High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons

Parallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel programming Vol. 49; no. 6; pp. 776 - 801
Main Authors: de Melo Menezes, Breno A., Herrmann, Nina, Kuchen, Herbert, Buarque de Lima Neto, Fernando
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2021
Springer Nature B.V
Subjects:
ISSN:0885-7458, 1573-7640
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.
AbstractList Parallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.
Parallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.
Author de Melo Menezes, Breno A.
Kuchen, Herbert
Buarque de Lima Neto, Fernando
Herrmann, Nina
Author_xml – sequence: 1
  givenname: Breno A.
  orcidid: 0000-0002-7010-7482
  surname: de Melo Menezes
  fullname: de Melo Menezes, Breno A.
  email: breno.menezes@uni-muenster.de
  organization: University of Münster
– sequence: 2
  givenname: Nina
  surname: Herrmann
  fullname: Herrmann, Nina
  organization: University of Münster
– sequence: 3
  givenname: Herbert
  surname: Kuchen
  fullname: Kuchen, Herbert
  organization: University of Münster
– sequence: 4
  givenname: Fernando
  surname: Buarque de Lima Neto
  fullname: Buarque de Lima Neto, Fernando
  organization: University of Pernambuco
BookMark eNp9kM1KAzEUhYNUsK2-gKsB19FkMjPJLEuxVihUsPuQzGTa1DSpSarUpzd2BMFFV_dcON_9OSMwsM4qAG4xuscI0YeAEa0qiHIMU4sLiC_AEJeUQFoVaACGiLES0qJkV2AUwhYhVFPGhmA21-sNXKgPZbIX4YUxSUxszKbOOHvMlvuod_pLRO1s9qnjJpuYtfNJ7HSTvb4po6Kz4RpcdsIEdfNbx2A1e1xN53CxfHqeThawIRWJEFeykYJ2bV23iLQlVbiQiNYKS4xkXlHWSVVTlbMiaYbbUlSyzZGUTLVUkjG468fuvXs_qBD51h28TRt5XrICk5LQIrny3tV4F4JXHd97vRP-yDHiP3HxPi6e4uKnuDhOEPsHNTqe3o5eaHMeJT0a0h67Vv7vqjPUN0E-gPM
CitedBy_id crossref_primary_10_3390_en16031472
crossref_primary_10_3390_math13081284
crossref_primary_10_1016_j_ins_2023_120025
crossref_primary_10_1007_s10766_022_00736_3
crossref_primary_10_3233_HIS_230006
Cites_doi 10.1007/s10766-016-0416-7
10.1109/MCI.2006.329691
10.1007/11549468_83
10.1080/17445760.2013.842568
10.1002/9781119332015.ch13
10.1002/9780470496916
10.1109/CEC.2019.8790073
10.1016/j.jpdc.2012.01.002
10.1057/palgrave.jors.2601771
10.1057/jors.1990.166
10.1007/s11227-019-02825-6
10.1504/IJHPCN.2012.046370
10.1016/j.trc.2015.02.013
10.1007/s11227-019-02824-7
10.1007/BF00226291
10.1016/j.ejor.2016.04.030
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10766-021-00714-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
EndPage 801
ExternalDocumentID 10_1007_s10766_021_00714_1
GrantInformation_xml – fundername: Westfälische Wilhelms-Universität Münster (1056)
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-16bcba7fd99d03d57e14b079e1b10b2678fbe97e28467881d5a6bd20bb8ed7b3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645476100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7458
IngestDate Wed Nov 05 01:34:11 EST 2025
Tue Nov 18 22:11:23 EST 2025
Sat Nov 29 01:59:46 EST 2025
Fri Feb 21 02:47:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords High performance computing
Ant colony optimization
Algorithmic skeletons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-16bcba7fd99d03d57e14b079e1b10b2678fbe97e28467881d5a6bd20bb8ed7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7010-7482
OpenAccessLink https://link.springer.com/10.1007/s10766-021-00714-1
PQID 2584135374
PQPubID 48389
PageCount 26
ParticipantIDs proquest_journals_2584135374
crossref_primary_10_1007_s10766_021_00714_1
crossref_citationtrail_10_1007_s10766_021_00714_1
springer_journals_10_1007_s10766_021_00714_1
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput. Intell. Mag.200614283910.1109/MCI.2006.329691
ErnstingSKuchenHData parallel algorithmic skeletons with accelerator supportInt. J. Parallel Prog.201745228329910.1007/s10766-016-0416-7
Lee, S.Y., Bau, Y.-T.: An ant colony optimization approach for solving the Multidimensional Knapsack Problem. In: 2012 International Conference on Computer & Information Science (ICCIS), pp. 441–446. IEEE (2012)
Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eskel. In: European Conference on Parallel Processing, pp. 761–770. Springer, Berlin (2005)
Menezes, B.A.D.M., Herrmann, N.: Musket repository. https://github.com/wwu-pi/musket_dsl (2020)
Heidelberg University. Discrete and combinatorial optimization. https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/. Accessed 14 March 2018
Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman London (1989)
Riguzzi, F.: A survey of software metrics. Technical report (1996)
Dorigo, M., Caro, G.D.: Ant colony optimization: a new meta-heuristic (1999)
FalkenauerEA hybrid grouping genetic algorithm for bin packingJ. Heuristics1996253010.1007/BF00226291
Menezes, B.A.D.M., Herrmann, N.: Ant colony optimization project. https://github.com/brenoamm/ant-colony-optimization-project (2021). Accessed 24 March 2021
Menezes, B.A., Kuchen, H., Neto, H.A.A., de Lima Neto, F.B.: Parallelization strategies for GPU-based ant colony optimization solving the traveling salesman problem. In: 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, pp. 3094–3101 (2019)
Menezes, B.A.D.M., Pessoa, L.F.D.A., Kuchen, H., Neto, F.B.D.L.: Parallelization strategies for GPU- ased ant colony optimization applied to TSP. Adv. Parallel Comput., 36, 321–330 (2020)
Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. pp. 1069–1072 (1990)
RiegerCWredeFKuchenHMusket: a domain-specific language for high-level parallel programming with algorithmic skeletonsProc. ACM Symp. Appl. Comput. Part2019F14777215341543
LevineJDucatelleFAnt colony optimization and local search for bin packing and cutting stock problemsJ. Oper. Res. Soc.200455770571610.1057/palgrave.jors.2601771
Dorigo, M.: Optimization, Learning and Natural Algorithms[in Italian]. PhD thesis, Dipartimentodi Elettronica, Politecnico di Milano, Milan (1992)
Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming on multi-core. Programming Multi-Core and Many-Core Computing Systems, Parallel and Distributed Computing (2017)
DelormeMIoriMMartelloSBin packing and cutting stock problems: mathematical models and exact algorithmsEur. J. Oper. Res.2016255120351378510.1016/j.ejor.2016.04.030
UchidaAItoYNakanoKAccelerating ant colony optimisation for the travelling salesman problem on the GPUInt. J. Parallel Emergent Distrib. Syst.201429440142010.1080/17445760.2013.842568
The Eclipse Foundation. Xtext documentation. https://eclipse.org/Xtext/documentation/ (2020)
CeciliaJMGarcíaJMNisbetAAmosMUjaldónMEnhancing data parallelism for ant colony optimization on GPUsJ. Parallel Distrib. Comput.2013731425110.1016/j.jpdc.2012.01.002
Talbi, E-G.: Metaheuristics. Wiley, Hoboken, NJ (2009)
Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code based on a domain-specific language for algorithmic skeletons. J. Supercomput. 0123456789 (2019)
ErnstingSKuchenHAlgorithmic skeletons for multi-core, multi-gpu systems and clustersInt. J. High Perform. Comput. Networking20127212913810.1504/IJHPCN.2012.046370
University of Waterloo. National traveling salesman problems. http://www.math.uwaterloo.ca/tsp/world/countries.html. Accessed 14 March 2018
Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance scheduling: A GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol., 55, 246–260 (2015)
ÖhbergTErnstssonAKesslerCHybrid cpu-gpu execution support in the skeleton programming framework skepuJ. Supercomput.20207675038505610.1007/s11227-019-02824-7
S Ernsting (714_CR17) 2012; 7
714_CR15
714_CR19
M Dorigo (714_CR7) 2006; 1
714_CR8
714_CR10
A Uchida (714_CR11) 2014; 29
714_CR4
714_CR13
S Ernsting (714_CR18) 2017; 45
714_CR6
714_CR14
714_CR1
714_CR3
714_CR2
M Delorme (714_CR26) 2016; 255
J Levine (714_CR9) 2004; 55
JM Cecilia (714_CR12) 2013; 73
714_CR28
E Falkenauer (714_CR27) 1996; 2
714_CR20
714_CR21
714_CR22
T Öhberg (714_CR16) 2020; 76
714_CR23
C Rieger (714_CR5) 2019; F147772
714_CR24
714_CR25
References_xml – reference: LevineJDucatelleFAnt colony optimization and local search for bin packing and cutting stock problemsJ. Oper. Res. Soc.200455770571610.1057/palgrave.jors.2601771
– reference: University of Waterloo. National traveling salesman problems. http://www.math.uwaterloo.ca/tsp/world/countries.html. Accessed 14 March 2018
– reference: Menezes, B.A.D.M., Herrmann, N.: Ant colony optimization project. https://github.com/brenoamm/ant-colony-optimization-project (2021). Accessed 24 March 2021
– reference: The Eclipse Foundation. Xtext documentation. https://eclipse.org/Xtext/documentation/ (2020)
– reference: Dorigo, M., Caro, G.D.: Ant colony optimization: a new meta-heuristic (1999)
– reference: Lee, S.Y., Bau, Y.-T.: An ant colony optimization approach for solving the Multidimensional Knapsack Problem. In: 2012 International Conference on Computer & Information Science (ICCIS), pp. 441–446. IEEE (2012)
– reference: DorigoMBirattariMStutzleTAnt colony optimizationIEEE Comput. Intell. Mag.200614283910.1109/MCI.2006.329691
– reference: Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance scheduling: A GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol., 55, 246–260 (2015)
– reference: ErnstingSKuchenHData parallel algorithmic skeletons with accelerator supportInt. J. Parallel Prog.201745228329910.1007/s10766-016-0416-7
– reference: Heidelberg University. Discrete and combinatorial optimization. https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/. Accessed 14 March 2018
– reference: DelormeMIoriMMartelloSBin packing and cutting stock problems: mathematical models and exact algorithmsEur. J. Oper. Res.2016255120351378510.1016/j.ejor.2016.04.030
– reference: Talbi, E-G.: Metaheuristics. Wiley, Hoboken, NJ (2009)
– reference: RiegerCWredeFKuchenHMusket: a domain-specific language for high-level parallel programming with algorithmic skeletonsProc. ACM Symp. Appl. Comput. Part2019F14777215341543
– reference: UchidaAItoYNakanoKAccelerating ant colony optimisation for the travelling salesman problem on the GPUInt. J. Parallel Emergent Distrib. Syst.201429440142010.1080/17445760.2013.842568
– reference: Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eskel. In: European Conference on Parallel Processing, pp. 761–770. Springer, Berlin (2005)
– reference: Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. pp. 1069–1072 (1990)
– reference: Menezes, B.A., Kuchen, H., Neto, H.A.A., de Lima Neto, F.B.: Parallelization strategies for GPU-based ant colony optimization solving the traveling salesman problem. In: 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, pp. 3094–3101 (2019)
– reference: Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman London (1989)
– reference: ÖhbergTErnstssonAKesslerCHybrid cpu-gpu execution support in the skeleton programming framework skepuJ. Supercomput.20207675038505610.1007/s11227-019-02824-7
– reference: Menezes, B.A.D.M., Herrmann, N.: Musket repository. https://github.com/wwu-pi/musket_dsl (2020)
– reference: Menezes, B.A.D.M., Pessoa, L.F.D.A., Kuchen, H., Neto, F.B.D.L.: Parallelization strategies for GPU- ased ant colony optimization applied to TSP. Adv. Parallel Comput., 36, 321–330 (2020)
– reference: Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming on multi-core. Programming Multi-Core and Many-Core Computing Systems, Parallel and Distributed Computing (2017)
– reference: Riguzzi, F.: A survey of software metrics. Technical report (1996)
– reference: FalkenauerEA hybrid grouping genetic algorithm for bin packingJ. Heuristics1996253010.1007/BF00226291
– reference: Wrede, F., Rieger, C., Kuchen, H.: Generation of high-performance code based on a domain-specific language for algorithmic skeletons. J. Supercomput. 0123456789 (2019)
– reference: CeciliaJMGarcíaJMNisbetAAmosMUjaldónMEnhancing data parallelism for ant colony optimization on GPUsJ. Parallel Distrib. Comput.2013731425110.1016/j.jpdc.2012.01.002
– reference: Dorigo, M.: Optimization, Learning and Natural Algorithms[in Italian]. PhD thesis, Dipartimentodi Elettronica, Politecnico di Milano, Milan (1992)
– reference: ErnstingSKuchenHAlgorithmic skeletons for multi-core, multi-gpu systems and clustersInt. J. High Perform. Comput. Networking20127212913810.1504/IJHPCN.2012.046370
– volume: 45
  start-page: 283
  issue: 2
  year: 2017
  ident: 714_CR18
  publication-title: Int. J. Parallel Prog.
  doi: 10.1007/s10766-016-0416-7
– ident: 714_CR22
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 714_CR7
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: F147772
  start-page: 1534
  year: 2019
  ident: 714_CR5
  publication-title: Proc. ACM Symp. Appl. Comput. Part
– ident: 714_CR20
– ident: 714_CR24
– ident: 714_CR10
– ident: 714_CR8
– ident: 714_CR4
– ident: 714_CR19
  doi: 10.1007/11549468_83
– ident: 714_CR14
– volume: 29
  start-page: 401
  issue: 4
  year: 2014
  ident: 714_CR11
  publication-title: Int. J. Parallel Emergent Distrib. Syst.
  doi: 10.1080/17445760.2013.842568
– ident: 714_CR15
  doi: 10.1002/9781119332015.ch13
– ident: 714_CR23
– ident: 714_CR1
  doi: 10.1002/9780470496916
– ident: 714_CR21
– ident: 714_CR13
  doi: 10.1109/CEC.2019.8790073
– volume: 73
  start-page: 42
  issue: 1
  year: 2013
  ident: 714_CR12
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2012.01.002
– volume: 55
  start-page: 705
  issue: 7
  year: 2004
  ident: 714_CR9
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2601771
– ident: 714_CR28
  doi: 10.1057/jors.1990.166
– ident: 714_CR6
  doi: 10.1007/s11227-019-02825-6
– ident: 714_CR25
– volume: 7
  start-page: 129
  issue: 2
  year: 2012
  ident: 714_CR17
  publication-title: Int. J. High Perform. Comput. Networking
  doi: 10.1504/IJHPCN.2012.046370
– ident: 714_CR2
  doi: 10.1016/j.trc.2015.02.013
– ident: 714_CR3
– volume: 76
  start-page: 5038
  issue: 7
  year: 2020
  ident: 714_CR16
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-02824-7
– volume: 2
  start-page: 5
  year: 1996
  ident: 714_CR27
  publication-title: J. Heuristics
  doi: 10.1007/BF00226291
– volume: 255
  start-page: 1
  year: 2016
  ident: 714_CR26
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.04.030
SSID ssj0009788
Score 2.2893074
Snippet Parallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 776
SubjectTerms 2020
Algorithms
Ant colony optimization
Computer Science
Domain specific languages
Optimization
Parallel programming
Processor Architectures
Software Engineering/Programming and Operating Systems
Special Issue on High-Level Parallel Programming and Applications
Swarm intelligence
Theory of Computation
SummonAdditionalLinks – databaseName: ABI/INFORM Global (OCUL)
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sIidh5MJVRUVQymVqFC3KH4EEG1amoDEv8eXOkQg0YU5sRPlXl_Od_chdC49noSeZiSRkK1KHIcI7QeEKVcr7Wk3LSlZHvt8MAjH42hoE265LausfGLpqNVMQo78iplICRwN3LuevxFgjYLTVUuhsY42ANlASd-d062H7vKSd9IYkk-454e2aca2zvEAym_NzzT08BD6MzDVaPPXAWkZd3rN_77xDtq2iBN3liqyi9Z0toeaFZsDtsa9j3pQ8kH6UESEh8kCOFbMqqzAXeMfs098b5zL1HZtYkjf4s7kyTyveJ6-SPzwauKXwZH5ARr1bkbdW2JZFoh0A7cgNBBSJDxVUaQcV_lcU084PNJUUEcwE8xSoSOuGSCV0MBbPwmEYo4QoVZcuIeokc0yfYQwN1hRKBp5gMKUZgnzWRoJ7vgyiGSQthCtvnAs7QRyIMKYxPXsZJBKbKQSl1KJaQtdfK-ZL-dvrLy7XYkitraYx7UcWuiyEmZ9-e_djlfvdoK2GOhPWdvSRo1i8a5P0ab8KF7yxVmpiV_KveIs
  priority: 102
  providerName: ProQuest
Title High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons
URI https://link.springer.com/article/10.1007/s10766-021-00714-1
https://www.proquest.com/docview/2584135374
Volume 49
WOSCitedRecordID wos000645476100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_U-eCL3-J0jjz4poE2_Uj7qGNDULexjTl9Kc1HZbhV2abgf--la52KCvoSWpqEcpfkfknu7gdwLF0eB65mNJbmtCq2LCq051OmHK20q50ko2TpX_FmMxgMwnYeFDYtvN2LK8lspf4Q7MZ94zCL218TdUNxz1NCcxcYwoZOt79ItcsztkmcPh7lrhfkoTLf9_HZHC0w5pdr0czaNDb-95-bsJ6jS3I2Hw5bsKTTbdgomBtIPpF3oGHcO-iVcRgi7Xhi-FSwVTojNVwL01fSwoVknEdoEnNUS85G948TfBgPJek-oK1CzDjdhV6j3qtd0JxRgUrHd2bU9oUUMU9UGCrLUR7XtissHmpb2JZgaLgSoUOumUElAUJZL_aFYpYQgVZcOHuwkj6meh8IR1wolB26BnEpzWLmsSQU3PKkH0o_KYNdyDWSebZxQ3oxihZ5ko2cIpRTlMkpsstw8t7maZ5r49falUJdUT7vphFDPGWYPLhbhtNCPYvPP_d28Lfqh7DGjIYzv5YKrMwmz_oIVuXLbDidVGGZ39xWoXReb7Y7-HbJKZbXVs2UrIVl27urZqP2DTBs3ng
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkuBCeWoLBXyAE1gkzsPJAa0QbAVqKUhUiJsVPwLVQoA2u4gfxX9cT5oQLRLcOHCObcmZbx62Z-YD2FY-TyLfMJoovK1KHIdKE4SUac9o4xsvLShZrrq814uur-OLCXitamEwrbKyiYWh1g8K78j3mfWUyNHA_Z-PTxRZo_B1taLQGMOiY16e7ZFtdHB6bOW7w1j7V__ohJasAlR5oZdTN5RKJjzVcawdTwfcuL50eGxc6TqSWeOdShNzw9AzRzacC5JQauZIGRnNpWeXnYRp34s4qlWH07rHLy9oLq3eBpT7QVTW6JSVejzEbF97dseSIer-7wfr4Pbde2zh5tqNb_aDFmC-jKfJ4VgBFmHCZEvQqLgqSGm6lqGNCS20iylS5CIZIoOMnZXl5Mha_-yFnFvTeV_WpBK8nCaHdzd2e_nt_UCRy9_WO9soebQC_a_YzCpMZQ-Z-QGE20hYajf2McbUhiUsYGksuROoMFZh2gS3EqhQZX91pPm4E3VnaASBsCAQBQiE24TdtzmP4-4in45uVZIXpaUZiVrsTdirsFN__ni1tc9X24LZk_5ZV3RPe511mGMI3SKLpwVT-fCP2YAZ9TcfjIabhRIQEF-MqX-lUz9e
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB0tpUK9sFBA3VLABzgVq4nz4eRQoVXLiqqrZSVWVcXFij9Cq7ZpuxtA_Wn8u85kHSKQ6K0HzrEtOX6eGdtv5gG8NbEsstgJXhi6rSqCgGuXpFzYyFkXu6hsJFmOxnIyyY6P82kPfrW5MESrbG1iY6jtpaE78h2BnpI0GmS8U3paxHR_9OHqmpOCFL20tnIaS4gcupufeHxb7B7s41q_E2L0cbb3iXuFAW6iNKp5mGqjC1naPLdBZBPpwlgHMnehDgMt0JCX2uXSCfLSGYZ2SZFqKwKtM2eljnDYB_BQ4hGT2ITT5GtX71c2kpe4hxMu4yTz-To-a0-mxPzFczylD_HwT5_YBbp_vc02Lm_U_49_1hN47ONsNlxujKfQc9U69FsNC-ZN2jMYEdGFj4k6xabFnJRlsFdVsz30CtUN-4wm9cLnqjK6tGbD8284vfrk4tSwL2fotTF6XjyH2X1M5gWsVJeV2wAmMULWNsxjij2tE4VIRJlrGSQmzU1aDiBsF1cZX3ed5D_OVVcxmgChEBCqAYQKB7D9u8_VsurIna23WhQob4EWqoPAAN63OOo-_3u0zbtHewOPEEpqfDA5fAlrglDckHu2YKWef3evYNX8qE8X89fNfmCg7hlSt9TJSII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Level+Parallel+Ant+Colony+Optimization+with+Algorithmic+Skeletons&rft.jtitle=International+journal+of+parallel+programming&rft.au=de+Melo+Menezes%2C+Breno+A.&rft.au=Herrmann%2C+Nina&rft.au=Kuchen%2C+Herbert&rft.au=Buarque+de+Lima+Neto%2C+Fernando&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=49&rft.issue=6&rft.spage=776&rft.epage=801&rft_id=info:doi/10.1007%2Fs10766-021-00714-1&rft.externalDocID=10_1007_s10766_021_00714_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon