GRASP92: a package for large-scale relativistic atomic structure calculations

Title of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications Jg. 175; H. 11; S. 745 - 747
Hauptverfasser: Parpia, F.A., Froese Fischer, C., Grant, I.P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2006
Schlagworte:
ISSN:0010-4655, 1879-2944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Title of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a ‘fully relativistic’ approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j = l + s , and the parity operator Π = β π . Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n c , of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac–Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas–Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra. Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738–744. [7]]. This version of GRASP92 corrects these errors. Summary of revisions: (1) Correction to a logical error that affects extended optimal level (EOL) calculations important for correlation studies. Line 76 deleted from grasp92/rscf92/raw/scf.raw. Line 114 deleted from grasp92/rscf92/raw/setlag.raw. (2) The removal of a limitation on diagonal energy parameters for correlation orbitals. IF (METHOD(J).LE. 2) THEN inserted after line 84 of grasp92/rscf92/raw/solve.raw. ENDIF inserted after line 94 in grasp92/rscf92/raw/solve.raw. (3) Removal of an error in the evaluation of one-electron matrix elements for tensors of rank greater than zero. This error affected electric quadrupole (E2) transition probabilities, off-diagonal hyperfine parameters, and quadrupole moments. IF (NQ1(IA1).EQ.0.AND. NQ2(IA2).EQ.0) GOTO 100 inserted after line 179 of grasp92/lib92/raw/tnsrjj.raw. Line 194 of grasp92/lib92/raw/tnsrjj.raw replaced by IF (JBQ1(K,IJ) .NE. JBQ2(K,IJ)) GOTO 100. Restrictions: The maximum size of a multiconfiguration (MC) calculation, as measured by the length of the configuration state function (CSF) list n c , is limited by numerical stability, processing time, or storage. Numerical stability typically decreases as the number of radial functions varied increases and as the number of open subshells increases. Processing time increases as some power of n c greater than 1 but generally appreciably less than 3. Lists of angular integrals, V r s k ( a b c d ) , distinguished by tensor rank, k, are written to disk; the available disk storage must be large enough to store all such lists together. Each list is subsequently read into memory and sorted by canonically-ordered Slater integral indices a b c d ; the available memory (including any available virtual memory) must be large enough to store the longest list before it is sorted. The lengths of the unsorted and sorted lists increase as some power of n c greater than 1 but generally less than the maximum of 2. The maximum size of a configuration interaction (CI) calculation is limited by processing time and storage. Processing time increases as some power of n c greater than 1 but generally appreciably less than 2. A sparse representation of the lower triangle of the Hamiltonian matrix is written to disk; the available disk storage must be large enough to store this representation of the Hamiltonian matrix. The size of this representation of the Hamiltonian matrix increases as some power of n c greater than 1 but generally less than the maximum of 2. All orbitals that share the quantum numbers nlj (i.e., all members of a subshell) are assumed to have the same radial dependence P n l j ( r ) , Q n l j ( r ) . Orbitals with different values of the quantum numbers nlj are assumed to be orthogonal. The tables of coefficients of fractional parentage used in GRASP92 are limited to subshells with j ⩽ 7 / 2 ; occupied subshells with j = 9 / 2 are, therefore, restricted to a maximum of two electrons. Unusual features: The GRASP92 package comprises task-specific component programs for the specification of nuclear properties, the generation and manipulation of lists of configuration state functions (CSFs), the computation of radial wavefunctions, of approximate atomic state functions (ASFs), the computation of properties of electromagnetic transitions between ASFs, and for the conversion of data between machine-specific unformatted representations and universal formatted representations. All component programs in the GRASP92 package have been designed for interactive use; the number of keystrokes required by the user is reduced by the provision of defaults appropriate to the types of calculations that are expected to be performed most frequently, and by the provision of interpretation for ‘wild card’ characters as sets of data items. Several devices have been adopted to reduce computational effort and storage requirements: in multiconfiguration (MC) calculations, the list of angular integrals is presorted by tensor rank prior to sorting by canonically-ordered Slater integral indices; in configuration-interaction (CI) and transition property calculations, angular integrals are not stored and an ordered list of radial integrals is searched and augmented as required as the calculation progresses; in MC and CI calculations, the lower triangle of the Hamiltonian matrix is stored in a sparse representation; the Davidson–Liu algorithm [E.R. Davidson, J. Comput. Phys. 17 (1975) 87; Comput. Phys. Comm. 53 (1989) 49; B. Liu, in: C. Moler, I. Shavitt (Eds.), Numerical Algorithms in Chemistry: Algebraic Methods, Lawrence Berkeley Laboratory, Berkeley, California, 1978; C.W. Murray, S.C. Racine, E.R. Davidson, J. Comput. Phys. 103 (1992) 382. [1]] as implemented by Stathopoulos and Fischer [A. Stathopoulos, C. Froese Fischer, Comput. Phys. Comm. 79 (1994) 1. [2]] is used to extract the eigenvalues and eigenvectors of interest. Certain linear-algebraic operations are preformed using subprograms from the BLAS [C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, ACM Trans. Math. Soft. 5 (1979) 308; J. Dongarra, ACM Trans. Math. Soft. 14 (1988) 1; J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, ACM Trans. Math. Soft. 14 (1988) 18; J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling, ACM Trans. Math. Soft. 16 (1990) 1, 18. [3]] and LAPACK [E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1992. [4]] libraries. Angular-momentum recoupling coefficients are computed using the NJGRAF package of Bar-Shalom and Klapisch [A. Bar-Shalom, M. Klapisch, Comput. Phys. Comm. 50 (1988) 375. [5]]. A minor revision of a preprocessor program due to K.G. Dyall [K.G. Dyall, Comput. Phys. Comm. 39 (2986) 141. [6]] is used to automate the setting of array dimensions and the selection of installation-dependent features. Running time: CPU time required to execute test cases: 300 min
AbstractList Title of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a ‘fully relativistic’ approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j = l + s , and the parity operator Π = β π . Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n c , of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac–Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas–Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra. Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738–744. [7]]. This version of GRASP92 corrects these errors. Summary of revisions: (1) Correction to a logical error that affects extended optimal level (EOL) calculations important for correlation studies. Line 76 deleted from grasp92/rscf92/raw/scf.raw. Line 114 deleted from grasp92/rscf92/raw/setlag.raw. (2) The removal of a limitation on diagonal energy parameters for correlation orbitals. IF (METHOD(J).LE. 2) THEN inserted after line 84 of grasp92/rscf92/raw/solve.raw. ENDIF inserted after line 94 in grasp92/rscf92/raw/solve.raw. (3) Removal of an error in the evaluation of one-electron matrix elements for tensors of rank greater than zero. This error affected electric quadrupole (E2) transition probabilities, off-diagonal hyperfine parameters, and quadrupole moments. IF (NQ1(IA1).EQ.0.AND. NQ2(IA2).EQ.0) GOTO 100 inserted after line 179 of grasp92/lib92/raw/tnsrjj.raw. Line 194 of grasp92/lib92/raw/tnsrjj.raw replaced by IF (JBQ1(K,IJ) .NE. JBQ2(K,IJ)) GOTO 100. Restrictions: The maximum size of a multiconfiguration (MC) calculation, as measured by the length of the configuration state function (CSF) list n c , is limited by numerical stability, processing time, or storage. Numerical stability typically decreases as the number of radial functions varied increases and as the number of open subshells increases. Processing time increases as some power of n c greater than 1 but generally appreciably less than 3. Lists of angular integrals, V r s k ( a b c d ) , distinguished by tensor rank, k, are written to disk; the available disk storage must be large enough to store all such lists together. Each list is subsequently read into memory and sorted by canonically-ordered Slater integral indices a b c d ; the available memory (including any available virtual memory) must be large enough to store the longest list before it is sorted. The lengths of the unsorted and sorted lists increase as some power of n c greater than 1 but generally less than the maximum of 2. The maximum size of a configuration interaction (CI) calculation is limited by processing time and storage. Processing time increases as some power of n c greater than 1 but generally appreciably less than 2. A sparse representation of the lower triangle of the Hamiltonian matrix is written to disk; the available disk storage must be large enough to store this representation of the Hamiltonian matrix. The size of this representation of the Hamiltonian matrix increases as some power of n c greater than 1 but generally less than the maximum of 2. All orbitals that share the quantum numbers nlj (i.e., all members of a subshell) are assumed to have the same radial dependence P n l j ( r ) , Q n l j ( r ) . Orbitals with different values of the quantum numbers nlj are assumed to be orthogonal. The tables of coefficients of fractional parentage used in GRASP92 are limited to subshells with j ⩽ 7 / 2 ; occupied subshells with j = 9 / 2 are, therefore, restricted to a maximum of two electrons. Unusual features: The GRASP92 package comprises task-specific component programs for the specification of nuclear properties, the generation and manipulation of lists of configuration state functions (CSFs), the computation of radial wavefunctions, of approximate atomic state functions (ASFs), the computation of properties of electromagnetic transitions between ASFs, and for the conversion of data between machine-specific unformatted representations and universal formatted representations. All component programs in the GRASP92 package have been designed for interactive use; the number of keystrokes required by the user is reduced by the provision of defaults appropriate to the types of calculations that are expected to be performed most frequently, and by the provision of interpretation for ‘wild card’ characters as sets of data items. Several devices have been adopted to reduce computational effort and storage requirements: in multiconfiguration (MC) calculations, the list of angular integrals is presorted by tensor rank prior to sorting by canonically-ordered Slater integral indices; in configuration-interaction (CI) and transition property calculations, angular integrals are not stored and an ordered list of radial integrals is searched and augmented as required as the calculation progresses; in MC and CI calculations, the lower triangle of the Hamiltonian matrix is stored in a sparse representation; the Davidson–Liu algorithm [E.R. Davidson, J. Comput. Phys. 17 (1975) 87; Comput. Phys. Comm. 53 (1989) 49; B. Liu, in: C. Moler, I. Shavitt (Eds.), Numerical Algorithms in Chemistry: Algebraic Methods, Lawrence Berkeley Laboratory, Berkeley, California, 1978; C.W. Murray, S.C. Racine, E.R. Davidson, J. Comput. Phys. 103 (1992) 382. [1]] as implemented by Stathopoulos and Fischer [A. Stathopoulos, C. Froese Fischer, Comput. Phys. Comm. 79 (1994) 1. [2]] is used to extract the eigenvalues and eigenvectors of interest. Certain linear-algebraic operations are preformed using subprograms from the BLAS [C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, ACM Trans. Math. Soft. 5 (1979) 308; J. Dongarra, ACM Trans. Math. Soft. 14 (1988) 1; J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson, ACM Trans. Math. Soft. 14 (1988) 18; J.J. Dongarra, J. Du Croz, I.S. Duff, S. Hammarling, ACM Trans. Math. Soft. 16 (1990) 1, 18. [3]] and LAPACK [E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1992. [4]] libraries. Angular-momentum recoupling coefficients are computed using the NJGRAF package of Bar-Shalom and Klapisch [A. Bar-Shalom, M. Klapisch, Comput. Phys. Comm. 50 (1988) 375. [5]]. A minor revision of a preprocessor program due to K.G. Dyall [K.G. Dyall, Comput. Phys. Comm. 39 (2986) 141. [6]] is used to automate the setting of array dimensions and the selection of installation-dependent features. Running time: CPU time required to execute test cases: 300 min
Author Parpia, F.A.
Grant, I.P.
Froese Fischer, C.
Author_xml – sequence: 1
  givenname: F.A.
  surname: Parpia
  fullname: Parpia, F.A.
  email: parpia@us.ibm.com
  organization: IBM Corporation, POWERparallel Systems, Scientific Research and Chemistry Segment, 522 South Road, Poughkeepsie, NY 12601, USA
– sequence: 2
  givenname: C.
  surname: Froese Fischer
  fullname: Froese Fischer, C.
  email: charlotte.f.fischer@vanderbilt.edu, charlotte.fischer@nist.gov
  organization: Computer Science Department, Vanderbilt University, Nashville, TN 37215, USA
– sequence: 3
  givenname: I.P.
  surname: Grant
  fullname: Grant, I.P.
  email: i.p.grant@ntlworld.com
  organization: Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, UK
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDySM48SOYVVVUJCKQDzWluNMKpc0qWy3En-PS1mx6Opu7hndORMy6oceCbmmkFGg_Gadma3JcgCegcggp2dkTCsh01wWxYiMASikBS_LCzLxfg0AQkg2Js-Lt9n7q8xvE51stfnSK0zawSWdditMvdEdJg47Heze-mBNosOwieGD25mwc5jEitkdCkPvL8l5qzuPV385JZ8P9x_zx3T5sniaz5apYZyFlHIjNJe6qGuGOUPZ1liZhtdxfpyFrJBNLWvR6kKWDQAr8rIsNS-bvKpEpdmUiONd4wbvHbbK2PA7IThtO0VBHayotYpW1MGKAqGilUjSf-TW2Y123yeZuyOD8aW9Rae8sdgbbKxDE1Qz2BP0Dy96fH4
CitedBy_id crossref_primary_10_1007_s12648_015_0754_0
crossref_primary_10_1088_0953_4075_49_20_205002
crossref_primary_10_3847_1538_4357_836_1_125
crossref_primary_10_1140_epjd_s10053_025_01026_6
crossref_primary_10_1007_s10894_025_00510_6
crossref_primary_10_3390_atoms7030066
crossref_primary_10_1088_1361_6455_ac7b59
crossref_primary_10_1088_1367_2630_16_11_113016
crossref_primary_10_1088_1361_6455_aa6ccf
crossref_primary_10_1093_mnras_sty1015
crossref_primary_10_1088_1361_6455_ac61ed
crossref_primary_10_1016_j_adt_2011_03_004
crossref_primary_10_1088_1361_6455_ad5894
crossref_primary_10_1016_j_cplett_2020_137911
crossref_primary_10_1016_j_radphyschem_2022_110472
crossref_primary_10_3390_atoms11060087
crossref_primary_10_1088_0004_637X_737_1_25
crossref_primary_10_1088_1361_6455_aa9955
crossref_primary_10_1088_0031_8949_90_1_015403
crossref_primary_10_1088_0953_4075_48_23_235203
crossref_primary_10_1088_1361_6455_aa8ba8
Cites_doi 10.1145/42288.42291
10.1016/j.cpc.2006.07.023
10.1016/0021-9991(75)90065-0
10.1145/355841.355847
10.1016/0010-4655(89)90147-1
10.1016/0010-4655(88)90192-0
10.1145/42288.42292
10.1016/0021-9991(92)90409-R
10.1145/77626.79170
10.1016/0010-4655(86)90169-4
10.1016/0010-4655(94)90073-6
ContentType Journal Article
Copyright 2006
Copyright_xml – notice: 2006
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2006.07.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 747
ExternalDocumentID 10_1016_j_cpc_2006_07_021
S0010465506003389
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c363t-16c7a69a4bb3e23e9fbe8cd6b006779e349db9b7fa495d00342555a65d28878a3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000243065600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Sat Nov 29 05:32:16 EST 2025
Tue Nov 18 22:04:17 EST 2025
Fri Feb 23 02:25:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Nuclear mass effects in atoms
jj-coupling for atomic electrons
Configuration interaction methods for atoms
Breit interaction in atoms
Nuclear volume effects in atoms
Dirac Hamiltonian in atomic theory
Multiconfiguration methods for atoms
Relativistic corrections in atoms
Atomic physics
Correlation in atoms
32.10.10-f
Mass polarization in atoms
Transverse photon interaction in atoms
31.10.+z
31.15.Ar
Structure
31.25.Eb
Atomic energy levels
Atomic oscillator strengths
Radiative decay rates of atoms
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-16c7a69a4bb3e23e9fbe8cd6b006779e349db9b7fa495d00342555a65d28878a3
PageCount 3
ParticipantIDs crossref_citationtrail_10_1016_j_cpc_2006_07_021
crossref_primary_10_1016_j_cpc_2006_07_021
elsevier_sciencedirect_doi_10_1016_j_cpc_2006_07_021
PublicationCentury 2000
PublicationDate 2006-12-01
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Computer physics communications
PublicationYear 2006
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Anderson, Bai, Bischof, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov, Sorensen (bib004) 1992
Froese Fischer, Gaigalas, Ralchenko (bib007) 2006; 175
Davidson, Liu, Murray, Racine, Davidson (bib001) 1975; 17
Dyall (bib006) 1986; 39
Stathopoulos, Froese Fischer (bib002) 1994; 79
Lawson, Hanson, Kincaid, Krogh, Dongarra, Dongarra, Du Croz, Hammarling, Hanson, Dongarra, Du Croz, Duff, Hammarling (bib003) 1979; 5
Bar-Shalom, Klapisch (bib005) 1988; 50
Dongarra (10.1016/j.cpc.2006.07.021_bib003_4) 1990; 16
Lawson (10.1016/j.cpc.2006.07.021_bib003_1) 1979; 5
Anderson (10.1016/j.cpc.2006.07.021_bib004) 1992
Murray (10.1016/j.cpc.2006.07.021_bib001_4) 1992; 103
Froese Fischer (10.1016/j.cpc.2006.07.021_bib007) 2006; 175
(10.1016/j.cpc.2006.07.021_bib001_2) 1989; 53
Dongarra (10.1016/j.cpc.2006.07.021_bib003_2) 1988; 14
Davidson (10.1016/j.cpc.2006.07.021_bib001_1) 1975; 17
Dongarra (10.1016/j.cpc.2006.07.021_bib003_3) 1988; 14
Liu (10.1016/j.cpc.2006.07.021_bib001_3) 1978
Dyall (10.1016/j.cpc.2006.07.021_bib006) 1986; 39
Stathopoulos (10.1016/j.cpc.2006.07.021_bib002) 1994; 79
Bar-Shalom (10.1016/j.cpc.2006.07.021_bib005) 1988; 50
References_xml – year: 1992
  ident: bib004
  article-title: LAPACK User's Guide
– volume: 79
  start-page: 1
  year: 1994
  ident: bib002
  publication-title: Comput. Phys. Comm.
– volume: 5
  start-page: 308
  year: 1979
  ident: bib003
  publication-title: ACM Trans. Math. Soft.
– volume: 50
  start-page: 375
  year: 1988
  ident: bib005
  publication-title: Comput. Phys. Comm.
– volume: 39
  start-page: 141
  year: 1986
  ident: bib006
  publication-title: Comput. Phys. Comm.
– volume: 175
  start-page: 738
  year: 2006
  ident: bib007
  publication-title: Comput. Phys. Comm.
– volume: 17
  start-page: 87
  year: 1975
  ident: bib001
  publication-title: J. Comput. Phys.
– year: 1992
  ident: 10.1016/j.cpc.2006.07.021_bib004
– volume: 14
  start-page: 1
  year: 1988
  ident: 10.1016/j.cpc.2006.07.021_bib003_2
  publication-title: ACM Trans. Math. Soft.
  doi: 10.1145/42288.42291
– volume: 175
  start-page: 738
  year: 2006
  ident: 10.1016/j.cpc.2006.07.021_bib007
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2006.07.023
– volume: 17
  start-page: 87
  year: 1975
  ident: 10.1016/j.cpc.2006.07.021_bib001_1
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(75)90065-0
– volume: 5
  start-page: 308
  year: 1979
  ident: 10.1016/j.cpc.2006.07.021_bib003_1
  publication-title: ACM Trans. Math. Soft.
  doi: 10.1145/355841.355847
– volume: 53
  start-page: 49
  year: 1989
  ident: 10.1016/j.cpc.2006.07.021_bib001_2
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(89)90147-1
– volume: 50
  start-page: 375
  year: 1988
  ident: 10.1016/j.cpc.2006.07.021_bib005
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(88)90192-0
– year: 1978
  ident: 10.1016/j.cpc.2006.07.021_bib001_3
– volume: 14
  start-page: 18
  year: 1988
  ident: 10.1016/j.cpc.2006.07.021_bib003_3
  publication-title: ACM Trans. Math. Soft.
  doi: 10.1145/42288.42292
– volume: 103
  start-page: 382
  year: 1992
  ident: 10.1016/j.cpc.2006.07.021_bib001_4
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90409-R
– volume: 16
  start-page: 1
  year: 1990
  ident: 10.1016/j.cpc.2006.07.021_bib003_4
  publication-title: ACM Trans. Math. Soft.
  doi: 10.1145/77626.79170
– volume: 39
  start-page: 141
  year: 1986
  ident: 10.1016/j.cpc.2006.07.021_bib006
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(86)90169-4
– volume: 79
  start-page: 1
  year: 1994
  ident: 10.1016/j.cpc.2006.07.021_bib002
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/0010-4655(94)90073-6
SSID ssj0007793
Score 2.0251102
Snippet Title of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 745
SubjectTerms Atomic energy levels
Atomic oscillator strengths
Atomic physics
Breit interaction in atoms
Configuration interaction methods for atoms
Correlation in atoms
Dirac Hamiltonian in atomic theory
jj-coupling for atomic electrons
Mass polarization in atoms
Multiconfiguration methods for atoms
Nuclear mass effects in atoms
Nuclear volume effects in atoms
Radiative decay rates of atoms
Relativistic corrections in atoms
Structure
Transverse photon interaction in atoms
Title GRASP92: a package for large-scale relativistic atomic structure calculations
URI https://dx.doi.org/10.1016/j.cpc.2006.07.021
Volume 175
WOSCitedRecordID wos000243065600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYqYNJeprGLxm7yw56GHCWxE8d7qxAFpoGicVHfIttxJKAKVcMqfv6OYycN3UDjYS9RlTRp6_P1nGP7O99B6AtNMpVylhDDwoqwSlMimZCkYkqGRmgdtQtuFz_4yUk2nYp8NFp2tTDLGa_r7O5OzP-rqeEcGNuWzj7B3P1D4QS8BqPDEcwOx38y_MHP8WkuYlfFDDPia8vKsWTCmSV9kwaMYnwJy7JVad6FebdlyDsp2V8tE2ymfVuvZpi9di0g_HpIYwnpq_KSPjvP5WLuOLiTYBz0CFncmMbsTi6bDid7_bUDiJhtNDgK8mBtIWJF6vDOFVy6lWO751xdX5QORRHxpGnnLrmTkvSRlzvtzT-cultfuAr0XPvdIx6Erq76voD2WmDr6YYdk-2qgEfYxptpEfIitPoDmzFPBDj0zfHR_vR7H8M593LN_id1--EtM3Dte_w9oxlkKWcv0Qs_vcBjB4ttNDL1K_Qsd-Z6jY49OL5hiT00MEADD6CBh9DADhq4hwYeQuMNOp_sn-0dEt9Qg2ia0lsSpZrLVEimFDUxNaJSJtNl2m7Ic2EoE6USilfwd03KVh0ySRKZJmUMsSiT9C3aqG9q8w5hKhivTAVXjGFRVIpIKa6NZjrNtJHxDgq7QSm0V5u3TU9mxYPG2EFf-1vmTmrlsTezbqQLnyu6HLAA1Dx82_unfMYH9HyF849oA4bafEJbenl72Sw-e8j8BnOUh8M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GRASP92%3A+a+package+for+large-scale+relativistic+atomic+structure+calculations&rft.jtitle=Computer+physics+communications&rft.au=Parpia%2C+F.A.&rft.au=Froese+Fischer%2C+C.&rft.au=Grant%2C+I.P.&rft.date=2006-12-01&rft.issn=0010-4655&rft.volume=175&rft.issue=11-12&rft.spage=745&rft.epage=747&rft_id=info:doi/10.1016%2Fj.cpc.2006.07.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2006_07_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon