Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs

Solving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the problem for the whole graph from scratch after each modification. Dynamic algorithms have been considered for several graph properties, for exam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 85; číslo 8; s. 2454 - 2481
Hlavní autoři: Beisegel, Jesse, Köhler, Ekkehard, Scheffler, Robert, Strehler, Martin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.08.2023
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Solving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the problem for the whole graph from scratch after each modification. Dynamic algorithms have been considered for several graph properties, for example connectivity, shortest paths and graph recognition. In this paper we present fully dynamic algorithms for the recognition of threshold graphs and chain graphs, which are optimal in the sense that the costs per modification are linear in the number of modified edges. Furthermore, our algorithms also consider the addition and deletion of sets of vertices as well as edges. In the negative case, i.e., where the graph is not a threshold graph or chain graph anymore, our algorithms return a certificate of constant size. Additionally, we present optimal fully dynamic algorithms for the Hamiltonian cycle problem and the Hamiltonian path problem on threshold and chain graphs which return a vertex cutset as certificate for the non-existence of such a path or cycle in the negative case.
AbstractList Solving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the problem for the whole graph from scratch after each modification. Dynamic algorithms have been considered for several graph properties, for example connectivity, shortest paths and graph recognition. In this paper we present fully dynamic algorithms for the recognition of threshold graphs and chain graphs, which are optimal in the sense that the costs per modification are linear in the number of modified edges. Furthermore, our algorithms also consider the addition and deletion of sets of vertices as well as edges. In the negative case, i.e., where the graph is not a threshold graph or chain graph anymore, our algorithms return a certificate of constant size. Additionally, we present optimal fully dynamic algorithms for the Hamiltonian cycle problem and the Hamiltonian path problem on threshold and chain graphs which return a vertex cutset as certificate for the non-existence of such a path or cycle in the negative case.
Author Köhler, Ekkehard
Beisegel, Jesse
Strehler, Martin
Scheffler, Robert
Author_xml – sequence: 1
  givenname: Jesse
  orcidid: 0000-0002-8760-0169
  surname: Beisegel
  fullname: Beisegel, Jesse
  organization: Institute of Mathematics, Brandenburg University of Technology
– sequence: 2
  givenname: Ekkehard
  surname: Köhler
  fullname: Köhler, Ekkehard
  organization: Institute of Mathematics, Brandenburg University of Technology
– sequence: 3
  givenname: Robert
  orcidid: 0000-0001-6007-4202
  surname: Scheffler
  fullname: Scheffler, Robert
  email: robert.scheffler@b-tu.de
  organization: Institute of Mathematics, Brandenburg University of Technology
– sequence: 4
  givenname: Martin
  orcidid: 0000-0003-4241-6584
  surname: Strehler
  fullname: Strehler, Martin
  organization: Department of Mathematics, Westsächsische Hochschule Zwickau
BookMark eNp9kEtLxDAUhYMoOD7-gKuA6-q9TdK0Sxl1FARBdB3SNplGOsmYdBb990ZHEFy4uJzFPd99nBNy6IM3hFwgXCGAvE4AXLACylyIIAs8IAvkrCxAcDwkC0BZF7xCeUxOUnoHwFI21YJ0SxMnZ2fn1_R-N44zvZ293riO3ozrEN00bBK1IdIX04W1d5MLnmrf04dsGqfgXeemmQZLX4do0hDG_ru9HLTzdBX1dkhn5MjqMZnzHz0lb_d3r8uH4ul59bi8eSo6VrGpQNELLSrLtGBail52smw5WsGsgL5pW9k2gJVtUGDbcIAsddsBVLIq29qwU3K5n7uN4WNn0qTewy76vFKVNZecV1I02VXvXV0MKUVjVf5Af_01Re1GhaC-IlX7SFWOVH1HqjCj5R90G91Gx_l_iO2hlM1-beLvVf9Qn-dziqg
CitedBy_id crossref_primary_10_1145_3711844
Cites_doi 10.1016/0022-2496(87)90014-9
10.1137/S0097539700372216
10.1007/978-3-030-60440-0_11
10.1016/j.tcs.2008.07.020
10.1137/0205021
10.1007/s00453-013-9835-7
10.1016/0166-218X(87)90050-3
10.1137/0206008
10.1137/0218010
10.1016/0167-6377(86)90026-X
10.1007/s00453-008-9273-0
10.1007/978-3-540-73545-8_40
10.1137/0603036
10.1145/1383369.1383371
10.1016/S0167-5060(08)70731-3
10.1137/1.9780898719796
10.1016/0166-218X(90)90092-Q
10.1137/0605055
10.1016/S0166-218X(03)00448-7
10.1145/2897518.2897568
10.1007/PL00009223
10.1007/BF01189067
10.1007/PL00009228
10.1145/335305.335345
10.1007/978-3-319-30139-6_25
10.1016/S0196-6774(03)00082-8
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-023-01107-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2481
ExternalDocumentID 10_1007_s00453_023_01107_1
GrantInformation_xml – fundername: Deutscher Akademischer Austauschdienst
  grantid: BI-DE/17-19-18; BI-DE/19- 20-007
  funderid: http://dx.doi.org/10.13039/501100001655
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c363t-15d5a56f3a53a75d7c72b41f53f50d9bb7b9016f9151b940051b8bc006762b8e3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939764300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:27:16 EDT 2025
Sat Nov 29 02:20:33 EST 2025
Tue Nov 18 22:32:05 EST 2025
Fri Feb 21 02:42:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 05C45
Hamiltonian cycles
05C85
Chain graphs
Difference graphs
Hamiltonian paths
Fully dynamic algorithms
Threshold graphs
68R10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-15d5a56f3a53a75d7c72b41f53f50d9bb7b9016f9151b940051b8bc006762b8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4241-6584
0000-0002-8760-0169
0000-0001-6007-4202
OpenAccessLink https://link.springer.com/10.1007/s00453-023-01107-1
PQID 2847446759
PQPubID 2043795
PageCount 28
ParticipantIDs proquest_journals_2847446759
crossref_citationtrail_10_1007_s00453_023_01107_1
crossref_primary_10_1007_s00453_023_01107_1
springer_journals_10_1007_s00453_023_01107_1
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HenzingerMRFredmanMLLower bounds for fully dynamic connectivity problems in graphsAlgorithmica1998223351362164611310.1007/PL000092280915.68132
IbarraLFully dynamic algorithms for chordal graphs and split graphsACM Trans. Algorithms200844140244695910.1145/1383369.13833711445.05103
YannakakisMThe complexity of the partial order dimension problemSIAM J. Algebr. Discrete Methods19823335135866686010.1137/06030360516.06001
KleinPNSubramanianSA fully dynamic approximation scheme for shortest paths in planar graphsAlgorithmica1998223235249164610810.1007/PL000092230915.68130
Calamoneri, T., Monti, A., Petreschi, R.: Fully dynamically maintaining minimal integral separator for threshold and difference graphs. In: WALCOM: Algorithms and Computation, LNCS, vol. 9627, pp. 313–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_25
HellPShamirRSharanRA fully dynamic algorithm for recognizing and representing proper interval graphsSIAM J. Comput.2002311289305185740110.1137/S00975397003722160992.68065
Beisegel, J., Chiarelli, N., Köhler, E., Krnc, M., Milanič, M., Pivač, N., Scheffler, R., Strehler, M.: Edge elimination and weighted graph classes. In: Adler, I., Müller, H. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 12301, pp. 134–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_11
Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016). https://doi.org/10.1145/2897518.2897568
Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. In: International Computing and Combinatorics Conference, pp. 406–416. Springer (2007). https://doi.org/10.1007/978-3-540-73545-8_40
FrigioniDMarchetti-SpaccamelaANanniUFully dynamic shortest paths in digraphs with arbitrary arc weightsJ. Algorithms200349186113202706010.1016/S0196-6774(03)00082-81064.68068
Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Tech. Rep. CORR 73-21, University of Waterloo (1973)
CozzensMBLeibowitzRMultidimensional scaling and threshold graphsJ. Math. Psychol.19873117919190006710.1016/0022-2496(87)90014-90649.92021
BrandstädtALeVBSpinradJPGraph Classes: A Survey1999SIAM10.1137/1.97808987197960919.05001
HammerPLPeledUNSunXDifference graphsDiscrete Appl. Math.19902813544106482910.1016/0166-218X(90)90092-Q0716.05032
CozzensMBLeibowitzRThreshold dimension of graphsSIAM J. Algebr. Discrete Methods1984557959576398610.1137/06050550717.05069
ShamirRSharanRA fully dynamic algorithm for modular decomposition and recognition of cographsDiscrete Appl. Math.20041362–3329340204521910.1016/S0166-218X(03)00448-71062.68092
MahadevNVRPeledUNThreshold Graphs and Related Topics1995AmsterdamNorth-Holland Publishing Co.0852.05001
HeggernesPKratschDLinear-time certifying recognition algorithms and forbidden induced subgraphsNordic J. Comput.2007141–28710824605581169.68653
OrdmanETMinimal threshold separators and memory requirements for synchronizationSIAM J. Comput.198918115216597817210.1137/02180100677.68064
Ordman, E.T.: Threshold coverings and resource allocation. In: Proceedings of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 99–113. Utilitas Mathematica Pub., Winnipeg (1985)
SoulignacFJFully dynamic recognition of proper circular-arc graphsAlgorithmica2015714904968331880810.1007/s00453-013-9835-71323.05125
HararyFPeledUHamiltonian threshold graphsDiscrete Appl. Math.198716111586973410.1016/0166-218X(87)90050-30601.05033
HeggernesPPapadopoulosCSingle-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletionsTheor. Comput. Sci.20094101115248830710.1016/j.tcs.2008.07.0201161.68040
RoseDJTarjanRELuekerGSAlgorithmic aspects of vertex elimination on graphsSIAM J. Comput.19765226628340831210.1137/02050210353.65019
HenzingerMRFully dynamic biconnectivity in graphsAlgorithmica1995136503538132550310.1007/BF011890670826.68097
KoopGJCyclic scheduling of offweekendsOper. Res. Lett.1986425926383626110.1016/0167-6377(86)90026-X0598.90052
Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000). https://doi.org/10.1145/335305.335345
CrespelleCPaulCFully dynamic algorithm for recognition and modular decomposition of permutation graphsAlgorithmica2010582405432267002310.1007/s00453-008-9273-01205.68258
HendersonPBZalcsteinYA graph-theoretic characterization of the PVchunk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PV}_{\text{ chunk }}$$\end{document} class of synchronizing primitivesSIAM J. Comput.1977618810848894810.1137/02060080349.68022
ChvátalVHammerPLAggregations of inequalities in integer programmingStud. Integ. Program. Ann. Discrete Math.1977114516247938410.1016/S0167-5060(08)70731-3
M Yannakakis (1107_CR30) 1982; 3
MB Cozzens (1107_CR8) 1987; 31
P Hell (1107_CR16) 2002; 31
NVR Mahadev (1107_CR23) 1995
A Brandstädt (1107_CR3) 1999
1107_CR5
DJ Rose (1107_CR26) 1976; 5
1107_CR4
PB Henderson (1107_CR17) 1977; 6
GJ Koop (1107_CR22) 1986; 4
1107_CR1
1107_CR2
MR Henzinger (1107_CR18) 1995; 13
FJ Soulignac (1107_CR28) 2015; 71
PN Klein (1107_CR21) 1998; 22
1107_CR24
1107_CR29
C Crespelle (1107_CR9) 2010; 58
F Harary (1107_CR12) 1987; 16
PL Hammer (1107_CR11) 1990; 28
MR Henzinger (1107_CR19) 1998; 22
L Ibarra (1107_CR20) 2008; 4
ET Ordman (1107_CR25) 1989; 18
V Chvátal (1107_CR6) 1977; 1
MB Cozzens (1107_CR7) 1984; 5
P Heggernes (1107_CR13) 2007; 14
R Shamir (1107_CR27) 2004; 136
D Frigioni (1107_CR10) 2003; 49
1107_CR14
P Heggernes (1107_CR15) 2009; 410
References_xml – reference: ChvátalVHammerPLAggregations of inequalities in integer programmingStud. Integ. Program. Ann. Discrete Math.1977114516247938410.1016/S0167-5060(08)70731-3
– reference: SoulignacFJFully dynamic recognition of proper circular-arc graphsAlgorithmica2015714904968331880810.1007/s00453-013-9835-71323.05125
– reference: BrandstädtALeVBSpinradJPGraph Classes: A Survey1999SIAM10.1137/1.97808987197960919.05001
– reference: HammerPLPeledUNSunXDifference graphsDiscrete Appl. Math.19902813544106482910.1016/0166-218X(90)90092-Q0716.05032
– reference: CozzensMBLeibowitzRMultidimensional scaling and threshold graphsJ. Math. Psychol.19873117919190006710.1016/0022-2496(87)90014-90649.92021
– reference: HeggernesPPapadopoulosCSingle-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletionsTheor. Comput. Sci.20094101115248830710.1016/j.tcs.2008.07.0201161.68040
– reference: FrigioniDMarchetti-SpaccamelaANanniUFully dynamic shortest paths in digraphs with arbitrary arc weightsJ. Algorithms200349186113202706010.1016/S0196-6774(03)00082-81064.68068
– reference: OrdmanETMinimal threshold separators and memory requirements for synchronizationSIAM J. Comput.198918115216597817210.1137/02180100677.68064
– reference: HenzingerMRFully dynamic biconnectivity in graphsAlgorithmica1995136503538132550310.1007/BF011890670826.68097
– reference: IbarraLFully dynamic algorithms for chordal graphs and split graphsACM Trans. Algorithms200844140244695910.1145/1383369.13833711445.05103
– reference: ShamirRSharanRA fully dynamic algorithm for modular decomposition and recognition of cographsDiscrete Appl. Math.20041362–3329340204521910.1016/S0166-218X(03)00448-71062.68092
– reference: Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Tech. Rep. CORR 73-21, University of Waterloo (1973)
– reference: HenzingerMRFredmanMLLower bounds for fully dynamic connectivity problems in graphsAlgorithmica1998223351362164611310.1007/PL000092280915.68132
– reference: KleinPNSubramanianSA fully dynamic approximation scheme for shortest paths in planar graphsAlgorithmica1998223235249164610810.1007/PL000092230915.68130
– reference: Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 343–350 (2000). https://doi.org/10.1145/335305.335345
– reference: Beisegel, J., Chiarelli, N., Köhler, E., Krnc, M., Milanič, M., Pivač, N., Scheffler, R., Strehler, M.: Edge elimination and weighted graph classes. In: Adler, I., Müller, H. (eds.) Graph-Theoretic Concepts in Computer Science, LNCS, vol. 12301, pp. 134–147. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_11
– reference: HararyFPeledUHamiltonian threshold graphsDiscrete Appl. Math.198716111586973410.1016/0166-218X(87)90050-30601.05033
– reference: MahadevNVRPeledUNThreshold Graphs and Related Topics1995AmsterdamNorth-Holland Publishing Co.0852.05001
– reference: CozzensMBLeibowitzRThreshold dimension of graphsSIAM J. Algebr. Discrete Methods1984557959576398610.1137/06050550717.05069
– reference: Ordman, E.T.: Threshold coverings and resource allocation. In: Proceedings of the 16th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 99–113. Utilitas Mathematica Pub., Winnipeg (1985)
– reference: HellPShamirRSharanRA fully dynamic algorithm for recognizing and representing proper interval graphsSIAM J. Comput.2002311289305185740110.1137/S00975397003722160992.68065
– reference: Calamoneri, T., Monti, A., Petreschi, R.: Fully dynamically maintaining minimal integral separator for threshold and difference graphs. In: WALCOM: Algorithms and Computation, LNCS, vol. 9627, pp. 313–324. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_25
– reference: HendersonPBZalcsteinYA graph-theoretic characterization of the PVchunk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{PV}_{\text{ chunk }}$$\end{document} class of synchronizing primitivesSIAM J. Comput.1977618810848894810.1137/02060080349.68022
– reference: KoopGJCyclic scheduling of offweekendsOper. Res. Lett.1986425926383626110.1016/0167-6377(86)90026-X0598.90052
– reference: HeggernesPKratschDLinear-time certifying recognition algorithms and forbidden induced subgraphsNordic J. Comput.2007141–28710824605581169.68653
– reference: RoseDJTarjanRELuekerGSAlgorithmic aspects of vertex elimination on graphsSIAM J. Comput.19765226628340831210.1137/02050210353.65019
– reference: Bhattacharya, S., Henzinger, M., Nanongkai, D.: New deterministic approximation algorithms for fully dynamic matching. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 398–411 (2016). https://doi.org/10.1145/2897518.2897568
– reference: CrespelleCPaulCFully dynamic algorithm for recognition and modular decomposition of permutation graphsAlgorithmica2010582405432267002310.1007/s00453-008-9273-01205.68258
– reference: YannakakisMThe complexity of the partial order dimension problemSIAM J. Algebr. Discrete Methods19823335135866686010.1137/06030360516.06001
– reference: Heggernes, P., Papadopoulos, C.: Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions. In: International Computing and Combinatorics Conference, pp. 406–416. Springer (2007). https://doi.org/10.1007/978-3-540-73545-8_40
– volume: 31
  start-page: 179
  year: 1987
  ident: 1107_CR8
  publication-title: J. Math. Psychol.
  doi: 10.1016/0022-2496(87)90014-9
– volume: 31
  start-page: 289
  issue: 1
  year: 2002
  ident: 1107_CR16
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700372216
– ident: 1107_CR1
  doi: 10.1007/978-3-030-60440-0_11
– volume: 410
  start-page: 1
  issue: 1
  year: 2009
  ident: 1107_CR15
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.07.020
– volume: 5
  start-page: 266
  issue: 2
  year: 1976
  ident: 1107_CR26
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205021
– volume: 71
  start-page: 904
  issue: 4
  year: 2015
  ident: 1107_CR28
  publication-title: Algorithmica
  doi: 10.1007/s00453-013-9835-7
– volume: 16
  start-page: 11
  year: 1987
  ident: 1107_CR12
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(87)90050-3
– volume: 6
  start-page: 88
  issue: 1
  year: 1977
  ident: 1107_CR17
  publication-title: SIAM J. Comput.
  doi: 10.1137/0206008
– volume-title: Threshold Graphs and Related Topics
  year: 1995
  ident: 1107_CR23
– volume: 18
  start-page: 152
  issue: 1
  year: 1989
  ident: 1107_CR25
  publication-title: SIAM J. Comput.
  doi: 10.1137/0218010
– volume: 4
  start-page: 259
  year: 1986
  ident: 1107_CR22
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(86)90026-X
– ident: 1107_CR24
– volume: 58
  start-page: 405
  issue: 2
  year: 2010
  ident: 1107_CR9
  publication-title: Algorithmica
  doi: 10.1007/s00453-008-9273-0
– ident: 1107_CR14
  doi: 10.1007/978-3-540-73545-8_40
– volume: 14
  start-page: 87
  issue: 1–2
  year: 2007
  ident: 1107_CR13
  publication-title: Nordic J. Comput.
– volume: 3
  start-page: 351
  issue: 3
  year: 1982
  ident: 1107_CR30
  publication-title: SIAM J. Algebr. Discrete Methods
  doi: 10.1137/0603036
– volume: 4
  start-page: 1
  issue: 4
  year: 2008
  ident: 1107_CR20
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1383369.1383371
– volume: 1
  start-page: 145
  year: 1977
  ident: 1107_CR6
  publication-title: Stud. Integ. Program. Ann. Discrete Math.
  doi: 10.1016/S0167-5060(08)70731-3
– volume-title: Graph Classes: A Survey
  year: 1999
  ident: 1107_CR3
  doi: 10.1137/1.9780898719796
– volume: 28
  start-page: 35
  issue: 1
  year: 1990
  ident: 1107_CR11
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(90)90092-Q
– volume: 5
  start-page: 579
  year: 1984
  ident: 1107_CR7
  publication-title: SIAM J. Algebr. Discrete Methods
  doi: 10.1137/0605055
– ident: 1107_CR5
– volume: 136
  start-page: 329
  issue: 2–3
  year: 2004
  ident: 1107_CR27
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(03)00448-7
– ident: 1107_CR2
  doi: 10.1145/2897518.2897568
– volume: 22
  start-page: 235
  issue: 3
  year: 1998
  ident: 1107_CR21
  publication-title: Algorithmica
  doi: 10.1007/PL00009223
– volume: 13
  start-page: 503
  issue: 6
  year: 1995
  ident: 1107_CR18
  publication-title: Algorithmica
  doi: 10.1007/BF01189067
– volume: 22
  start-page: 351
  issue: 3
  year: 1998
  ident: 1107_CR19
  publication-title: Algorithmica
  doi: 10.1007/PL00009228
– ident: 1107_CR29
  doi: 10.1145/335305.335345
– ident: 1107_CR4
  doi: 10.1007/978-3-319-30139-6_25
– volume: 49
  start-page: 86
  issue: 1
  year: 2003
  ident: 1107_CR10
  publication-title: J. Algorithms
  doi: 10.1016/S0196-6774(03)00082-8
SSID ssj0012796
Score 2.3555207
Snippet Solving problems on graphs dynamically calls for algorithms to function under repeated modifications to the graph and to be more efficient than solving the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2454
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Graphs
Mathematics of Computing
Problem solving
Recognition
Shortest-path problems
Theory of Computation
Title Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs
URI https://link.springer.com/article/10.1007/s00453-023-01107-1
https://www.proquest.com/docview/2847446759
Volume 85
WOSCitedRecordID wos000939764300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJSHHTtjVShMFSoFdYv8SGilkqAmIPHv8blJKhAgwZTBD0VnO_c5d_d9CJ0L15VJKqhDopA4hCvPEYHSDpU61IGXuJHQVmyCDYd8MonuqqKwos52r0OS9kvdFLsB-oCYI-T_eEBtuI42jLvjcBxH949N7MBnVpULdOcdYhx0VSrz_Ryf3dEKY34Ji1pvM2j_7z130HaFLnFvuR120VqS7aF2rdyAq4O8j1Qf0qltiROGS-g7vloq0-Pe_ClfzMrpc4ENnMWjOr8oz7DINL6F_yEl0Oka9I7zFI_NXigghGWb-1Mxy_ANkGAXB-hhcD3u3zqV3IKjgjAoHY9qKmiYBoIGglHNFPMl8VIapNTVkZRMGvAQppEBCRL01M2DSwX-LvQlT4JD1MryLDlC2HVTc49RXEuSkJQokYQhB1od4inFuNdBXm31WFVc5CCJMY8bFmVrxdhYMbZWjM2Yi2bMy5KJ49fe3Xox4-pUFjG4YnP9ZTTqoMt68VbNP892_LfuJ2jLt-sPeYJd1CoXr8kp2lRv5axYnNnd-gFwveJH
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60CnqxrlitOgdvGsgyk-VYqrViLVKr9BZmSWyhJtJEwX_vvGmSoqigpxxmIbx5k_e9vOVD6JSZJo9iRg0SuMQgvrAM5ghpUC5d6ViRGTCpySa8ft8fjYK7oigsK7Pdy5Ck_lJXxW6APiDmCPk_FrQ2XEYrRFksSOQb3D9WsQPb06xcwDtvEGWgi1KZ7_f4bI4WGPNLWFRbm079f--5iTYKdIlbc3XYQktRso3qJXMDLi7yDhJtSKfWJU4YnNB3fDFnpset6VM6m-Tj5wwrOIsHZX5RmmCWSNyF_yE5tNNV6B2nMR4qXcgghKWH22M2SfAVNMHOdtFD53LY7hoF3YIhHNfJDYtKyqgbO4w6zKPSE57NiRVTJ6amDDj3uAIPbhwokMCBT109fC7A3rk29yNnD9WSNIn2ETbNWPkxwpecRCQmgkWu60NbHWIJ4flWA1ml1ENR9CIHSoxpWHVR1lIMlRRDLcVQrTmr1rzMO3H8OrtZHmZY3MosBFOs3F-PBg10Xh7eYvjn3Q7-Nv0ErXWHt72wd92_OUTrttYFyBlsolo-e42O0Kp4yyfZ7Fhr7gcUV-Ur
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60inixPrFadQ_eNJg0u3kcS2utKKVold7CPrK2UNPSRMF_7842aVVUEE85bHYJu7PMN5mZ70PolNk2jxWjFgk9YpFAOBZzhbQol550ndgOmTRiE36nE_T7YfdDF7-pdi9SkrOeBmBpSrKLiVQX88Y3QCKQf4RaIAdoDpfRCgHRIIjX7x_neYSabxS6QIPeItpZ520z36_x2TUt8OaXFKnxPK3y_795E23kqBPXZ2ayhZbiZBuVC0UHnF_wHSQaUGZtWp8wBKdvuDlTrMf10dN4OswGzynWMBffFXVH4wSzROI2_CfJgGZXo3o8VrinbSSF1JYZbgzYMMFXQI6d7qKH1mWv0bZyGQZLuJ6bWQ6VlFFPuYy6zKfSF36NE0dRV1Fbhpz7XIMKT4UaPHDQWdePgAvwg16NB7G7h0rJOIn3EbZtpeMbEUhOYqKIYLHnBUC3Qxwh_MCpIKc4gUjkHOUglTGK5uzKZhcjvYuR2cVIzzmbz5nMGDp-fbtaHGyU39Y0Ahetw2KfhhV0XhzkYvjn1Q7-9voJWus2W9HtdefmEK3XjClAKWEVlbLpS3yEVsVrNkynx8aI3wE0Fu4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Certifying+Fully+Dynamic+Algorithms+for+Recognition+and+Hamiltonicity+of+Threshold+and+Chain+Graphs&rft.jtitle=Algorithmica&rft.au=Beisegel%2C+Jesse&rft.au=K%C3%B6hler%2C+Ekkehard&rft.au=Scheffler%2C+Robert&rft.au=Strehler%2C+Martin&rft.date=2023-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=85&rft.issue=8&rft.spage=2454&rft.epage=2481&rft_id=info:doi/10.1007%2Fs00453-023-01107-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_023_01107_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon