12 article-title: Painting cracks: A way to investigate the pictorial matter publication-title: J. Appl. Phys. – ident: ref_22 – ident: ref_23 doi: 10.1016/B978-0-32-395399-3.00015-9 – volume: 110 start-page: 346 year: 2008 ident: ref_37 article-title: Speeded-Up Robust Features (SURF) publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.09.014 – ident: ref_31 doi: 10.1016/B978-0-12-381479-1.00002-2 |
| SSID | ssj0000913810 |
| Score | 2.326121 |
| Snippet | This paper presents a deep learning-based system designed for generating, storing, and retrieving embeddings, specifically tailored for analyzing craquelure... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 9014 |
| SubjectTerms | Climate change Computational linguistics Computer vision convolutional neural networks Cracks craquelure detection Cultural heritage Deep learning image processing Language processing Machine learning Morphology Natural language interfaces Neural networks |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21Sw_lQAu06vJR-YBEOUSNYyexT2hBrDitUNVKnLAcf1S97EI28PuZ8XqBHsqlVzuKLI3H8zzz_AbgSIbS1zzi3cSHWMhO6EJjnCoaGTH6aocI2qZmE-1spq6v9VVOuC0zrXJ9JqaD2i8c5ci_Y-AXmuSZ6tPbu4K6RlF1NbfQeAsbpFQmR7BxdjG7-vGUZSHVS8XL1cM8gfd7qgvzVBvi8q9QlBT7_3Uup2Az_fC_y_wIWxlmsslqX2zDmzDfgc0X4oM7sJ3desm-Ze3pk124mdwPC9K29KFnk-fiNkNsS38jGhejtBqRjPLUNGUGKUFIFGqWSAgMv2DnvcWlE--dzVZs80_wa3rx8_yyyC0YCicaMRRc29p3Ht02xhbBpRM64FgTq-hD5RAfqiq20tVdqt9qrryKXEePyKbTIorPMJov5uELsNo1tbDCKifxTt5o69H9lUL4EGwreBzD0doa5naltGHwhkJGMy-MNoYzstTTJySPnQYW_W-Tvc2UTnIeG1Ep62TtKh2qyvmy7BAtBdeWYzgmOxty4qG3zua3CLhSksMyEwQxdUsE7TEcrO1ssncvzbOR916f3of3FfULToTBAxgN_X04hHfuYfiz7L_mzfoIWS7zzA priority: 102 providerName: ProQuest |
| Title | Autoencoder Application for Artwork Authentication Fingerprinting Using the Craquelure Network |
| URI | https://www.proquest.com/docview/3243981405 https://doaj.org/article/0c411f6328ac45c29e22cd00b317ec70 |
| Volume | 15 |
| WOSCitedRecordID | wos001557242200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hYIABQQFRXvJQCRgi6jgvjwVRwUBVIZBgwXL8kFhalKb8fu6cFMqAWBjjWJF1l_Pd-T5_B9BLXN-m3GNuYp2PklLISKKfirLEo_eVBiNoHZpN5KNR8fwsx0utvggT1tADN4K77JuEc5-JuNAmSU0sXRwb2--X6PicyUO2jlHPUjIV9mDJibqquZAnMK-nejAPNSGe_HBBgan_t_04OJnhNmy10SEbNKvagRU36cDmEmdgB3Zaa5yx85Yy-mIXXgfzekqUlNZVbPBdk2YYktLXCH3F6DSMsEHtq2E40KNzPUI-s4AdYDiDXVcaF0dwdTZqQOJ78DS8eby-jdrOCZERmagjLnVqS4vW5n2O0jFCOhzLfOytiw2GdUXs88SkZSi7Sl7YwnPpLQYkpRRe7MPqZDpxB8BSk6VCC12YBFPpTGqLVlsU6PWdzgX3XegthKneG4IMhYkFyVwtybwLVyTorynEah0GUNeq1bX6S9ddOCM1KbK9utJGt1cIcKXEYqUGGHukOeGqu3C80KRqjXKmMHYUkhi-0sP_WM0RbMTUDDigAY9hta7m7gTWzUf9NqtOYe3qZjR-OA3_JT6N7-7HL5_n3-c_ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpALBTwoQg4RMR2PuwDQkth1VXb1R6KVC64iT-qXnZLNgXxp_iNzDjZthzg1gPXxIoS-2VmPPP8BmA786nLecC9ifMhyWqpE41-KimygN5XW4ygq9hsopxO1dGRnq3Br9VZGKJVrmxiNNRuYSlH_hYdv9Qkz5S_P_uWUNcoqq6uWmh0sNjzP3_glm35bvIR1_elEONPhzu7Sd9VILGykG3CdZW72iESQygxXrJSe7xWBBGcFxZDHiVCmdm8jiVJzZVTgevg0FnXWgaJz70B6xmCXQ1gfTY5mH25yOqQyqbiaXcQUEqdUh2ax1oUz_5wfbFDwN_8QHRu43v_27Tch7t9GM1GHe43YM3PN-HOFXHFTdjozdaSve61td88gK-j83ZB2p3ON2x0WbxnGLvT04imxihtSCSq_tY4Zj4pAUoUcRZJFgxHsJ2mwqkiXj-bdmz6h_D5Wr76EQzmi7l_DCy3RS4rWSmbpVlR6MqheVMKwyNflZKHIWyvVt-cdUoiBndgBBJzBSRD-EDIuBhC8t_xwqI5Mb01ManNOA-FFKqyWW6F9kJYl6Y1RoPelukQXhGuDBmptqls1Z-1wDcluS8zwiAtL4mAPoStFa5Mb72W5hJUT_59-wXc2j082Df7k-neU7gtqDdyJEduwaBtzv0zuGm_t6fL5nn_ozA4vm4Q_gbG8FBl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFiE4AC2gLhTwoQg4RI0fefiA0NKyYlVY7QGkciF1_EC97JZsCuKv8euYcZK2HODWA9fEihLn88znmc8zALvKpy7jAfcmzodE1VInGv1UkquA3ldbZNAmNpsoZrPy6EjP1-DXcBaGZJWDTYyG2i0txcj30PFLTeWZsr3QyyLmB5PXp98S6iBFmdahnUYHkUP_8wdu31avpgf4r58JMXn7cf9d0ncYSKzMZZtwbTJXO0RlCAVyJyu1x2t5EMF5YZH-lCIUymZ1TE9qXroycB0cOu5ayyDxuddgAym5wjW2MZ9-mH8-j_BQxc2Sp92hQCl1SjlpHvNSXP3hBmO3gL_5hOjoJnf-5ym6C7d7es3G3XrYhDW_2IJbl4oubsFmb85W7EVfc_vlPfgyPmuXVNPT-YaNL5L6DDk9PY3ka4zCiSSu6m9NYkSUAqMkHWdRfMFwBNtvDE4b6f3ZrFPZ34dPV_LVD2B9sVz4bWCZzTNppCmtSlWea-PQ7JUl0iZvCsnDCHYHJFSnXYWRCndmBJjqEmBG8IZQcj6EyoLHC8vma9VbmSq1ivOQS1EaqzIrtBfCujStkSV6W6QjeE4Yq8h4tY2xpj-DgW9KZcCqMZK3rCBh-gh2BoxVvVVbVRcAe_jv20_hBiKvej-dHT6Cm4JaJkfN5A6st82ZfwzX7ff2ZNU86dcMg-OrxuBvkTFZJQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder+Application+for+Artwork+Authentication+Fingerprinting+Using+the+Craquelure+Network&rft.jtitle=Applied+sciences&rft.au=Chirosca%2C+Gianina&rft.au=Radvan%2C+Roxana&rft.au=Pop%2C+Matei&rft.au=Chirosca%2C+Alecsandru&rft.date=2025-08-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=15&rft.issue=16&rft.spage=9014&rft_id=info:doi/10.3390%2Fapp15169014&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app15169014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |