GRASP92: a package for large-scale relativistic atomic structure calculations
Title of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstati...
Gespeichert in:
| Veröffentlicht in: | Computer physics communications Jg. 175; H. 11; S. 745 - 747 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2006
|
| Schlagworte: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Title of program: GRASP92
Catalogue identifier: ADCU_v1_1
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1
Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland
Licensing provisions: no
Programming language used: Fortran
Computer: IBM POWERstation 320H
Operating system: IBM AIX 3.2.5+
RAM: 64M words
No. of lines in distributed program, including test data, etc.: 65 224
No of bytes in distributed program, including test data, etc.: 409 198
Distribution format: tar.gz
Catalogue identifier of previous version: ADCU_v1_0
Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249
Does the new version supersede the previous version?: Yes
Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a ‘fully relativistic’ approach.
Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator,
j
=
l
+
s
, and the parity operator
Π
=
β
π
. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator,
J, and the atomic parity operator,
P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number,
n
c
, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac–Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas–Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra.
Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738–744.
[7]]. This version of GRASP92 corrects these errors.
Summary of revisions:
(1)
Correction to a logical error that affects extended optimal level (EOL) calculations important for correlation studies.
Line 76 deleted from grasp92/rscf92/raw/scf.raw.
Line 114 deleted from grasp92/rscf92/raw/setlag.raw.
(2)
The removal of a limitation on diagonal energy parameters for correlation orbitals.
IF (METHOD(J).LE. 2) THEN inserted after line 84 of grasp92/rscf92/raw/solve.raw.
ENDIF inserted after line 94 in grasp92/rscf92/raw/solve.raw.
(3)
Removal of an error in the evaluation of one-electron matrix elements for tensors of rank greater than zero. This error affected electric quadrupole (E2) transition probabilities, off-diagonal hyperfine parameters, and quadrupole moments.
IF (NQ1(IA1).EQ.0.AND. NQ2(IA2).EQ.0) GOTO 100 inserted after line 179 of grasp92/lib92/raw/tnsrjj.raw.
Line 194 of grasp92/lib92/raw/tnsrjj.raw replaced by
IF (JBQ1(K,IJ) .NE. JBQ2(K,IJ)) GOTO 100.
Restrictions: The maximum size of a multiconfiguration (MC) calculation, as measured by the length of the configuration state function (CSF) list
n
c
, is limited by numerical stability, processing time, or storage. Numerical stability typically decreases as the number of radial functions varied increases and as the number of open subshells increases. Processing time increases as some power of
n
c
greater than 1 but generally appreciably less than 3. Lists of angular integrals,
V
r
s
k
(
a
b
c
d
)
, distinguished by tensor rank,
k, are written to disk; the available disk storage must be large enough to store all such lists together. Each list is subsequently read into memory and sorted by canonically-ordered Slater integral indices
a
b
c
d
; the available memory (including any available virtual memory) must be large enough to store the longest list before it is sorted. The lengths of the unsorted and sorted lists increase as some power of
n
c
greater than 1 but generally less than the maximum of 2. The maximum size of a configuration interaction (CI) calculation is limited by processing time and storage. Processing time increases as some power of
n
c
greater than 1 but generally appreciably less than 2. A sparse representation of the lower triangle of the Hamiltonian matrix is written to disk; the available disk storage must be large enough to store this representation of the Hamiltonian matrix. The size of this representation of the Hamiltonian matrix increases as some power of
n
c
greater than 1 but generally less than the maximum of 2. All orbitals that share the quantum numbers
nlj (i.e., all members of a subshell) are assumed to have the same radial dependence
P
n
l
j
(
r
)
,
Q
n
l
j
(
r
)
. Orbitals with different values of the quantum numbers
nlj are assumed to be orthogonal. The tables of coefficients of fractional parentage used in GRASP92 are limited to subshells with
j
⩽
7
/
2
; occupied subshells with
j
=
9
/
2
are, therefore, restricted to a maximum of two electrons.
Unusual features: The GRASP92 package comprises task-specific component programs for the specification of nuclear properties, the generation and manipulation of lists of configuration state functions (CSFs), the computation of radial wavefunctions, of approximate atomic state functions (ASFs), the computation of properties of electromagnetic transitions between ASFs, and for the conversion of data between machine-specific unformatted representations and universal formatted representations. All component programs in the GRASP92 package have been designed for interactive use; the number of keystrokes required by the user is reduced by the provision of defaults appropriate to the types of calculations that are expected to be performed most frequently, and by the provision of interpretation for ‘wild card’ characters as sets of data items. Several devices have been adopted to reduce computational effort and storage requirements: in multiconfiguration (MC) calculations, the list of angular integrals is presorted by tensor rank prior to sorting by canonically-ordered Slater integral indices; in configuration-interaction (CI) and transition property calculations, angular integrals are not stored and an ordered list of radial integrals is searched and augmented as required as the calculation progresses; in MC and CI calculations, the lower triangle of the Hamiltonian matrix is stored in a sparse representation; the Davidson–Liu algorithm [E.R. Davidson, J. Comput. Phys. 17 (1975) 87; Comput. Phys. Comm. 53 (1989) 49; B. Liu, in: C. Moler, I. Shavitt (Eds.), Numerical Algorithms in Chemistry: Algebraic Methods, Lawrence Berkeley Laboratory, Berkeley, California, 1978; C.W. Murray, S.C. Racine, E.R. Davidson, J. Comput. Phys. 103 (1992) 382.
[1]] as implemented by Stathopoulos and Fischer [A. Stathopoulos, C. Froese Fischer, Comput. Phys. Comm. 79 (1994) 1.
[2]] is used to extract the eigenvalues and eigenvectors of interest. Certain linear-algebraic operations are preformed using subprograms from the BLAS [C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, ACM Trans. Math. Soft. 5 (1979) 308; J. Dongarra, ACM Trans. Math. Soft. 14 (1988) 1; J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, ACM Trans. Math. Soft. 14 (1988) 18; J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling, ACM Trans. Math. Soft. 16 (1990) 1, 18.
[3]] and LAPACK [E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
[4]] libraries. Angular-momentum recoupling coefficients are computed using the NJGRAF package of Bar-Shalom and Klapisch [A. Bar-Shalom, M. Klapisch, Comput. Phys. Comm. 50 (1988) 375.
[5]]. A minor revision of a preprocessor program due to K.G. Dyall [K.G. Dyall, Comput. Phys. Comm. 39 (2986) 141.
[6]] is used to automate the setting of array dimensions and the selection of installation-dependent features.
Running time: CPU time required to execute test cases: 300 min |
|---|---|
| AbstractList | Title of program: GRASP92
Catalogue identifier: ADCU_v1_1
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1
Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland
Licensing provisions: no
Programming language used: Fortran
Computer: IBM POWERstation 320H
Operating system: IBM AIX 3.2.5+
RAM: 64M words
No. of lines in distributed program, including test data, etc.: 65 224
No of bytes in distributed program, including test data, etc.: 409 198
Distribution format: tar.gz
Catalogue identifier of previous version: ADCU_v1_0
Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249
Does the new version supersede the previous version?: Yes
Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a ‘fully relativistic’ approach.
Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator,
j
=
l
+
s
, and the parity operator
Π
=
β
π
. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator,
J, and the atomic parity operator,
P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number,
n
c
, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac–Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas–Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra.
Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738–744.
[7]]. This version of GRASP92 corrects these errors.
Summary of revisions:
(1)
Correction to a logical error that affects extended optimal level (EOL) calculations important for correlation studies.
Line 76 deleted from grasp92/rscf92/raw/scf.raw.
Line 114 deleted from grasp92/rscf92/raw/setlag.raw.
(2)
The removal of a limitation on diagonal energy parameters for correlation orbitals.
IF (METHOD(J).LE. 2) THEN inserted after line 84 of grasp92/rscf92/raw/solve.raw.
ENDIF inserted after line 94 in grasp92/rscf92/raw/solve.raw.
(3)
Removal of an error in the evaluation of one-electron matrix elements for tensors of rank greater than zero. This error affected electric quadrupole (E2) transition probabilities, off-diagonal hyperfine parameters, and quadrupole moments.
IF (NQ1(IA1).EQ.0.AND. NQ2(IA2).EQ.0) GOTO 100 inserted after line 179 of grasp92/lib92/raw/tnsrjj.raw.
Line 194 of grasp92/lib92/raw/tnsrjj.raw replaced by
IF (JBQ1(K,IJ) .NE. JBQ2(K,IJ)) GOTO 100.
Restrictions: The maximum size of a multiconfiguration (MC) calculation, as measured by the length of the configuration state function (CSF) list
n
c
, is limited by numerical stability, processing time, or storage. Numerical stability typically decreases as the number of radial functions varied increases and as the number of open subshells increases. Processing time increases as some power of
n
c
greater than 1 but generally appreciably less than 3. Lists of angular integrals,
V
r
s
k
(
a
b
c
d
)
, distinguished by tensor rank,
k, are written to disk; the available disk storage must be large enough to store all such lists together. Each list is subsequently read into memory and sorted by canonically-ordered Slater integral indices
a
b
c
d
; the available memory (including any available virtual memory) must be large enough to store the longest list before it is sorted. The lengths of the unsorted and sorted lists increase as some power of
n
c
greater than 1 but generally less than the maximum of 2. The maximum size of a configuration interaction (CI) calculation is limited by processing time and storage. Processing time increases as some power of
n
c
greater than 1 but generally appreciably less than 2. A sparse representation of the lower triangle of the Hamiltonian matrix is written to disk; the available disk storage must be large enough to store this representation of the Hamiltonian matrix. The size of this representation of the Hamiltonian matrix increases as some power of
n
c
greater than 1 but generally less than the maximum of 2. All orbitals that share the quantum numbers
nlj (i.e., all members of a subshell) are assumed to have the same radial dependence
P
n
l
j
(
r
)
,
Q
n
l
j
(
r
)
. Orbitals with different values of the quantum numbers
nlj are assumed to be orthogonal. The tables of coefficients of fractional parentage used in GRASP92 are limited to subshells with
j
⩽
7
/
2
; occupied subshells with
j
=
9
/
2
are, therefore, restricted to a maximum of two electrons.
Unusual features: The GRASP92 package comprises task-specific component programs for the specification of nuclear properties, the generation and manipulation of lists of configuration state functions (CSFs), the computation of radial wavefunctions, of approximate atomic state functions (ASFs), the computation of properties of electromagnetic transitions between ASFs, and for the conversion of data between machine-specific unformatted representations and universal formatted representations. All component programs in the GRASP92 package have been designed for interactive use; the number of keystrokes required by the user is reduced by the provision of defaults appropriate to the types of calculations that are expected to be performed most frequently, and by the provision of interpretation for ‘wild card’ characters as sets of data items. Several devices have been adopted to reduce computational effort and storage requirements: in multiconfiguration (MC) calculations, the list of angular integrals is presorted by tensor rank prior to sorting by canonically-ordered Slater integral indices; in configuration-interaction (CI) and transition property calculations, angular integrals are not stored and an ordered list of radial integrals is searched and augmented as required as the calculation progresses; in MC and CI calculations, the lower triangle of the Hamiltonian matrix is stored in a sparse representation; the Davidson–Liu algorithm [E.R. Davidson, J. Comput. Phys. 17 (1975) 87; Comput. Phys. Comm. 53 (1989) 49; B. Liu, in: C. Moler, I. Shavitt (Eds.), Numerical Algorithms in Chemistry: Algebraic Methods, Lawrence Berkeley Laboratory, Berkeley, California, 1978; C.W. Murray, S.C. Racine, E.R. Davidson, J. Comput. Phys. 103 (1992) 382.
[1]] as implemented by Stathopoulos and Fischer [A. Stathopoulos, C. Froese Fischer, Comput. Phys. Comm. 79 (1994) 1.
[2]] is used to extract the eigenvalues and eigenvectors of interest. Certain linear-algebraic operations are preformed using subprograms from the BLAS [C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, ACM Trans. Math. Soft. 5 (1979) 308; J. Dongarra, ACM Trans. Math. Soft. 14 (1988) 1; J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, ACM Trans. Math. Soft. 14 (1988) 18; J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling, ACM Trans. Math. Soft. 16 (1990) 1, 18.
[3]] and LAPACK [E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1992.
[4]] libraries. Angular-momentum recoupling coefficients are computed using the NJGRAF package of Bar-Shalom and Klapisch [A. Bar-Shalom, M. Klapisch, Comput. Phys. Comm. 50 (1988) 375.
[5]]. A minor revision of a preprocessor program due to K.G. Dyall [K.G. Dyall, Comput. Phys. Comm. 39 (2986) 141.
[6]] is used to automate the setting of array dimensions and the selection of installation-dependent features.
Running time: CPU time required to execute test cases: 300 min |
| Author | Parpia, F.A. Grant, I.P. Froese Fischer, C. |
| Author_xml | – sequence: 1 givenname: F.A. surname: Parpia fullname: Parpia, F.A. email: parpia@us.ibm.com organization: IBM Corporation, POWERparallel Systems, Scientific Research and Chemistry Segment, 522 South Road, Poughkeepsie, NY 12601, USA – sequence: 2 givenname: C. surname: Froese Fischer fullname: Froese Fischer, C. email: charlotte.f.fischer@vanderbilt.edu, charlotte.fischer@nist.gov organization: Computer Science Department, Vanderbilt University, Nashville, TN 37215, USA – sequence: 3 givenname: I.P. surname: Grant fullname: Grant, I.P. email: i.p.grant@ntlworld.com organization: Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, UK |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DLDySM48SOYVVVUJCKQDzWluNMKpc0qWy3En-PS1mx6Opu7hndORMy6oceCbmmkFGg_Gadma3JcgCegcggp2dkTCsh01wWxYiMASikBS_LCzLxfg0AQkg2Js-Lt9n7q8xvE51stfnSK0zawSWdditMvdEdJg47Heze-mBNosOwieGD25mwc5jEitkdCkPvL8l5qzuPV385JZ8P9x_zx3T5sniaz5apYZyFlHIjNJe6qGuGOUPZ1liZhtdxfpyFrJBNLWvR6kKWDQAr8rIsNS-bvKpEpdmUiONd4wbvHbbK2PA7IThtO0VBHayotYpW1MGKAqGilUjSf-TW2Y123yeZuyOD8aW9Rae8sdgbbKxDE1Qz2BP0Dy96fH4 |
| CitedBy_id | crossref_primary_10_1007_s12648_015_0754_0 crossref_primary_10_1088_0953_4075_49_20_205002 crossref_primary_10_3847_1538_4357_836_1_125 crossref_primary_10_1140_epjd_s10053_025_01026_6 crossref_primary_10_1007_s10894_025_00510_6 crossref_primary_10_3390_atoms7030066 crossref_primary_10_1088_1361_6455_ac7b59 crossref_primary_10_1088_1367_2630_16_11_113016 crossref_primary_10_1088_1361_6455_aa6ccf crossref_primary_10_1093_mnras_sty1015 crossref_primary_10_1088_1361_6455_ac61ed crossref_primary_10_1016_j_adt_2011_03_004 crossref_primary_10_1088_1361_6455_ad5894 crossref_primary_10_1016_j_cplett_2020_137911 crossref_primary_10_1016_j_radphyschem_2022_110472 crossref_primary_10_3390_atoms11060087 crossref_primary_10_1088_0004_637X_737_1_25 crossref_primary_10_1088_1361_6455_aa9955 crossref_primary_10_1088_0031_8949_90_1_015403 crossref_primary_10_1088_0953_4075_48_23_235203 crossref_primary_10_1088_1361_6455_aa8ba8 |
| Cites_doi | 10.1145/42288.42291 10.1016/j.cpc.2006.07.023 10.1016/0021-9991(75)90065-0 10.1145/355841.355847 10.1016/0010-4655(89)90147-1 10.1016/0010-4655(88)90192-0 10.1145/42288.42292 10.1016/0021-9991(92)90409-R 10.1145/77626.79170 10.1016/0010-4655(86)90169-4 10.1016/0010-4655(94)90073-6 |
| ContentType | Journal Article |
| Copyright | 2006 |
| Copyright_xml | – notice: 2006 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cpc.2006.07.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2944 |
| EndPage | 747 |
| ExternalDocumentID | 10_1016_j_cpc_2006_07_021 S0010465506003389 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c363t-16c7a69a4bb3e23e9fbe8cd6b006779e349db9b7fa495d00342555a65d28878a3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243065600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-4655 |
| IngestDate | Sat Nov 29 05:32:16 EST 2025 Tue Nov 18 22:04:17 EST 2025 Fri Feb 23 02:25:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Nuclear mass effects in atoms jj-coupling for atomic electrons Configuration interaction methods for atoms Breit interaction in atoms Nuclear volume effects in atoms Dirac Hamiltonian in atomic theory Multiconfiguration methods for atoms Relativistic corrections in atoms Atomic physics Correlation in atoms 32.10.10-f Mass polarization in atoms Transverse photon interaction in atoms 31.10.+z 31.15.Ar Structure 31.25.Eb Atomic energy levels Atomic oscillator strengths Radiative decay rates of atoms |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c363t-16c7a69a4bb3e23e9fbe8cd6b006779e349db9b7fa495d00342555a65d28878a3 |
| PageCount | 3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cpc_2006_07_021 crossref_primary_10_1016_j_cpc_2006_07_021 elsevier_sciencedirect_doi_10_1016_j_cpc_2006_07_021 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-12-01 |
| PublicationDateYYYYMMDD | 2006-12-01 |
| PublicationDate_xml | – month: 12 year: 2006 text: 2006-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Computer physics communications |
| PublicationYear | 2006 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Anderson, Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov, Sorensen (bib004) 1992 Froese Fischer, Gaigalas, Ralchenko (bib007) 2006; 175 Davidson, Liu, Murray, Racine, Davidson (bib001) 1975; 17 Dyall (bib006) 1986; 39 Stathopoulos, Froese Fischer (bib002) 1994; 79 Lawson, Hanson, Kincaid, Krogh, Dongarra, Dongarra, Du Croz, Hammarling, Hanson, Dongarra, Du Croz, Duff, Hammarling (bib003) 1979; 5 Bar-Shalom, Klapisch (bib005) 1988; 50 Dongarra (10.1016/j.cpc.2006.07.021_bib003_4) 1990; 16 Lawson (10.1016/j.cpc.2006.07.021_bib003_1) 1979; 5 Anderson (10.1016/j.cpc.2006.07.021_bib004) 1992 Murray (10.1016/j.cpc.2006.07.021_bib001_4) 1992; 103 Froese Fischer (10.1016/j.cpc.2006.07.021_bib007) 2006; 175 (10.1016/j.cpc.2006.07.021_bib001_2) 1989; 53 Dongarra (10.1016/j.cpc.2006.07.021_bib003_2) 1988; 14 Davidson (10.1016/j.cpc.2006.07.021_bib001_1) 1975; 17 Dongarra (10.1016/j.cpc.2006.07.021_bib003_3) 1988; 14 Liu (10.1016/j.cpc.2006.07.021_bib001_3) 1978 Dyall (10.1016/j.cpc.2006.07.021_bib006) 1986; 39 Stathopoulos (10.1016/j.cpc.2006.07.021_bib002) 1994; 79 Bar-Shalom (10.1016/j.cpc.2006.07.021_bib005) 1988; 50 |
| References_xml | – year: 1992 ident: bib004 article-title: LAPACK User's Guide – volume: 79 start-page: 1 year: 1994 ident: bib002 publication-title: Comput. Phys. Comm. – volume: 5 start-page: 308 year: 1979 ident: bib003 publication-title: ACM Trans. Math. Soft. – volume: 50 start-page: 375 year: 1988 ident: bib005 publication-title: Comput. Phys. Comm. – volume: 39 start-page: 141 year: 1986 ident: bib006 publication-title: Comput. Phys. Comm. – volume: 175 start-page: 738 year: 2006 ident: bib007 publication-title: Comput. Phys. Comm. – volume: 17 start-page: 87 year: 1975 ident: bib001 publication-title: J. Comput. Phys. – year: 1992 ident: 10.1016/j.cpc.2006.07.021_bib004 – volume: 14 start-page: 1 year: 1988 ident: 10.1016/j.cpc.2006.07.021_bib003_2 publication-title: ACM Trans. Math. Soft. doi: 10.1145/42288.42291 – volume: 175 start-page: 738 year: 2006 ident: 10.1016/j.cpc.2006.07.021_bib007 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2006.07.023 – volume: 17 start-page: 87 year: 1975 ident: 10.1016/j.cpc.2006.07.021_bib001_1 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(75)90065-0 – volume: 5 start-page: 308 year: 1979 ident: 10.1016/j.cpc.2006.07.021_bib003_1 publication-title: ACM Trans. Math. Soft. doi: 10.1145/355841.355847 – volume: 53 start-page: 49 year: 1989 ident: 10.1016/j.cpc.2006.07.021_bib001_2 publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(89)90147-1 – volume: 50 start-page: 375 year: 1988 ident: 10.1016/j.cpc.2006.07.021_bib005 publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(88)90192-0 – year: 1978 ident: 10.1016/j.cpc.2006.07.021_bib001_3 – volume: 14 start-page: 18 year: 1988 ident: 10.1016/j.cpc.2006.07.021_bib003_3 publication-title: ACM Trans. Math. Soft. doi: 10.1145/42288.42292 – volume: 103 start-page: 382 year: 1992 ident: 10.1016/j.cpc.2006.07.021_bib001_4 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90409-R – volume: 16 start-page: 1 year: 1990 ident: 10.1016/j.cpc.2006.07.021_bib003_4 publication-title: ACM Trans. Math. Soft. doi: 10.1145/77626.79170 – volume: 39 start-page: 141 year: 1986 ident: 10.1016/j.cpc.2006.07.021_bib006 publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(86)90169-4 – volume: 79 start-page: 1 year: 1994 ident: 10.1016/j.cpc.2006.07.021_bib002 publication-title: Comput. Phys. Comm. doi: 10.1016/0010-4655(94)90073-6 |
| SSID | ssj0007793 |
| Score | 2.0251102 |
| Snippet | Title of program: GRASP92
Catalogue identifier: ADCU_v1_1
Program summary URL:
http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1
Program obtainable from: CPC Program... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 745 |
| SubjectTerms | Atomic energy levels Atomic oscillator strengths Atomic physics Breit interaction in atoms Configuration interaction methods for atoms Correlation in atoms Dirac Hamiltonian in atomic theory jj-coupling for atomic electrons Mass polarization in atoms Multiconfiguration methods for atoms Nuclear mass effects in atoms Nuclear volume effects in atoms Radiative decay rates of atoms Relativistic corrections in atoms Structure Transverse photon interaction in atoms |
| Title | GRASP92: a package for large-scale relativistic atomic structure calculations |
| URI | https://dx.doi.org/10.1016/j.cpc.2006.07.021 |
| Volume | 175 |
| WOSCitedRecordID | wos000243065600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007793 issn: 0010-4655 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYqYNJeprGLxm7yw56GHCWxE8d7qxAFpoGicVHfIttxJKAKVcMqfv6OYycN3UDjYS9RlTRp6_P1nGP7O99B6AtNMpVylhDDwoqwSlMimZCkYkqGRmgdtQtuFz_4yUk2nYp8NFp2tTDLGa_r7O5OzP-rqeEcGNuWzj7B3P1D4QS8BqPDEcwOx38y_MHP8WkuYlfFDDPia8vKsWTCmSV9kwaMYnwJy7JVad6FebdlyDsp2V8tE2ymfVuvZpi9di0g_HpIYwnpq_KSPjvP5WLuOLiTYBz0CFncmMbsTi6bDid7_bUDiJhtNDgK8mBtIWJF6vDOFVy6lWO751xdX5QORRHxpGnnLrmTkvSRlzvtzT-cultfuAr0XPvdIx6Erq76voD2WmDr6YYdk-2qgEfYxptpEfIitPoDmzFPBDj0zfHR_vR7H8M593LN_id1--EtM3Dte_w9oxlkKWcv0Qs_vcBjB4ttNDL1K_Qsd-Z6jY49OL5hiT00MEADD6CBh9DADhq4hwYeQuMNOp_sn-0dEt9Qg2ia0lsSpZrLVEimFDUxNaJSJtNl2m7Ic2EoE6USilfwd03KVh0ySRKZJmUMsSiT9C3aqG9q8w5hKhivTAVXjGFRVIpIKa6NZjrNtJHxDgq7QSm0V5u3TU9mxYPG2EFf-1vmTmrlsTezbqQLnyu6HLAA1Dx82_unfMYH9HyF849oA4bafEJbenl72Sw-e8j8BnOUh8M |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRASP92%3A+a+package+for+large-scale+relativistic+atomic+structure+calculations&rft.jtitle=Computer+physics+communications&rft.au=Parpia%2C+F.A.&rft.au=Froese+Fischer%2C+C.&rft.au=Grant%2C+I.P.&rft.date=2006-12-01&rft.issn=0010-4655&rft.volume=175&rft.issue=11-12&rft.spage=745&rft.epage=747&rft_id=info:doi/10.1016%2Fj.cpc.2006.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2006_07_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |